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SYMPOS IUM REPORT

LTP of GABAergic synapses in the ventral tegmental area
and beyond

Fereshteh S. Nugent and Julie A. Kauer

Brown University, Department of Molecular Pharmacology, Physiology and Biotechnology, Providence, RI 02912, USA

One of the mechanisms by which the experience-dependent reorganization of neural circuitry

can occur is through changes in synaptic strength. Almost every excitatory synapse in the

mammalian brain exhibits LTP (long-term potentiation) or LTD (long-term depression), two

cellular mechanisms of synaptic plasticity. However, LTP and LTD have been reported much

more rarely at fast inhibitory GABAA receptor synapses. Our recent study suggests that in vivo

morphine initiates a long-lasting alteration of GABAergic synapses in the ventral tegmental area

(VTA) by blocking the mechanisms required for LTP of GABAergic synapses. Here we put this

work into the context of other examples of synaptic plasticity at GABAergic synapses.
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The most widely studied candidate mechanisms for
changing synaptic strength are LTP and LTD, hypothesized
to play critical roles in the establishment of many forms
of experience-dependent plasticity, including learning
and memory. Recent studies have begun to show that
excitatory synapses in brain regions important in addiction
can express LTP- and LTD-like changes in response to
administration of addictive drugs, and the molecular
mechanisms underlying these synaptic modifications
share those observed in other forms of plasticity. These
findings support the idea that the development of
drug addiction, an example of an experience-dependent
neuroadaptation, involves usurping or disrupting synaptic
plasticity mechanisms (Hyman & Malenka, 2001; Hyman
et al. 2006; Kauer & Malenka, 2007).

GABAergic synapses exhibit plasticity

By releasing GABA onto GABAA receptors, inhibitory
interneurons control the output of their target neurons
by opposing synaptic excitation and limiting the spread
of neural activity (Farrant & Nusser, 2005; Akerman &
Cline, 2007). As an illustration of this point, blocking
GABAA receptors in the mature CNS increases principal
neuron firing rates, and in cortical structures can promote
epileptiform bursting. Thus, modifications in the strength

This report was presented at The Journal of Physiology Symposium

on Synaptic Plasticity, San Diego, CA, USA, 2 November 2007. It was

commissioned by the Editorial Board and reflects the views of the author.

of GABAergic synapses will alter the patterns of activity
generated by a neuronal network, leading to downstream
behavioural changes (Gaiarsa et al. 2002). As with plasticity
at excitatory synapses, much of the work on LTP and
LTD of GABAergic synapses has been carried out in the
hippocampus (Stelzer et al. 1987, 1994; Grunze et al.
1996; McLean et al. 1996; Kang et al. 1998; Caillard
et al. 1999a,b; Lu et al. 2000; Gubellini et al. 2001,
2005; Chevaleyre & Castillo, 2003; Patenaude et al. 2003;
Chevaleyre et al. 2007). However, synaptic plasticity of
GABAergic synapses has also been reported in other
brain regions, including the neocortex (Komatsu, 1994;
Komatsu & Yoshimura, 2000; Lien et al. 2006; Maffei
et al. 2006), the cerebellum (Kano, 1994; Mitoma et al.
1994; Mitoma & Konishi, 1996; Kawaguchi & Hirano,
2002; Saitow et al. 2005; Kawaguchi & Hirano, 2007), the
deep cerebellar nuclei (DCN) (Morishita & Sastry, 1993,
1996; Aizenman et al. 1998; Ouardouz et al. 2000), and
the brain stem (Glaum & Brooks, 1996; Grabauskas &
Bradley, 1999). Our recent work explored the mechanisms
underlying synaptic plasticity at GABAergic synapses on
midbrain dopamine neurons (Nugent et al. 2007).

It is clear that LTP and LTD at GABAergic synapses
utilize diverse mechanisms depending on the cell type
and developmental stage. As for the majority of forms
of excitatory synapse LTP/LTD (Malenka & Bear, 2004),
at many GABAergic synapses a rise in postsynaptic Ca2+

is necessary to induce plasticity, although the source of
Ca2+ and the downstream intracellular signalling cascades
differ from one brain area to another (Kano, 1995; Gaiarsa
et al. 2002). Considerable effort has been directed toward
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explaining how activity of inhibitory synapses can generate
a rise in intracellular Ca2+ when GABAA receptors are Cl−

channels impermeant to Ca2+.

GABAA synapses in developing brain

A number of studies in various brain regions have
found that Ca2+ enters the postsynaptic cell through
NMDARs or voltage-gated Ca2+ channels (Kano, 1994;
Glaum & Brooks, 1996; Grunze et al. 1996; McLean
et al. 1996; Caillard et al. 1999a,b; Lu et al. 2000;
Ouardouz et al. 2000; Nugent et al. 2007). For example,
early in postnatal development, hippocampal GABAergic
synapses can exhibit bi-directional plasticity. In neonates,
at this and many synapses, GABAA receptor-mediated
currents are depolarizing, because the expression of
specific Cl− transporters promotes high levels of
intracellular Cl− (Cherubini et al. 1991; Akerman & Cline,
2007). The activation of these receptors therefore can
provide the initial membrane depolarization required to
open NMDAR channels resulting in LTD (Kano, 1994;
McLean et al. 1996; Caillard et al. 1999b), or to open
voltage-gated calcium channels resulting in LTP at these
synapses (McLean et al. 1996). This form of LTP at
hippocampal synapses is restricted to the first postnatal
week, a period when the GABAergic synapses are reaching
maturity. At other GABAA synapses, plasticity is dependent
on intracellular sources of Ca2+ such as InsP3-sensitive
stores, or Ca2+-induced Ca2+ release stores (Hashimoto
et al. 1996; Komatsu, 1996). Several of these examples of
GABAA synapse LTP result from postsynaptic increases
in GABAA receptor number or sensitivity to GABA (Kano,
1994; Ouardouz et al. 2000; Maffei et al. 2006), although the
cellular mechanisms that underlie these changes remain
poorly understood.

Postsynaptic electrical activity can trigger LTP
of GABAergic synapses

Aizenman et al. (1998) studied the cerebellar Purkinje
cell-deep cerebellar nuclei synapse and first proposed
a novel model to explain how LTP and LTD can be
triggered solely by the activity of inhibitory synapses. Here
LTP requires a rise in postsynaptic intracellular calcium
that can be achieved through rebound depolarization
after hyperpolarizing IPSPs. Following a burst of IPSPs,
the membrane rapidly depolarizes, reaching a potential
at which voltage-gated calcium channels are activated,
allowing an essential increase in intracellular Ca2+

(Aizenman et al. 1998; Ouardouz et al. 2000). Again, LTP
is apparently maintained by an increase in postsynaptic
GABAA receptor number/conductance, as exogenously
applied GABAA agonists elicit a larger postsynaptic
response following LTP induction, but the mechanisms

have not been explored further (Ouardouz et al. 2000).
A form of LTP at GABAergic synapses, recently described
in developing visual cortex, is also induced by a novel,
postsynaptic activity-dependent mechanism (Maffei et al.
2006). This LTP is triggered at GABAergic synapses on
star pyramidal cells by subthreshold depolarization of
the pyramidal cells during presynaptic firing, but not
during coincident presynaptic and postsynaptic firing. The
involvement of postsynaptic Ca2+ has not been tested as
yet, but the rather precise requirements for LTP induction
suggest that the signalling molecule involved must operate
in a narrow concentration or time window. This form of
LTP is also apparently maintained by postsynaptic changes.
LTP at these GABAergic synapses may play an important
role in the critical period for visual cortex development.

Endocannabinoids mediate LTD of GABAergic
synapses

Endocannabinoid-mediated LTD (ec-LTD) at GABAA

synapses in the hippocampus occurs entirely
independently of postsynaptic Ca2+ (Chevaleyre et al.
2006). Ec-LTD is initiated by glutamate release onto the
metabotropic glutamate receptors on the postsynaptic cell.
Activation of the mGluRs then leads to production of an
endocannabinoid, most probably 2-arachidonylglycerol,
which acts as a retrograde messenger that binds to CB1
receptors on neighbouring presynaptic GABAergic nerve
terminals. CB1 receptors cause a long-lasting depression
of GABA release involving PKA signalling and the active
zone protein RIM1α (Chevaleyre et al. 2007). Thus,
unlike many other examples of GABAA synapse plasticity,
ec-LTD is mediated by a change in presynaptic function.
Endocannabinoid-mediated LTD has also been observed
at other GABAergic and glutamatergic synapses, with
some mechanistic variations on the theme (Chevaleyre
et al. 2006).

GABAA synapses in the VTA exhibit
NO-dependent LTP

Drugs of abuse share one important feature: the activation
of the mesolimbic dopamine system. This involves
increased firing of dopamine neurons in the VTA and
a subsequent increase of dopamine released into the
nucleus accumbens and other regions of the limbic
forebrain (Di Chiara & Imperato, 1988; Nestler, 2001;
Hyman et al. 2006). We became interested in the
question of whether GABAergic synapses in the VTA
could undergo LTP because μ-opioid receptors (the
targets of morphine) are concentrated on GABAergic
cells, and because GABAergic drugs delivered to the VTA
are reinforcing. Using whole-cell recording in rat brain
slices, we showed that high-frequency stimulation (HFS)
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Figure 1. GABAergic synapses on dopamine neurons are potentiated after high-frequency stimulation
A, single experiment showing LTPGABA recorded in a dopamine neuron while whole-cell voltage-clamped at
−70 mV. At the arrow (HFS), the afferents were stimulated using a 100 Hz, 1-s-long train, repeated twice 20 s apart,
while holding the dopamine neuron in current-clamp. Inset, averaged IPSCs before (black) and 25 min after HFS
(red). In this and all figures, 10 consecutive IPSCs from each condition were averaged for illustration. Calibration:
10 ms, 50 pA. In this and all IPSC experiments, 10 μM DNQX and 1 μM strychnine were present to block AMPARs
and glycine receptors, respectively. The internal solution was K+-based, so that IPSCs are seen as inward synaptic
currents. B, average of 71 experiments from dopamine cells. LTPGABA was not triggered in all cells, but data from
all cells are included in this and subsequent graphs. (Adapted from Nugent et al. 2007.)

induces LTP of GABAA-mediated synaptic transmission
(LTPGABA) onto dopamine neurons of the VTA (Fig. 1)
(Nugent et al. 2007). LTPGABA required an increase in
postsynaptic Ca2+ concentration. We found that LTPGABA

is heterosynaptic, i.e. it is triggered when glutamate
activates NMDA receptors but potentiates neighbouring
GABAergic synapses. Importantly, LTPGABA did not require
active GABAA synapses, as the potentiation could be
triggered by NMDAR activation in the presence of
GABAA receptor antagonists. LTPGABA was associated
with modifications in the coefficient of variation and
paired pulse ratio of evoked GABAA IPSCs, suggesting
that it is maintained by persistently increased GABA
release. Similarly to ec-LTD, if the LTP induction
occurs postsynaptically while the locus of expression is
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Figure 2. LTPGABA requires NO–cGMP signalling
A, the guanylate cyclase inhibitor ODQ blocks LTPGABA. 10 μM ODQ (1H-[1,2,4] oxadiazolo [4,3-a]
quinoxalin-1-dione) was bath-applied beginning at least 10 min prior to HFS (arrow). LTPGABA was blocked,
implicating the NO–cGMP signalling cascade in LTPGABA (control LTP: •, 160 ± 5.7% of pre-HFS values, n = 6;
ODQ-treated cells: �, 81 ± 4% of pre-drug HFS, n = 8). B, pCPT-cGMP (100 μM), a cGMP analogue, potentiated
IPSCs without HFS (169 ± 5% of pre-drug values, n = 11). C, in experiments like those in B, after the IPSCs reached
a new, potentiated level in 100 μM pCPT-cGMP, HFS was delivered (arrow). pCPT-cGMP occludes potentiation of
IPSCs by HFS (89 ± 0.5 of pre-HFS values, n = 6). (Adapted from Nugent et al. 2007.)

presynaptic, then a retrograde messenger is required that
must travel backward from the postsynaptic dopamine
neuron to increase GABA release from presynaptic
terminals. Several lines of evidence supported nitric oxide
(NO) as the retrograde signal maintaining LTPGABA.
Inhibition of NO production or bathing the brain
slice in NO scavengers blocked LTPGABA. Furthermore,
increasing NO levels enhanced GABAA IPSCs. We also
found that a guanylate cyclase inhibitor blocked LTPGABA,
whereas a cGMP analogue mimicked it, indicating
that NO facilitates GABA release by activation of pre-
synaptic guanylate cyclase (Figs 2 and 4). This was the
first demonstration of a presynaptically maintained LTP
at GABAergic synapses requiring NO as a retrograde
messenger.
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Figure 3. Opioids block LTPGABA in vivo
A and B, in vivo exposure to morphine prevents LTPGABA in slices prepared 24 h later. Single experiments and sample
IPSCs (insets) from slices from a saline-injected animal (A) and a morphine-injected animal (B). Calibration: 10 ms,
50 pA. C, averaged experiments from slices prepared 24 h after either saline or 10 mg kg−1 morphine injection
delivered I.P. (saline cells, •, 196 ± 20% of pre-HFS values, n = 10; morphine-treated cells, �, 91 ± 4% of pre-HFS
values, n = 11). (Adapted from Nugent et al. 2007.)

NMDA receptor activation on VTA dopamine cells also
leads to long-term potentiation of excitatory synapses
(Bonci & Malenka, 1999; Overton et al. 1999). Our work
suggests that NMDAR activation is likely to trigger parallel
long-term plasticity at inhibitory synapses. The balance
between excitatory and inhibitory synaptic input regulates
neuronal cell firing, and therefore activity-dependent
simultaneous adjustment of the strengths of inhibitory
and excitatory synapses can stabilize the circuit, preventing
saturation of neuronal firing (Galarreta & Hestrin, 1998;
Varela et al. 1999; Abbott & Chance, 2005). Our data
suggest that in the VTA, NMDA receptor activation could
normally act as a ‘gain modulator’, with LTP at excitatory
synapses balanced by LTPGABA, stabilizing the firing rate
of dopamine neurons (Abbott & Chance, 2005). Similarly,
in the hippocampus, activity in excitatory afferents can
also trigger simultaneous NMDAR-dependent LTP at
excitatory synapses and retrograde messenger-induced
plasticity at neighbouring inhibitory synapses. However,
in the case of endocannabinoid-triggered plasticity,

NMDAR

2+
Ca AMPARNOSNO
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GlutamateGABA

cGMP

GABAR

μOR

−

Figure 4. Model of the signalling molecules
involved in induction of LTPGABA

LTP of GABAergic synapses is heterosynaptic, triggered
by NMDA receptor activation at glutamate synapses
and requires NO–cGMP signalling. An in vivo injection
of morphine prevents LTPGABA through the presynaptic
interaction between opioid signalling pathways and NO
targets.

the GABAergic terminals undergo LTD, not LTP. This
coincident activation of excitatory and inhibitory synapses
in the hippocampus would therefore be expected to do just
the opposite of that in the VTA – to synergize, promoting
excitability rather than maintaining stability, at least at the
local dendritic level. Both ec-LTD in the hippocampus and
NO-triggered LTPGABA in the VTA share common features
– each is triggered by postsynaptic glutamate receptors,
requires a retrograde messenger, and is maintained by
persistent presynaptic alteration of GABA release at nearby
synaptic terminals – suggesting that these may be common
themes in CNS circuit modifications. The precise circuits
and circumstances in which synaptic plasticity at excitatory
and inhibitory synapses occurs simultaneously will be an
exciting avenue for future research.

LTPGABA is blocked by in vivo exposure to morphine

NMDA receptor-dependent LTP has been demonstrated at
excitatory synapses on midbrain dopamine neurons and
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can also be induced by addictive drugs (Bonci & Malenka,
1999; Overton et al. 1999; Jones et al. 2000; Mansvelder
& McGehee, 2000; Ungless et al. 2001; Saal et al. 2003;
Faleiro et al. 2004; Liu et al. 2005). Several lines of evidence
support the involvement of synaptic plasticity at excitatory
synapses of the mesolimbic dopaminergic system in the
development of addiction (Hyman & Malenka, 2001;
Carlezon & Nestler, 2002; Thomas & Malenka, 2003;
Jones & Bonci, 2005; Kauer & Malenka, 2007). When we
found that LTPGABA accompanies NMDAR activation at
VTA synapses, we therefore investigated whether or not
morphine, which modulates inhibitory function in the
VTA, can modulate LTPGABA. Intriguingly, we found that
in vivo morphine administration entirely blocked LTPGABA

(Nugent et al. 2007). GABAA synapses in VTA slices from
rats that had received morphine 24 h earlier did not exhibit
LTP (Fig. 3). We further investigated the mechanism
by which morphine blocked LTPGABA. Increasing NO
levels exogenously had no effect on GABAA synapses in
morphine-treated animals, whereas application of a cGMP
analogue still potentiated the synapses. These data suggest
a model in which in vivo morphine interrupts the signalling
between NO and cGMP generation, perhaps at the level of
guanylate cyclase (Fig. 4). This key finding may inform the
development of novel drugs to prevent or treat addiction.

One question raised by our work is whether other
drugs of abuse may also block LTPGABA. Although
as yet we have not answered this question directly,
intriguing experimental evidence suggests that repeated
daily exposure to cocaine in vivo reduces GABAA

receptor-mediated inhibition of dopamine neurons (Liu
et al. 2005). The relationship between LTPGABA and this
phenomenon has not yet been tested, but these data suggest
that attenuation of local GABAA-mediated inhibition in
the VTA may represent a common target of addictive
drugs.

Pharmacological blockade of GABAergic transmission,
presumably by enhancing Ca2+ influx by depolarization or
NMDA receptor activation, facilitates the induction of LTP
at excitatory synapses. On the basis of this observation,
changes in GABAergic synaptic transmission will have
important consequences for glutamatergic synaptic
plasticity (Chevaleyre et al. 2006). The modulation of
dopamine transmission in the VTA as a result of the loss
of LTPGABA will therefore contribute not only to increased
dopamine cell firing and dopamine release, but also to LTP
at excitatory synapses, which has been reported after either
morphine and cocaine exposure (Ungless et al. 2001; Saal
et al. 2003; Borgland et al. 2004; Liu et al. 2005). LTPGABA

can thus be regarded as contributing to metaplasticity,
in which an existing form of synaptic plasticity (LTP
at excitatory synapses) is modulated (Abraham & Tate,
2007). After morphine administration the loss of normal
inhibitory control coupled with metaplastic potentiation
of excitatory synapses may represent neuroadaptations

that increase the incentive properties of these addicting
drugs.

Conclusions and future directions

Understanding the mechanisms that control plasticity
at GABAergic synapses is essential to assessing their
critical role in CNS function. Our recent work provides
an example of drug-induced modification of GABAergic
synapses in response to in vivo drug exposure. These
findings strengthen the idea that changes in synaptic
plasticity may contribute to the development of addictive
behaviour. Understanding the cellular mechanisms
involved in the particular forms of synaptic plasticity in
addiction-related brain areas could provide new insights
into the molecular pathology of drug addiction and
new therapeutic approaches. Many questions remain to
be elucidated regarding how LTPGABA is expressed and
maintained at VTA synapses, and whether other drugs of
abuse modulate plasticity in the same way that morphine
does. Given the importance of NO signalling in the brain,
it will also be of great interest to determine whether
NO-mediated LTP is a property of GABAergic synapses
in other brain areas. Compared with our understanding of
synaptic plasticity at excitatory synapses, many questions
are unanswered regarding GABAA synapse plasticity. How
are GABAA receptors trafficked and stabilized during
postsynaptically maintained forms of LTP and LTD? How
precisely do retrograde messenger molecules persistently
modulate GABA release from presynaptic terminals? What
are the behavioural correlates of synaptic plasticity at
GABAergic synapses, and how long does it last? Why is
it that some GABAergic synapses can undergo LTP or
LTD while others appear unmodifiable? As patch-clamp
recordings have become the standard approach in the
study of synaptic function, the use of slices from immature
animals has become more common; another important
question therefore is to what extent GABAA synapse
plasticity is a feature of immature versus mature brain.
It is clear that GABAergic inhibition is a key element
of essentially every brain circuit, and the control of
GABAergic synaptic strength is an important and growing
area of interest.
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