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In order to quantify the contribution of arbuscular mycorrhizal (AM) fungi to plant
phosphorus nutrition, the development and extent of the external fungal mycelium and its
nutrient uptake capacity are of particular importance.We develop and analyse a model of the
growth of AM fungi associated with plant roots, suitable for describing mechanistically the
effects of the fungi on solute uptake by plants. The model describes the development and
distribution of the fungal mycelium in soil in terms of the creation and death of hyphae, tip–
tip and tip–hypha anastomosis, and the nature of the root–fungus interface. It is calibrated
and corroborated using published experimental data for hyphal length densities at different
distances away from root surfaces. A good agreement between measured and simulated
values was found for three fungal species with different morphologies: Scutellospora calospora
(Nicol. & Gerd.) Walker & Sanders; Glomus sp.; and Acaulospora laevis Gerdemann &
Trappe associated with Trifolium subterraneum L. The model and findings are expected to
contribute to the quantification of the role of AM fungi in plant mineral nutrition and the
interpretation of different foraging strategies among fungal species.
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1. INTRODUCTION

Arbuscular mycorrhizae are mutualistic symbiotic
associations between plant roots and specific soil fungi
and are formed by more than 90% of all terrestrial plants
(Brundrett 2002). They may offer several benefits to the
host plant, including improved mineral nutrition,
especially phosphate, and enhanced growth (Smith &
Read 1996). The fungi are obligate symbionts and
benefit from the symbiosis by receiving photosynthates
from the plant. Arbuscular mycorrhizal (AM) fungi
grow inside plant roots as well as in the surrounding soil.
The root-internal mycelium grows mainly intracellu-
larly, but enters root cortex cells to form highly
branched structures called arbuscules, where the
transfer of, for example, phosphorus from fungus to
root is thought to occur. The root-external mycelium
spreads several centimetres away from root surfaces into
the soil. It can thereby access poorly mobile soil
nutrients from outside the nutrient depletion zone
formed around actively absorbing roots. Many metres
of fungal hyphae may be produced per gram of soil
(Miller et al. 1995). This results in a greatly increased
surface area for plant nutrient absorption. A diagram of
an arbuscular mycorrhiza is shown in figure 1.
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In spite of the worldwide occurrence of the AM
symbiosis, mathematical models on mycorrhizae are
scarce. Neuhauser & Fargione (2004) presented an
ecologically based model of mutualism–parasitism
with specific application to plant–mycorrhiza
interaction. This model is based on the classical
host–parasite Lotka–Volterra model and hence is not
spatially explicit.

In order to quantify the increased surface area
provided by the fungal mycelium and its effect on
nutrient uptake, it is necessary to quantify the dynamics
of the external fungal mycelium. A first model to
quantify the contribution of the external fungal
mycelium to plant phosphorus uptake was developed
by Schnepf & Roose (2006). Their predicted root inflow
was low compared with published data (Tinker & Nye
2000; McGonigle & Fitter 1988). However, the result of
Schnepf & Roose (2006) was derived on the scale of a
single mycorrhizal root, while the values of Tinker &
Nye (2000) and McGonigle & Fitter (1988) were derived
on a whole-plant basis, where a lot of additional
processes such as root growth and root colonization
have to be considered. Schnepf & Roose (2006) also
analysed phosphorus translocation within the mycelial
network and showed that it is so fast that the nutrient
availability cannot be the rate-limiting step for the
mycorrhizal pathway of phosphorus into the root.
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Figure 1. Internal and external mycelium of a vesicular arbuscular mycorrhizal fungus.
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Models for growth of non-mycorrhizal mycelial
fungi are directed at cell physics (Bartnicki-Garcia
et al. 2000), physiological processes and population
dynamics (Edelstein 1982; Boswell et al. 2003) or
biochemical processes (Tlalka et al. 2003). Edelstein
(1982) describes colony growth based on average
properties of single hyphae. The model includes
processes such as elongation of fungal hyphae, creation
of new branches, fusion of a tip with another tip or its
neighbouring hypha (anastomosis) and hyphal death.
This model has been extended by Stacey et al. (2001) to
model the transmission of soil-borne fungal pathogens
by colony growth from infectious to susceptible plants.
Boswell et al. (2003) extended the work of Edelstein
(1982; Edelstein & Segal 1983) to include physio-
logically derived uptake and translocation mecha-
nisms of a growth-limiting substrate within the
fungal colony. An approach rather different from
such continuous models is presented by Meškauskas
et al. (2004). The vector-based ‘neighbour-sensing
model of hyphal growth’ is directed at simulating
mycelial morphology explicitly and in three dimen-
sions using movement rules similar to cellular auto-
mata. This model approach is illustrative, but it
appears difficult to assess the physiological context
and compare it quantitatively with experiments. This
difficulty was overcome by a hybrid cellular automata
model recently derived by Boswell et al. (2007) and
Davidson (2007b), where a discrete model describes the
fungal mycelium while substrate concentrations are
modelled as continuous variables. The parameters in
this model were derived from experimental obser-
vations. Falconer et al. (2005, 2007) present a
physiologically based model for mycelium growth
that incorporates transport and recycling of biomass.
They show how hyphal-scale features and transport
are involved in the production of colony-scale features.
Impact of colony-scale context on local behaviour
within the mycelium is explained in terms of the
dynamics of resource uptake, biomass remobiliza-
tion and movement. However, this model is based
on a qualitative flux of colony biomass and does
not incorporate hyphal-scale mechanisms such as
J. R. Soc. Interface (2008)
branching. For reviews on fungal growth modelling,
see Prosser (1993), Bezzi & Ciliberto (2004) and
Davidson (2007a).

In this paper, we aim to develop and analyse a model
for growth ofAM fungi, which can be used to create a sink
term for plant solute uptake models and represents all
necessaryprocesses formycorrhizal growth. Such amodel
can be validated against experiments that measure the
contributionof theAMfungi to plant phosphorus uptake.
For this final goal, a suitable representation of mycor-
rhizal colony growth is needed. The study of mycelial
fungi involves spatial scales ranging frommicrometres or
less to centimetres, or in some cases even kilometres
(Davidson 2007a), and it is our first task to choose the
spatial scale most appropriate for our purpose. To
develop a sink term for mycorrhizal root uptake models,
we need to know the local surface area of the hyphal
networkatgivendistancesaway fromthe root surface, i.e.
a representation on the colony scale. TheEdelsteinmodel
describes the dynamics of mycelium formation based on
microscopic processes such as branching and anastomo-
sis. It has been shown that these processes are also
relevant for mycorrhizal fungi (Giovanetti et al. 2001).
Therefore, it seems tobeapromising startingpoint for the
development of a model for growth of mycorrhizal fungi.
However, it is necessary to define a model boundary
condition that represents the interface between root and
fungus, which is characteristic of the mycorrhizal
symbiosis.

We begin by deriving a model for growth of AM
fungi. We then calibrate it against the experimental
data of Jakobsen et al. (1992) and provide an analysis
and discussion of model results. Model calibration
results will be useful to find out differences in different
species of mycorrhizal fungi and their behaviour, with
particular emphasis on branching and anastomosis.
2. MODEL FORMULATION

We describe the mycelium by two continuous variables:
the hyphal length density r and the hyphal tip density
n. The hyphal length density is the variable that is most
easily compared with experimental data. Hyphal tips
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are important, because growth is thought to occur due
to the elongation of the region just behind the tips
(Edelstein 1982; Gow & Gadd 1994; Bartnicki-Garcia
et al. 2000). Therefore, we can describe the movement
of hyphal tips, with the tips leaving a ‘trail’ of newly
created hyphae behind them. Conservation of tips gives
the following equation for the hyphal tip density:

vn

vt
ZKV$ðnvÞC f ; ð2:1Þ

where v is the rate of tip movement and f is the rate of
creation or destruction or both of hyphal tips, i.e.
branching, death and anastomosis. Mycorrhizal fungi
are known to branch mainly apically where one tip
splits into two. In the simplest case, branching and
tip death are linearly proportional to the existing tip
density, i.e. fZbnnK dbn, where bn is the tip branching
rate and dn is the tip death rate. Alternatively, if we
assume that branching decreases with increasing tip
density and ceases at a given maximal tip density, the
term f becomes fZbnnð1Kðn=nmaxÞÞK dnn. From a
biological point of view, this behaviour could be due to
the competition between hyphal tips for space and
growth resources when the tip density is large.

The fusion of two hyphal tips or a tip with a hypha
can create interconnected networks by means of
anastomosis. The functional form of f describing tip–
hypha and tip–tip anastomosis is fZKa2nrK a1n

2

(Edelstein 1982), where r is the hyphal length density
and a1 and a2 are the tip–tip and tip–hypha anasto-
mosis rate constants, respectively.

Considering nonlinear branching, tip death and
tip–hypha and tip–tip anastomosis, the most general
functional form of f is fZbnnð1Kðn=nmaxÞÞK dnn
Ka2nrK a1n

2. However, if required, it could include
more terms or a more detailed description of the
existing terms where the constants are replaced by
functions that could be dependent on parameters
related to the fungal physiology and/or its interaction
with the environment. Mycelial fungi are capable of
translocating nutrients within the hyphal network, e.g.
from places of high nutrient concentrations to places
where nutrients are scarce (Bezzi & Ciliberto 2004).
Recent models of non-mycorrhizal mycelial fungi
assume that growth is dependent on the internal and
external concentrations of the growth-limiting nutrient
carbon (Boswell et al. 2003; Davidson 2007a). AM
fungi receive carbon exclusively from their host plant,
and it would be necessary to model this aspect of
the mycorrhizal symbiosis by including the transfer of
carbon from the host plant to the fungus and trans-
location within the mycelium to the fungal tips where
growth occurs. However, owing to the lack of experi-
mental data, we are unable to quantitatively include
this in the current model. At this stage, we focus on
the effect of the increased surface area provided by
the external fungal mycelium on plant availability
of nutrients such as phosphate. External and internal
phosphate concentrations were considered by
Schnepf & Roose (2006), where they considered
nutrient uptake and translocation within the fungal
network towards the plant root. They showed that
translocation was so fast that it cannot be a limiting
step in plant phosphate supply or fungal growth.
J. R. Soc. Interface (2008)
The hyphal length density is dependent on tip
density and movement and hyphal death. The increase
in hyphal density can be written as njvj, i.e. the length
of the trail left behind as tips move through the unit
volume. We consider hyphal death to be linearly
proportional to the hyphal length density r, so that
the equation describing the hyphal length density is

vr

vt
Z njvjKdr; ð2:2Þ

where d is the rate of hyphal death.
To close the growth model described by equations

(2.1) and (2.2), we need to apply initial and boundary
conditions. For AM fungi, we have to consider the
boundary interface between root and fungus because
the fungus cannot grow without the root. In future, it
would be interesting to couple the model for external
fungal mycelium with a model of root colonization,
which would also define the root–fungus interface.
However, in a first approach, we define a boundary
condition where the hyphal tip density is prescribed by
a given function that may depend on other variables
such as t, r or n. Its shape could be determined from
experimental data. Owing to the lack of data that
would enable us to develop such a function, we use a
simple linear function

nðr0; tÞZ atCn0;b; ð2:3Þ
where n0,b is the tip density initially present at the
boundary and a is a boundary proliferation parameter.
If the soil surrounding the root is initially fungus free,
we have as initial condition that rZnZ0.

Considering the growth of fungal hyphae from a
cylindrical root in radial polar coordinates, the model
equations and initial and boundary conditions are

vn

vt
ZK

1

r

vðrnvÞ
vr

C f ; tR0; rRr0; ð2:4Þ
vr

vt
Z nvKdr; tR0; rRr0; ð2:5Þ

n Z 0; t Z 0; rRr0; ð2:6Þ
rZ 0; t Z 0; rRr0; ð2:7Þ

n Z atCn0;b; r Z r0; tO0; ð2:8Þ
where r0 is the root radius and v is the speed of radial
tip movement.
2.1. Model analysis and solutions

For analysis and solution of the model described by
equations (2.4)–(2.8), we apply the technique of non-
dimensionalization (Fowler 1997), a process of changing
variables by scaling so that the new variables have no
units. This procedure leads to a simpler form of equa-
tions with fewer parameters that are all dimensionless.
These parameters describe the relative importance of
different processes included in the model compared with
each other and determine the behaviour of the solution.
However, the same qualitative behaviour may be the
result of different combinations of the dimensional
parameter values. Thus, non-dimensionalization tells
us about the behaviour of the system for a wide range of
dimensional parameter values.



776 Growth model for mycorrhizal fungi A. Schnepf et al.
For the simplest form of the function f, which
considers linear branching, no anastomosis and a
constant flux of tips across the root–fungus interface,
f is given by

f Z bn; ð2:9Þ

where bZbnK dn is the net rate of creation of hyphal
tips. Henceforth, we call this model the linear branching
model. Its solution can be found analytically using the
method of characteristics (Ockendon et al. 2003). The
full derivation is given in appendix A. We compare
the hyphal length density with experimental data in §4.
The solution for the hyphal length density is given by
For some plants with an already established root
colonization, the flux of tips at the boundary may even
be constant, i.e. aZ0. In this case, equation (2.10)
rðr ; tÞZ 1

d
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b

v
ðrKr0Þ
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This solution, expressed only in one-dimensional
Cartesian coordinates, has been used by Schnepf &
Roose (2006) to develop a sink term for nutrient uptake
by a fungal mycelium, which they included in a classical
single root nutrient uptake model.

We now consider the general functional form of f,
which includes nonlinear branching and both types of
anastomosis. In this case, the equation for the hyphal
tip density is given by

vn

vt
ZK

1

r

vðvrnÞ
vr

Cbnn 1K
n

nmax

� �
K dnn

K a2nrK a1n
2: ð2:12Þ

Henceforth, we call this model the ‘general model’.
Equation (2.12) for the hyphal tip density n was solved
numerically using a Lax–Wendroff scheme and
equation (2.5) for the hyphal length density r was
solved using an explicit Euler scheme (Süli & Mayers
2003). The numerical scheme is presented in appendix
B, which was implemented in the programming
language MATLAB (http://www.mathworks.com).

In this paragraph we discuss the effect of the
dimensionless parameters derived in appendices A
and B on the model behaviour. We show in appendix
A that the growth equations of the linear branching
model have only one dimensionless grouping that
influences the solution, i.e. dZd/b. This dimensionless
J. R. Soc. Interface (2008)
parameter represents the ratio of hyphal death rate to
tip branching rate. If d/1, hyphal death rate is
negligible compared with tip branching and biomass is
accumulated in the centre of the colony (figure 2a). On
the other hand, if d[1, tip branching is negligible
compared with hyphal death and biomass is signi-
ficantly reduced in the centre of the colony and the peak
of colony biomass moves away from the root surface.
This means that, when d is large, the front of the colony
is the most active region even if we assume that hyphae
take up nutrients along their entire length. The value of
the parameter d is different for different fungal species
as we show in §4.

Integrating the solution for the hyphal length
density over the colony length, we obtain an equation
for the total colony biomass. At any given time, the
overall hyphal length rT is given by
rT ðt; dÞZ 2p

ðrc
r0

rrðr ; t; dÞdr; ð2:13Þ
where rcZvtCr0 is the edge of the colony. Figure 2b
shows that the total hyphal length of the colony
increases exponentially with time, damped by a factor
dependent on the value of the dimensionless parameter
d. The smaller the parameter d, the larger the total
colony biomass.

We now consider the general model that includes
tip–tip and tip–hypha anastomosis. In appendix B, we
show that this model is dependent on two additional
dimensionless parameters that determine the beha-
viour of the solution. The parameter a1Zð½r�=vÞ!
ðbn=nmaxCa1Þ describes the combined effect of
nonlinear branching and tip–tip anastomosis in
relation to tip growth, and a2Zð½r�=bÞa2 describes
tip–hypha anastomosis in relation to the linear tip
branching rate. Figure 3 shows the effect of varying a1
on the hyphal length density. If a1 is small, the result is
close to the linear branching model, as expected. The
parameter d was set equal to 1, so that the curve in
figure 3, where a1Z0, is the same as the curve for dZ1
in figure 2a. If a1 is large, the production of new tips is
reduced when the tip density is large. Figure 4 shows
the effect of varying a2. When it is small, tip–hypha
anastomosis is negligible, and the result is again similar
to the linear model. As a2 increases, the production of
new tips and hyphae is increasingly inhibited when
both tip and hyphal length densities are large. A typical
feature of tip–hypha anastomosis when compared with
tip–tip anastomosis is a local peak near the front of
the colony.

http://www.mathworks.com
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Figure 2. Effects of the dimensionless parameter d. (a) Plot of
equation (2.11) in dimensionless form. Analytical solution for
the hyphal tip and length density in polar radial coordinates
for different values of d. Solutions are shown at time tZ3.
(b) Overall hyphal length per unit root length for different
values of the dimensionless parameter d, computed in
equation (2.13). (a,b) Solid line, dZ0.01; dashed line, dZ1;
dot-dashed line, dZ10.
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Figure 3. Model including nonlinear branching, tip–tip
anastomosis and the effect of varying a1 (solid line, a1Z0;
dashed line, a1Z1; dot-dashed line, a1Z10). Solutions are
shown at time tZ3. Values of other dimensionless parameters
are as follows: dZ1 and a2Z0. The following are the numerical
solution parameters: JZ300, mZ0.8 and DtZ0.01, where J is
the number of spatial grid points; mZDt=Dr; Dt is the time-
step size; and Dr is the spatial step size.
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Figure 4. Model including tip–hypha anastomosis and the
effect of varying a2 (solid line, a2Z0; dashed line, a2Z1; dot-
dashed line, a2Z10). Solutions are shown at time tZ3. Values
of other dimensionless parameters are as follows: dZ1 and
a1Z0. Numerical solution parameters are the same as given in
figure 3 legend.
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3. MODEL CALIBRATION

AM fungi are obligate symbionts. Therefore, measure-
ment of fungal growth can only be made in the presence
of plants and is difficult. Experimental data for calibrat-
ing the spatial and temporal explicit models are scarce.
Jakobsen et al. (1992) present measurements of hyphal
length densities of three AM fungi: Scutellospora
calospora (Nicol. & Gerd.) Walker & Sanders; Glomus
sp.; and Acaulospora laevis Gerdemann & Trappe
associated with clover (Trifolium subterraneum L.);
these data appear suitable for comparison with modelled
hyphal length densities. Hyphal length densities were
measured at different times and distances from a
cylindrical root compartment in a soil that initially
had a small mycelium density. Plants with a previously
established mycorrhiza were transferred to a two-
compartment system, where root growth into a
hyphal-only compartment was restricted by a fine
nylon mesh. The root compartment was a cylinder
with a diameter of 6 cm. The spread of external hyphae
J. R. Soc. Interface (2008)
from the root compartment into the soil was measured at
different distances after 0, 7, 14, 28 and 47 days. The
measured values represent the total hyphal length
density of mycorrhizal and other soil fungi. A control
experiment conducted without mycorrhizae allowed for
the estimation of the length densities of mycorrhizal
fungi. At 3 cm and 7 days and 2 cm and 14 days, no
control values were available. We estimated them by
linearly interpolating the neighbouring values to be 1.06
and 2.00 m gK1, respectively. The data are presented in
units of m gK1 dry soil. In order to convert them to units
of cm cmK3 soil volume as required by the model, we
need the soil bulk density (SBD). From the detailed
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information about the size of the hyphal compartment
and amount of soil used, we estimated the SBD to be
1.02 g cmK3. Figures 5–7 compare the measured data
with model results, which will be explained later in
this paper.

For model calibration, we take starting estimates for
the model parameters from published data and try to fit
both the linear and nonlinear models to measured
hyphal length densities. Our initial estimates of v come
from the adaptation of Jakobsen et al. (1992), who
measured the spread of hyphal length densities over
time. The mean value was 0.08 cm dK1 for S. calospora,
0.07 cm dK1 for Glomus sp. and 0.31 cm dK1 for
A. laevis. The guess values for the initial length
densities at the root surface were taken to be the
measured initial length densities of the three fungal
species. Our initial estimate for the death rate d is
motivated by Staddon et al. (2003), who reported that
most mycorrhizal hyphae live approximately 6 days.
Branching is often measured in number of branches per
unit length of hyphae (Giovanetti et al. 2001), but we
did not find any values for the branching rate. There-
fore, we estimate the branching rate by bnZv=D, where
v is the tip elongation rate and D is the distance
between branches. According to Giovannetti et al.
(2001), estimates for the number of branches per
centimetre length of hyphae range from 8.6 to 9.7 for
the AM species Glomus mosseae. Assuming that they
are equally spaced, distances between branches range
from 0.115 to 0.132 cm. Using these values and our
initial guesses for v, our estimates for bn range from 0.53
to 2.70 dK1. To determine an initial estimate for the
hyphal tip density initially present at the boundary, we
take the measurements of the hyphal length density
inside the root compartment to represent the value at
the interface between root and fungus compartment.
We compute the hyphal tip density from a known value
of the hyphal length density as follows. The data show
that the hyphal length density at the root–fungus
interface increases with time. Following the boundary
condition (2.8), we also assume a linear increase in
hyphal length density at the boundary with time, i.e.

rðr0; tÞZ ~atCr0;b; ð3:1Þ

where r0,b is the hyphal length density initially present
at the root–fungus interface and ~a is the root
proliferation factor for the hyphal length density. This
is also justified by the fact that there are only three data
points available. However, if required, it would be
possible to fit other functions to the data. Inserting
equation (3.1) and its time derivative into the model
equation for the hyphal length density (2.5), we obtain
the following expression for the hyphal tip density at
the root–fungus interface:

nðr0; tÞZ
~ad

v
tC

~aCr0;bd

v
: ð3:2Þ

From equation (2.8), we infer that the initial tip density
can be calculated from the initial length density as

nðr0; 0ÞZ
a

d
C

r0;bd

v
: ð3:3Þ
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We set the initial estimates of the root proliferation
parameter a, the reciprocal of maximum tip density
1/nmax and the two anastomosis rates a1 and a2 to zero
because these parameters represent processes not
encountered in all fungal species.

Equation (2.10) as well as the numerical solution of
the general model were plotted against the data and the
initial estimates of the parameters varied manually
until a good fit was obtained. The parameter v was
fitted first since it is the only parameter that determines
the extent of the colony at any given time. Then, the
parameters b, d, nmax, a1 and a2 were varied in order to
get the correct colony shape. Afterwards, these values
were used as initial guesses for the MATLAB function
‘fminsearchbnd’ in order to find the parameter set that
minimizes the root mean squared error (RMSE)
between measured and calculated hyphal length
densities. This optimization algorithm uses the
Nelder–Mead simplex method (Lagarias et al. 1998)
and allows that bounds can be applied to the variables.
This multistep optimization approach ensured that our
numerical optimization algorithm reached a biologi-
cally realistic minimum, particularly avoiding negative
parameter values. The goodness of fit was assessed
using the RMSE,

RMSEZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
iZ1

ðrmeasured;iK rfitted;iÞ2

n

vuuut
; ð3:4Þ

where n is the number of data points.
4. RESULTS

We generally found a good agreement between
simulated and measured values. The fitted parameter
values and the RMSE for the three fungal species are
given in table 1.

The linear model represented by equation (2.10)
could be fitted to the fungal species Scutellospora
calospora (figure 5). The RMSE of 1.11 is smaller than
the standard error of the mean given for some of the
measurements in Jakobsen et al. (1992). According to
this model, the fungal species S. calospora is charac-
terized by linear branching with a relatively small net
branching rate b when compared with the other
species. The dimensionless parameter dZ9 is large,
which means that hyphal death is large compared with
tip branching. The large value of the parameter a
indicates that growth is mainly supported by a large
flux of tips across the root–fungus interface. The fitted
value for v is approximately three times larger than
the value estimated by Jakobsen et al. (1992), and the
value for b that produced a good fit to the measured
data is significantly smaller than the initial estimate
while the hyphal death rate is close to the initially
estimated value.

The linear branching model was not satisfactory for
the other two fungal species, Glomus sp. and A. laevis.
When we discuss the general model in the following
paragraphs, we consider a combined effect of nonlinear
branching and tip–tip anastomosis. In equation (2.12),
both tip–tip anastomosis and the nonlinear branching
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effect depend on n2. Hence, it is difficult to assign
reduction of tips to one or the other effect, and in the
following we discuss the two mechanisms as one
combined effect as described by the dimensionless
parameter a1Zð½r�=vÞðbn=nmaxCa1Þ. Figure 6 shows
the general model fitted to the data of the fungal species
Glomus sp. In the first few days of the experiment, it
still slightly underestimated measured values. In
particular, the data point after 7 days at a distance of
1 cm is not reached. However, because the tip density at
this point is much larger than any of the other values at
later times, we show goodness of fit treating and not
treating this data point as an outlier (table 1). When
this data point is treated as an outlier, the RMSE of this
model is within the range of the standard errors of the
mean given for some of the measurements in Jakobsen
et al. (1992). Following this model, the parameter
values in table 1 show that this fungal species is
characterized by nonlinear branching/tip–tip anasto-
mosis (the dimensionless parameter a1Z11.52 is large),
while no significant tip–hypha anastomosis occurs. The
net branching rate b is large while fresh supply from the
root surface is relatively small. The dimensionless
parameter dZ0.16 is small, which means that hyphal
death is negligibly small. The values for v and d that
produced a good fit to the measured data are
approximately two times larger than the initial guess
values while the branching rate is within the initially
J. R. Soc. Interface (2008)
estimated range. Simulated values slightly underesti-
mate measured values in the first few days of the
experiment, which indicates that there might be
additional relevant processes not yet included in
the model.

Figure 7 shows the general model fitted to the data of
the fungal species Acaulospora laevis. According to the
parameter values in table 1, tip–hypha anastomosis is
important for this species. We calculate the dimension-
less parameter a2 describing tip–hypha anastomosis in
relation to tip branching to be 2.50. The dimensionless
parameter a1 is small, hence nonlinear branching/tip–
tip anastomosis is negligible. The dimensionless par-
ameter d is small, hence hyphal death is negligible, and
the large value for the parameter a indicates that there
is a substantial supply of new tips at the root surface.
The value for v that produced a good fit to the measured
data is approximately the same as the initial guess
value based on Jakobsen et al. (1992). The branching
rate also is within the initially estimated range, while
the fitted hyphal death rate is half of the initial
estimate. A part of the measured behaviour at the
later times (28 and 47 days) however could not be
captured by the model. The RMSE of this model, 1.33,
is equal to the largest standard error of the mean
presented for some of the measurements in Jakobsen
et al. (1992). Again, this indicates that there might be
additional relevant processes not yet included in the
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model or the experimental conditions may have
changed during the experiment. However, this will
require more substantial changes to the model and to
our understanding of how these fungi grow, and we will
leave this task for later papers.
5. DISCUSSION

We have provided analytical and numerical solutions to
a growth model of the external mycelium of AM fungi.
We adapted the model of Edelstein (1982) to the case of
AM fungi by defining a flux of new hyphal tips at the
root–hypha boundary, hence simulating the root sur-
face as a continuous source of new tips. We further
extended the model by using time-dependent boundary
conditions to make it applicable to the data of Jakobsen
et al. (1992) for the three fungal species. We found a
good agreement between the linear model and the data
for S. calospora, indicating that nonlinear branching
and both kinds of anastomosis are negligible for this
fungal species. We also found that it was necessary to
adapt the original model equations for the two other
fungal species considered. The nonlinear branching/
tip–tip anastomosis model could be satisfactorily fitted
to the data for Glomus sp. and the one including tip–
hypha anastomosis performed well for A. laevis.

Symbioses between a given host plant and different
AM fungi have been shown to differ functionally
J. R. Soc. Interface (2008)
(Ravnskov & Jakobsen 1995). Such functional
differences may be due to the differences between fungi
in their relative carbon cost (Munkvold et al. 2004), in
the rate they colonize roots (Graham & Abbott 2000)
and in the production, distribution and function of the
external mycelium (Jakobsen et al. 1992). This has been
confirmed by ourmodel simulations.We showed that the
three fungal species considered had different strategies
for developing the extraradical mycelium. The par-
ameter values for the species S. calospora imply that the
fungus is mainly growing and allocating resources for
getting a wider catchment area rather than local
scavenging, for example, for mineral resources, via
branching. Thus, for this fungus, the intraradical
mycelium is very important for the function of its
extraradical mycelium. Indeed, Jakobsen et al. (1992)
found that a higher proportion of the root length had
become mycorrhizal when compared with the two other
fungal species. The parameter values for Glomus sp.
imply that local scavenging for resources is important for
this fungus as long as the hyphal tip density is small.
Reaching near the maximum tip density, branching
ceases and no more carbon resources are allocated for
branching in the respective area. For saprophytic
fungi, such local scavenging for resources is important
(Donnelly & Boddy 1998). The parameter values for
A. laevis imply that this fungal species develops
a network of interconnected extraradical hyphae via
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Table 1. Fitted parameter values for the three fungal species considered.

parameter notation units S. calospora Glomus sp. A. laevis

speed of tip movement v cm dK1 0.25 0.13 0.28
tip branching rate bn dK1 0.02 1.91 1.47
tip death rate dn dK1 5.20!10K3 0.15 0.73
net tip branching rate bZbnKdn dK1 0.015 1.76 0.74
hyphal death rate d dK1 0.18 0.28 0.08
maximal hyphal tip density nmax cmK3 — 2238.14 1.78!105

tip–tip anastomosis rate a1 cm3 dK1 — — 7.00!10K7

tip–hypha anastomosis rate a2 cm3 mK1 dK1 — — 0.15
boundary proliferation a m cmK3 dK1 2.52 2.24 0.56
initial tip density at boundary n0,b cmK3 97.07 84.16 12.68
RMSE 1.11 1.67a 2.38b 1.33

a Not including the data point at 1 cm distance after 14 days.
b Including the data point at 1 cm distance after 14 days.
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tip–hypha anastomosis. This suggests that nutritional
flow between hyphae is important for this fungal species.
Note that we consider only anastomosis between hyphae
from the same host plant. The formation of anastomosis
between AM extraradical mycelium developing from
different plants supports the creation of a large inter-
connected net between plants (Giovanetti et al. 2001).

In table 1, fitted rates of tip growth v are up to three
times larger than the rates of speed measured by
Jakobsen et al. (1992). However, these measurements
J. R. Soc. Interface (2008)
are based on the colony-scale behaviour of the
mycelium while v in the model is a hyphal-scale
parameter. The rates of spread estimated by Jakobsen
et al. (1992) were based on the distance of spread taken
to be the distance between the root compartment and
the position where the hyphal lengths had declined to
half their maximum. This could lead to the under-
estimation of the rate of hyphal growth. Furthermore,
this definition appears to make most sense when the
fungal colony declines continuously with distance from
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the root compartment, which is not the case for all
fungal species in these experiments. This highlights the
need for care in estimating parameters from experi-
mental data in nonlinear systems and the importance
of appropriate mathematical modelling.

Further development of the fungal growth model
would consider a more sophisticated description of the
extra- and intraradical mycelium. Abbott & Robson
(1985) observed significant differences between fungi in
the total amount of external mycelium produced as well
as in hyphal diameter size classes. This work was
extended by Friese & Allen (1991), who described
different external hyphal architectures to which they
ascribed different functions, such as spread, infection or
nutrient absorption. Jakobsen et al. (1992) observed
significant differences between AM fungi in the spatial
distribution of the external mycelium away from roots.
This could be linked to differences in phosphate uptake
and transport to the plant. All of these studies were
conducted with soil-grown plants. With the develop-
ment of root–organ cultures (ROCs) colonized by AM
fungi (Bécard & Piché 1992), the observation and
quantification of undisturbed root-external mycelia has
been greatly facilitated. This led to detailed descrip-
tions of branched structures that are assumed to play
an important role in nutrient absorption (branched
absorbing structures (BASs); Bago et al. 1998). BASs
are an area of our future model development. Recent
ROC studies also revealed that AM fungal genera differ
greatly in the abundance of hyphal anastomoses (Voets
et al. 2006). The environment in ROCs is, however,
highly artificial and not directly comparable with the
soil environment normally encountered by both roots
and AM fungi. However, some of the observations done
on ROCs regarding differences in extent and inter-
connectedness of the extraradical mycelium are
confirmed in experimental set-ups including soil (Avio
et al. 2006). The boundary condition, which is now a
fitted function, could be replaced by a mechanistic
model of root colonization (Neuhauser & Fargione
2004). Furthermore, for applications on the root system
scale, it will be necessary to consider that colonization
of the root is not homogeneous within the root system
and changes over time. However, in the experimental
system that we are modelling, the system is thought to
be homogeneous along the root and thus this effect can
be neglected.
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APPENDIX A. NON-DIMENSIONALIZATION
AND ANALYTICAL SOLUTION
OF THE LINEAR BRANCHING
MODEL

We consider equations (2.4)–(2.8) with the functional
form of f given by fZbn. If we scale the variables such
J. R. Soc. Interface (2008)
that

t Z
1

b
t �; r Z

v

b
r�; rZ ½r�r�; n Z ½r� b

v
n�; ðA 1Þ

where [r] is a given characteristic hyphal length
density, equations (2.4)–(2.8) become (dropping aster-
isks)

vn

vt
ZK

1

r

vðrnÞ
vr

Cn; tR0; rR r̂0; ðA 2Þ
vr

vt
Z nKdr; tR0; rR r̂0; ðA 3Þ

n Z 0; t Z 0; rR r̂0; ðA 4Þ
rZ 0; t Z 0; rR r̂0; ðA 5Þ

n ZjtCx; tO0; r Z r̂0; ðA 6Þ
where dZd=b, jZav=½r�b, xZn0;bv=½r�b and
r̂0Zr0b=v. The parameter dZd=b describes the
relative importance of hyphal death compared with
tip branching, j and x are dimensionless parameters of
the boundary condition and the parameter r̂0 relates
the root radius to the spatial scale.

To solve the hyperbolic equation (A 2), we use the
method of characteristics (Ockendon et al. 2003). Let r
and t be functions of a parameter t, i.e. rZr(t), tZt(t).
Then, the characteristic equations are

vt

vt
Z 1; ðA 7Þ

vr

vt
Z 1; ðA 8Þ

and the partial differential equation (A 2) becomes the
ordinary differential equation

dn

dt
Z 1K

1

r

� �
n: ðA 9Þ

We parametrize the initial condition (A 4) so that at
tZ0, rZs, tZ0 and nðs; 0ÞZ0, for r̂0%s!N. Inte-
grating the characteristic equations (A 7)–(A 9) gives
the parametric solution in the region influenced by the
initial condition

t Z t; ðA 10Þ
r Z tCs; ðA 11Þ

nðsÞZ 0; sR r̂0: ðA 12Þ
We parametrize the boundary condition (A 6) so that
at tZ0, rZ r̂0, tZs and nðs; 0ÞZjsCx, for s% r̂0.
Integrating equations (A 7)–(A 9) gives the parametric
solution in the region influenced by the boundary
condition

t Z tCs; ðA 13Þ
r Z tC r̂0; ðA 14Þ

nðsÞZ r̂0
r
etðjsCxÞ; for s% r̂0: ðA 15Þ

Combining the solutions for the regions influenced
by the initial and boundary conditions and eliminating
the parameters t and s, we have the dimensionless
solution for n,

nðr ; tÞZ
r̂0
r
eðrK̂r0ÞðjðtKrC r̂0ÞCxÞ; rKt% r̂0;

0; rKtR r̂0:

8><
>:

ðA 16Þ
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To find r, we solve

dr

dt
CdrZnðr ; tÞ; ðA 17Þ

on the interval ½rKr̂0; t� with initial condition
rðr ; 0ÞZ0, for r̂0%r%N, to obtain the dimensionless
solution

rðr ;tÞZ1

d

r̂0
r
erKr̂0

!
j

 
tKrCr̂0K

1

d

!
CxC

 
j

d
Kx

!
edðrKr̂0KtÞ; rKt%r̂0;

0; rKtRr̂0:

8><
>:

ðA18Þ

The dimensional solution can be obtained by scaling
back to the dimensional variables using the scales given
by (A 1).
APPENDIX B. NUMERICAL SOLUTION OF THE
GENERAL MODEL

We present a Lax–Wendroff scheme (Morton &Mayers
1994) for the numerical solution of the general model
given by equations (2.4)–(2.8) with f given by equation
(2.12).

Before solving the model, we non-dimensionalize it
using the scales given by equation (A 1) and arrive at
the following dimensionless equations:

vn

vt
ZK

1

r

vðrnÞ
vr

CnKa1n
2Ka2nr; tR0; rR r̂0;

ðB 1Þ
vr

vt
Z nKdr; tR0; rR r̂0; ðB 2Þ

n Z 0; t Z 0; rR r̂0; ðB 3Þ
rZ 0; t Z 0; rR r̂0; ðB 4Þ

n ZjtCx; r Z r̂0; tO0; ðB 5Þ

where a1Zð½r�=vÞðbn=nmaxCa1Þ is the combined effect
of nonlinear branching and tip–tip anastomosis in
relation to tip movement and a2Za2ð½r�=bÞ describes
tip–hypha anastomosis in relation to tip branching.

Let Tf be the final time, M the number of time steps,
Dr the grid spacing, J the number of grid points and
DtZTf=M . Let nðrj ; tmÞzUm

j , rðjj ; tmÞzVm
j and

mZDt=Dr . The scheme for U is based on substituting
for the time derivatives

Ut ZK
1

r

v

vr
ðrUÞCUKa1U

2Ka2UV ; ðB 6Þ

Utt ZK
1

r

v

vr
ðrUtÞCUtK2a1UUtKa2UtVKa2UVt;

ðB 7Þ

where VtZUKdV , into the Taylor series expansion

UmC1
j ZUm

j CDt½Ut �mj CððDtÞ2=2Þ½Utt �mj COððDtÞ3Þ. Neglect-
ing higher-order terms, replacing the space derivatives
by centred differences and rearranging gives the
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Lax–Wendroff scheme
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R. & Lu, H. 2000 Mapping the growth of fungal hyphae:
orthogonal cell wall expansion during tip growth and the
role of turgor. Biophys. J. 79, 2382–2390.
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