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The reconstruction of phylogenies is becoming an increasingly simple activity. This is mainly due to two reasons: the democrati-
zation of computing power and the increased availability of sophisticated yet user-friendly software. This review describes some
of the latest additions to the phylogenetic toolbox, along with some of their theoretical and practical limitations. It is shown that
Bayesian methods are under heavy development, as they offer the possibility to solve a number of long-standing issues and to
integrate several steps of the phylogenetic analyses into a single framework. Specific topics include not only phylogenetic recon-
struction, but also the comparison of phylogenies, the detection of adaptive evolution, and the estimation of divergence times
between species.
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1. INTRODUCTION

Human cultures have always been fascinated by their origins
as a means to define their position in the world, and to jus-
tify their hegemony over the rest of the living world. How-
ever, scientific (testable) predictions about our origins had
to wait for Darwin [1] and his intellectual descendents first
to classify [2] and then to reconstruct the natural history of
replicating entities, and hereby to kick-start the field of phy-
logenetics [3, 4]. Rooted in the comparison of morpholog-
ical characters, phylogenies have for the past four decades
focused on the relationships between molecular sequences
(e.g., [4]), potentially helped by incorporating morphologi-
cal information [5], in order to infer ancestor-to-descendent
relationships between sequences, populations, or species.

Today, molecular phylogenies are routinely used to in-
fer gene or genome duplication events [6], recombination
[7], horizontal gene transfer [8], variation of selective pres-
sures and adaptive evolution [9], divergence times between
species [10], the origin of genetic code [11], elucidate the ori-
gin of epidemics [12], and host-parasite cospeciation events
[13, 14]. As complementary tools for taxonomy (DNA bar-
coding: [15]), they have also contributed to the formulation

of strategies in conservation biology [16]. In addition to un-
tangling the ancestral relationships relating a group of taxa
or of a set of molecular sequences, phylogenies have also been
used for some time outside of the realm of biological sciences
as for instance in linguistics [17, 18] or in forensics [19, 20].

Most of these applications are beyond the scope of plant
genomics, but they all suggest that sophisticated phyloge-
netic methods are required to address most of today’s bio-
logical questions. While parsimony-based methods are both
intuitive and extremely informative, for instance to disentan-
gle genome rearrangements [21], they also have their limita-
tions due to their minimizing the amount of change [22].
These limitations become particularly apparent when ana-
lyzing distantly related taxa. A means to overcome, at least
partly, some of these difficulties is to adopt a model-based ap-
proach, be in a maximum likelihood or in a Bayesian frame-
work. These two frameworks are extremely similar in that
they both rely on probabilistic models. Bayesian approaches
offer a variety of benefits when compared to traditional max-
imum likelihood, such as computing speed (although this is
not necessarily true, especially under complex models), so-
phistication of the model, and an appropriate treatment of
uncertainty, in particular the one about nuisance parameters.
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As a result, Bayesian approaches often make it possible to
address more sophisticated biological questions [23], which
usually comes at the expense of longer computing times and
higher memory requirements than when using simpler mod-
els.

Because it is not possible or even appropriate to discuss
all the latest developments in a given field of study, this re-
view will focus on a very limited number of key phylogenetic
topics. Of notable exceptions, recent developments in phylo-
genetic hidden Markov models [24] or applications that map
ancestral states on phylogenies [25] are not treated. We fo-
cus instead on the very first steps involved in most phylo-
genetic analysis, ranging from reconstructing a tree to esti-
mating selective pressures or species divergence times. For
each of these steps, some of the most recent theoretical de-
velopments are discussed, and pointers to relevant software
are provided.

2. RECONSTRUCTING PHYLOGENETIC TREES

2.1. Sequence alignment

The first step in reconstructing a phylogenetic tree from
molecular data is to obtain a multiple sequence alignment
(MSA) where sequence data are arranged in a matrix that
specifies which residues are homologous [26]. A large num-
ber of methods and programs exist [27] and most have been
evaluated against alignment databases [28], so that it is pos-
sible to provide some general guidelines.

The easiest sequences to align are probably those of
protein-coding genes: proteins diverge more slowly than
DNA sequences and, as a result, proteins are easier to align.
The rule-of-thumb is therefore first to translate DNA to
amino acid sequences, then perform the alignment at the
protein level, before back-translating to the DNA align-
ment in a final step. This procedure avoids inserting gaps
in the final DNA alignment that are not multiple of three
and that would disrupt the reading frame. Translation to
amino acid sequences can be done directly when download-
ing sequences, for instance from the National Center for
Biotechnology Information (NCBI: www.ncbi.nlm.nih.gov).
A number of programs also allow users to perform this trans-
lation locally on their computers from an appropriate trans-
lation table (e.g., DAMBE [29], MEGA [30, 31]; see Table 1).
The second step is to perform the alignment at the protein
level. Again, a number of programs exist, but ProbCons [32]
appears to be the most accurate single method [33]. An alter-
native for using one single alignment method is to use con-
sensus or meta-methods, that is, to combine several meth-
ods [27]. Meta-methods such as M-Coffee can return bet-
ter MSAs almost twice as often as ProbCons [34]. Finally,
when the alignment is obtained at the protein level, back-
translation to the DNA sequences can be performed either
by using a program such as DAMBE, CodonAlign [35], or by
using a dedicated server such as protal2dna (http://bioweb.
pasteur.fr/seqanal/interfaces/protal2dna.html) or Pal2Nal

(coot.embl.de/pal2nal).
The alignment of rRNA genes with the constraint of sec-

ondary structure has now been frequently used in practical

research in molecular evolution and phylogenetics [56–60].
The procedure is first to obtain reliable secondary structure
and then use the secondary structure to guide the sequence
alignment. This has not been automated so far, although
both Clustal [61, 62] and DAMBE have some functions to
alleviate the difficulties.

What to do with other noncoding genes is still an open
question, especially when it comes to aligning a large number
(>100) of long (>20,000 residues) and divergent sequences
(<25% identity). Some authors have attempted to provide
rough guidelines to choose the most accurate program de-
pending on these parameters [28]. However, accuracy figures
are typically estimated over a large number of test alignments
and may not reflect the accuracy that is expected for any par-
ticular alignment [28]. More crucially, most of the alignment
programs were developed and benchmarked on protein data,
so that their accuracy is generally unknown for noncoding
sequences [28]. A very general recommendation is then to
use different methods [63] and meta-methods. Those parts
of the alignment that are similar across the different meth-
ods are probably reliable. The parts that differ extensively are
often simply eliminated from the alignment when no exter-
nal information can be used to decide which positions are
homologous. Poorly aligned regions can cause serious prob-
lems as, for instance, when analyzing rRNA sequences in
which conserved domain and variable domains have differ-
ent nucleotide frequencies [60]. A simple test of the reliabil-
ity of an alignment consists in reversing the orientation of
the original sequences, and performing the alignment again;
because of the symmetry of the problem, reliable MSAs are
expected to be identical whichever direction is used to align
the sequences [64]. These authors further show that reliabil-
ity of MSAs decreases with sequence divergence, and that the
chance of reconstructing different phylogenies increases with
sequence divergence. More sophisticated methods also per-
mit the direct measure of the accuracy of an alignments or
the estimation of a distance between two alignments [65].
Applications of Bayesian inference strictly to pairwise [66]
and multiple [67, 68] sequence alignment are still in their in-
fancy.

Whichever method is used to obtain an MSA, a final
visual inspection is required, and manual editing is often
needed. To this end, a number of editors can be used such
as JalView [69].

Because an MSA represents a hypothesis about sitewise
homology at all the positions, obtaining an accurate MSA
presents some circularity; an accurate MSA often necessitates
an accurate guide tree, which in turn demands an accurate
alignment. The early realization of this “chicken-egg” conun-
drum led to the idea that both the MSA and the phylogeny
should be estimated simultaneously [70]. Although this ini-
tial algorithm was parsimony-based, it was already too com-
plex to analyze more than a half-dozen sequences of 100 sites
or more. Subsequent parsimony-based algorithms allowed
the analysis of larger data sets [71] but still showed some lim-
itations when sequence divergence increases. More recently,
a Bayesian procedure was described and implemented in a
program, BAli-Phy, where uncertainties with respect to the
alignment, the tree, and the parameters of the substitution
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Table 1: List of programs cited in this review. GUI: graphic user interface; ML: maximum likelihood; PL: penalized likelihood.

Name Method Platform GUI Inference Reference

BAMBE Bayes DOS, MacOS, Unix No Tree [36]

BayesPhylogenies Bayes DOS, MacOS, Unix No Tree [37]

BAli-Phy Bayes DOS, MacOS, Unix No Simultaneous
alignment and tree

[38]

BEAST Bayes Windows, MacOS, Unix Yes Tree, times [39]

CONSEL ML DOS, MacOS, Unix No Tree comparison [40]

DAMBE Distances, parsimony, ML Windows Yes Tree [29]

GARLI ML (Genetic Algorithm) Windows, MacOS, Unix Yes Tree [41]

HyPhy ML Windows, MacOS, Unix Yes
Tree, selection,
recombination, tree
comparison,

[42]

MEGA Distances, parsimony Windows Yes Tree, times [30, 31]

MrBayes Bayes DOS, MacOS, Unix No Tree, selection [43, 44]

Multidivtime Bayes DOS, MacOS, Unix No Times [45–47]

OmegaMap Bayes DOS, MacOS, Unix No
Simultaneous
selection and
recombination

[48]

PAML ML DOS, MacOS, Unix No Tree, tree comparison,
times, selection

[49, 50]

PAUP∗ Distances, parsimony, ML DOS, MacOS, Unix No Tree [51]

PhyloBayes Bayes DOS, MacOS, Unix No Tree, tree comparison [52]

PHYML ML DOS, MacOS, Unix No Tree [53]

RAxML ML DOS, MacOS, Unix No Tree [54]

r8s PL DOS, MacOS, Unix No Times [55]

model are all taken into account [38] (see also [72]). Un-
certain alignments are a potential problem in large-scale ge-
nomic studies [73] or in whole-genome alignments [74].
In these contexts, disregarding alignment uncertainty can
lead to systematic biases when estimating gene trees or in-
ferring adaptive evolution [73, 74]. However, these complex
Bayesian models [38, 72, 73] still require some nonnegligible
computing time and resource, and to date, their performance
in terms of accuracy is still unclear.

2.2. Selection of the substitution model

Once a reliable MSA is obtained, the next step in comparing
molecular sequences is to choose a metric to quantify diver-
gence. The most intuitive measure of divergence is simply to
count the proportion of differences between two aligned se-
quences (e.g., [75]). This simple measure is known as the p
distance. However, because the size of the state space is fi-
nite (four letters for DNA, 20 for amino acids, and 61 for
sense codons), multiple changes at a position in the align-
ment will not be observable, and the p distance will underes-
timate evolutionary distances even for moderately divergent
sequences. This phenomenon is generally referred to as satu-
ration. Corrections were devised early to help compensate for
saturation. Some of the most famous named nucleotide sub-
stitution models are the Jukes-Cantor model or JC [76], the
Kimura two-parameter model or K80 [77], the Hasegawa-

Kishino-Yano model or HKY85 [78], the Tamura-Nei model
or TN93 [79], and the general time-reversible model or GTR
[80] (also called REV). Because substitution rates vary along
sequences, two components can be added to these substitu-
tion models: a “+I” component that models invariable sites
[78] and a “+Γ” component that models among-site rate
variation either as a continuous [81] or as a discrete [82]
mean-one Γdistribution, the latter being more computation-
ally efficient. Amino acid models can also incorporate a “+F”
component so that replacement rates are proportional to the
frequencies of both the replaced and resulting residues [83].

Given the variety of substitution models, the first step of
any model-based phylogenetic analysis is to select the most
appropriate model [84, 85]. The rational for doing so is
to balance bias and variance: a highly-parameterized model
will describe or fit the data much better than a model that
contains a smaller number of parameters; in turn however,
each parameter of the highly-parameterized model will be
estimated with lower accuracy for a given amount of data
(e.g., [86]). Besides, both empirical and simulation stud-
ies show that the choice of a wrong substitution model can
lead not only to less accurate phylogenetic estimation, but
also to inconsistent results [87]. The objective of model se-
lection is therefore not to select the “best-fitting” model,
as this one will always be the model with the largest num-
ber of parameters, but rather to select the most appropri-
ate model that will achieve the optimal tradeoff between
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bias and variance. The approach followed by all model se-
lection procedures is therefore to penalize the likelihood of
the parameter-rich model for the additional parameters. Be-
cause most of the nucleotide substitution models are nested
(all can be seen as a special case of GTR +Γ+I), the standard
approach to model selection is to perform hierarchical like-
lihood ratio tests or hLRTs [88]. Note that in all rigor, likeli-
hood ratio tests can also be performed on nonnested mod-
els; however, the asymptotic distribution of the test statis-
tic (twice the difference in log-likelihoods) under the null
hypothesis (the two models perform equally well) is com-
plicated [89] and quite often impractical. When models are
nested, the asymptotic distribution of the test statistic un-
der the null hypothesis is simply a χ2 distribution whose de-
gree of freedom is the number of additional parameters en-
tering the more complex model (see [90] or [91] for applica-
bility conditions). With the hLRT, then all models are com-
pared in a pairwise manner, by traversing a choice-tree of
possible nested models. A number of popular programs al-
low users to compare pairs of models manually (e.g., PAUP
[51], PAML [49, 50]). Readily written scripts that select
the most appropriate model among a list of named models
also exist, such as ModelTest [92] (which requires PAUP),
the R package APE [93], or DAMBE. Free web servers are
also available; they are either directly based on ModelTest
[94] or implement similar ideas (e.g., FindModel, available
at hcv.lanl.gov/content/hcv-db/findmodel/findmodel.html).
A similar implementation, ProtTest, exists for protein data
[95].

However, performing systematic hLRTs is not the opti-
mal strategy for model selection in phylogenetics [96]. This
is because the model that is finally selected can depend on
the order in which the pairwise comparisons are performed
[97]. The Akaike information criterion (AIC) or its vari-
ant developed in the context of regression and time-series
analysis in small data sets (AICc, [98]) is commonly used
in phylogenetics (e.g., [96]). One advantage of AIC is that
it allows nonnested models to be compared, and it is eas-
ily implemented. However, in large data sets, both the hLRT
and the AIC tend to favor parameter-rich models [99]. A
slightly different approach was proposed to overcome this se-
lection bias, the Bayesian information criterion (BIC: [99]),
which penalizes more strongly parameter-rich models. All
these model selection approaches (AIC, AICc, and BIC) are
available in ModelTest and ProtTest. Other procedures exist
such as the Decision-Theoretic or DT approach [100]. Al-
though AIC, BIC, and DT are generally based on sound prin-
ciples, they can in practice select different substitution mod-
els [101]. The reason for doing so is not entirely clear, but it
is likely due to the data having low-information content. One
prediction is that, when these model selection procedures
end up with different conclusions, all the selected models will
return phylogenies that are not significantly different. It is
also possible that applying these different criteria outside of
the theoretical context in which they were developed might
lead to unexpected behaviors [102]. For instance, AICcwas
derived under Gaussian assumptions for linear fixed-effect
models [98], and other bias correction terms exist under dif-
ferent assumptions [86].

All the above test procedures compare ratios of likelihood
values penalized for an increase in the dimension of one of
the models, without directly accounting for uncertainty in
the estimates of model parameters. This may be problematic,
in particular for small data sets. The Bayesian approach to
model selection, called the Bayes factor, directly incorporates
this uncertainty. It is also more intuitive as it directly assesses
if the data are more probable under a given model than under
a different one (e.g., [103]). An extension of this approach
makes it possible to select the model not only among the set
of named models (JC to GTR) but among all 203 nucleotide
substitution models that are possible [104]. An alternative
use or interpretation of this approach is to integrate directly
over the uncertainty about the substitution model, so that
the estimated phylogeny fully accounts for several kinds of
uncertainty: about the substitution models, and the param-
eters entering each of these models. MrBayes (version 3.1.2)
[43] implements this feature for amino acid models.

There is an element of circularity in model selection, just
as in sequence alignment. In theory, when the hLRT is used
for model selection, the topology used for all the computa-
tions should be that of the maximum likelihood tree. In prac-
tice, model selection is based on an initial topology obtained
by a fast algorithm such as neighbor-joining [105, 106] (de-
fault setting in ModelTest) or by Weighbor [107] (default
setting in FindModel) on JC distances without any correc-
tion for among-site rate variation. As mentioned above, it is
known that the choice of a wrong model can affect the tree
that is estimated, but it is not always clear how the choice of
a nonoptimal topology to select the substitution model af-
fects the tree that is finally estimated. Again, this issue with
model choice disappears with Bayesian approaches that inte-
grate over all possible time-reversible models as in [104].

2.3. Finding the “best” tree and assessing its support

Once the substitution model is selected, the classical ap-
proach proceeds to reconstruct the phylogeny [108]. This
is probably one area where phylogenetics has seen mixed
progress over the last five years, due to both the combinato-
rial and the computational complexities of phylogenetic re-
construction.

The combinatorial complexity relates to the extremely
large number of tree topologies that are possible with a
large number of sequences [109]. For instance, with five se-
quences, there are 105 rooted topologies, but with ten se-
quences, this number soars to over 34 million. An exhaus-
tive search for the phylogeny that has the highest probability
is therefore not practical even with a moderate number of
sequences. Besides, while heuristics exist (e.g., stepwise addi-
tion [109]; see [4] for a review), almost none of these is guar-
anteed to converge on the optimum phylogenetic tree. The
common practice is then to use one of these heuristics to find
a good starting tree, and then modify repeatedly its topol-
ogy more or less dramatically to explore its neighborhood
for better trees until a stopping rule is satisfied [110]. The art
here is in designing efficient tree perturbation methods that
adaptively strike a balance between large topological modifi-
cations (that almost always lead to a very different tree with
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a poor score) and small modifications (that almost always
lead to an extremely similar tree with lower score). Some
of today’s challenges are about choosing between methods
that successfully explore large numbers of trees but that can
be costly in terms of computing time [110], and methods
that are faster but may miss some interesting trees [53]. Sev-
eral programs such as Leaphy, PhyML, and GARLI[41] are
among the best-performing software in a maximum likeli-
hood setting. In a Bayesian framework, the basic perturba-
tion schemes were described early [36] and recently updated
[111]. Three popular programs are MrBayes, BAMBE [36],
and BEAST [39]. Among all these programs and approaches,
PHYML, GARLI, and BEAST are probably among the most
efficient programs in terms of computational speed, han-
dling of large data sets and thoroughness of the tree search.

A first aspect of the computational complexity relates to
estimating the support of a reconstructed phylogeny. This is
more complicated than estimating a confidence interval for a
real-valued parameter such as a branch length, because a tree
topology is a graph and not a number. The classical approach
therefore relies on a nonstandard use of the bootstrap [112].
However, the interpretation of the bootstrap is contentious.
Bootstrap proportions P can be perceived as testing the cor-
rectness of internal nodes, and failing to do so [113], or 1–P
can be interpreted as a conservative probability of falsely sup-
porting monophyly [114]. Since bootstrap proportions are
either too liberal or too conservative depending on the ex-
act interpretation given to these values [115], it is difficult
to adjust the threshold below which monophyly can be con-
fidently ruled out [116]. Alternatively, an intuitive geomet-
ric argument was proposed to explain the conservativeness
of bootstrap probabilities [117], but the workaround was
never actually used in the community or implemented in any
popular software. The introduction of Bayesian approaches
in the late 1990s [36, 118] suggested a novel approach to
estimate phylogenetic support with posterior probabilities.
Clade or bipartition posterior probabilities can be relatively
fast to compute, even for large data sets analyzed under com-
plicated substitution models [119]. As in model selection,
they have a clear interpretation as they measure the probabil-
ity that a clade is correct, given the data and the model. But as
with bootstrap probabilities, some controversies exist. Early
empirical studies found that posterior probabilities of highly
supported nodes were much larger than bootstrap proba-
bilities [120], and subsequent simulation studies supported
this observation (e.g., [121–124]). Some of these differences
can be attributed to an artifact of the simulation scheme
that was employed [125], but more specific empirical and
simulation studies show that prior specifications can dra-
matically impact posterior probabilities for trees and clades
[115, 126, 127]. In the simplest case, the analysis of simu-
lated star trees with four sequences fails to give the expected
three unrooted topologies with equal probability (1/3, 1/3,
1/3) but returns large posterior probabilities for an arbitrary
topology [115, 126], even when infinitely long sequences are
used [128, 129] ([130]). This phenomenon, called the star-
tree paradox [126], seems to disappear when polytomies are
assigned nonzero prior probabilities and when nonuniform
priors force internal branch length towards zero [129]. The

second issue surrounding Bayesian phylogenetic methods is
about their convergence rate. A theoretical study shows that
extremely simple Markov chain Monte Carlo (MCMC) sam-
plers, the technique used to estimate posterior probabilities,
could take an extremely long time to converge [131]. In prac-
tice, however, MCMC samplers such as those implemented
in MrBayes are much more sophisticated. In particular, they
include different types of moves [111] and use tempering,
where some of the chains of a single run are heated, to im-
prove mixing [43]. As a result, it is unclear whether they suf-
fer from extremely long convergence times. It is also expected
that current convergence diagnostic tools such as those im-
plemented in MrBayes would reveal convergence problems
[132]. Finally, it is also argued that these controversies such as
exaggerated clade support, inconsistently biased priors, and
the impossibility of hypothesis testing disappear altogether
when posterior probabilities at internal nodes are abandoned
in favor of posterior probabilities for topologies [133] (see
Section 2.4 below).

The most fundamental aspect of the computational com-
plexity in phylogenetics is due to the structure of the phyloge-
nies: these are trees or binary graphs on which computations
are nested and interdependent, which makes these computa-
tions intractable or NP-hard [134]. As a result, it is difficult
to adopt an efficient “divide and conquer” approach, where a
large complicated problem would be split into small simpler
tasks, and to take advantage of today’s commodity comput-
ing by distributing the computation over multicore architec-
tures or heterogeneous computer clusters. Current strategies
are limited to distributing the computation of the discrete
rate categories (when using a “+Γ” substitution model) and
part of the search algorithm [54], or simply to distribute dif-
ferent maximum likelihood bootstrap replicates [53, 54] or
different MCMC samplers to available processors [44].

2.4. Comparisons of tree topologies

Science proceeds by testing hypotheses, and it is often nec-
essary to compare phylogenies, for instance to test whether a
given data set supports the early divergence of gymnosperms
with respect to Gnetales and angiosperms (the anthophyte
hypothesis), or whether the Gnetales diverged first (the Gne-
tales hypothesis) [135, 136]. Because of the importance of
comparing phylogenies, a number of tests of molecular phy-
logenies were developed early. The KH test was first devel-
oped to compare two random trees [137]. However, this test
is invalid if one of the trees is the maximum likelihood tree
[138]. In this case, the SH test should be used [139]. Because
the SH test can be very conservative, an approximately un-
biased version was developed: the AU test [140]. PAUP and
PAML only implement the KH and SH tests; CONSEL [40]
also implements the AU test. A Bayesian version of these tests
also exists [141], but the computations are more demanding.

Indeed, the Bayesian approach to hypothesis testing relies
on computing the probability of the data under a particu-
lar model. This quantity is usually not available as a close-
form equation, and it must be approximated numerically.
The most straightforward approximation is based on the har-
monic mean of the likelihood sampled from the posterior
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distribution [142]. This approximation was described sev-
eral times in the context of phylogenies [141, 143] and is
available from most Bayesian programs such as MrBayes or
BEAST. However, the approximation is extremely sensitive
to the behavior of the MCMC sampler [52, 142]: if extremely
low-likelihood values happen to be sampled from the pos-
terior distribution, the harmonic mean will be dramatically
affected. To date, a couple of more robust approximations
have been described and were shown to be preferable to the
harmonic mean estimator [52]. The first is based on thermo-
dynamic integration [52] and is available in PhyloBayes (see
Table 1). The second approximation [144] is based on a more
direct computation [145], but its availability is currently lim-
ited to one specific model of evolution.

2.5. More realistic models

While model selection is fully justified on the ground of
the bias-variance tradeoff, it should not be forgotten that all
these models are simplified representations of the actual sub-
stitution process and are all therefore wrong. Stated differ-
ently, if AIC selects the GTR +Γ+I to analyze a data set, it
should be clear that this conclusion does not imply that the
data evolved under this model. All model selection proce-
dures measure a relative model fit. One way to estimate ade-
quacy or absolute model fit is to perform a parametric boot-
strap test [146]: first, the selected model is compared with a
multinomial model by means of a LRT whose test statistic is
s (twice the log-likelihood difference); the following steps de-
termine the distribution of s under the null hypothesis that
the selected model was the generating model; second, the se-
lected model is used to simulate a large number of data sets;
third, the model selection procedure (LRT) is repeated on
each simulated data set, and the corresponding test statistics
s∗ are recorded; fourth, the P-value is estimated as the num-
ber of times, the simulated s∗ test statistics are more extreme
(>, for a one-sided test) than the original value of s. The re-
sults of such tests suggest that the selected substitution model
is generally not an adequate representation of the actual sub-
stitution process [85]. Of course, we do not need a model
that incorporates all the minute biological features of evolu-
tionary processes. As argued repeatedly (e.g., [147]), we need
useful models that capture enough of reality of substitution
processes to make accurate predictions and avoid systematic
biases such as long-branch attraction [148].

More realistic models are obtained by accommodating
heterogeneities in the evolutionary process at the level of
both sites (space) and lineages (time). The simplest site-
heterogeneous model is one, where the aligned data are par-
titioned, usually based on some prior information. For in-
stance, first and second codon positions are known to evolve
slower than third codon positions in protein-coding genes, or
exposed residues might evolve faster than buried amino acids
in globular proteins. A number of models were suggested to
analyze such partitioned data sets (e.g., [149]); these mod-
els are implemented in most general-purpose software (e.g.,
PAML, PAUP, MrBayes) and can be combined with a “+Γ+I”
component. A different approach consists in considering that

sites can be binned in a number of rate categories; the use of
a Dirichlet prior process then makes it possible both to deter-
mine the appropriate number of categories and to assign sites
to these categories; the application of this method to protein-
coding genes was able to recover the underlying codon struc-
ture of these genes [150]. However, several studies suggest
that evolutionary patterns can be as heterogeneous within a
priori partitions as among partitions [37, 151].

Lineage-heterogeneous models or heterotachous models
[152] have attracted more attention. In one such approach,
different models of evolution are assigned to the different
branches of the tree [153], which can make these models
extremely parameter-rich. Such a large number of parame-
ters can potentially affect the accuracy of the phylogenetic in-
ference (see the “bias-variance tradeoff” above) and present
computational issues (long running times, large memory re-
quirements, and convergence issues). Several simplifications
can be made. One assumes that some sets of branches evolve
under a particular process [153]. But now these branches
must be assigned a priori, and both the determination of
the number of sets and their placement on the tree can be
difficult (but see Section 4 below for a solution to a similar
question). At the other end of the spectrum of heterotachous
models lies the simplest model known as the covarion model
[154], where sites can either be variable along a branch, or
not, and can switch between these two categories across time
(e.g., [155], also described in a Bayesian framework [156]).

Between these two extremes are mixture models, which
extend the covarion model by allowing more categories of
sites. A number of formulations exist, where each site is as-
sumed to have been generated by either several sets of branch
lengths [157, 158] or by several rate matrices [37, 96, 151].
One particularity of these models is that they give a semi-
parametric perspective to the phylogenetic estimation: if a
single simple model cannot approximate a complex substi-
tution process, the hope is that mixing several simple substi-
tution models makes our models more realistic. In some ap-
plications, mixture models can also be used to avoid under-
estimating uncertainty, first when choosing a single model
of evolution and then ignoring this uncertainty when esti-
mating the phylogeny. The mixing therefore involves fitting
at each site several sets of branch lengths, or several substi-
tution models to the data, and combining these models us-
ing a certain weighting scheme. The difference between the
numerous mixture models that have been described lies in
the choice of the weight factors, and how these are obtained.
In one approach, known as model averaging, the weights are
determined a priori. A first possibility is to assume that all
the models are equally probable, which does not work with
an infinite number of models (individual weights are zero
in this case). More critically in phylogenetics, this assump-
tion is not coherent for nested models since larger models
should be more likely than each submodel. A second possi-
bility is to weight the models with respect to their probabil-
ity of being the generating model given the data. For practi-
cal purposes, this posterior probability can be approximated
by Akaike weights [96]. The difficulty here is that model av-
eraging requires analyzing the data even for models that, a
posteriori, turn out to have extremely small probabilities or



S. Aris-Brosou and X. Xia 7

weights. This may be seen as a waste of resources (computing
time and storage space).

2.6. Integrated Bayesian approaches

Mixture models can work within the framework of max-
imum likelihood, but the treatment of the weight factors
is complicated. A sound alternative is to resort to a fully
Bayesian approach. A prior distribution is set on the weight
factors, and a special form of MCMC sampler whose Markov
chain moves across models with different numbers of pa-
rameters, a reversible-jump MCMC sampler (RJ-MCMC), is
constructed. The advantage of RJ-MCMC samplers is that
they allow estimating the phylogeny while integrating over
the uncertainty pertaining to the parameters of the substitu-
tion model and even integrating over the model itself [104].
Mixture models are available in BayesPhylogenies [37] for
nucleotide models. Another Bayesian mixture model, named
CAT for CATegories, was developed to analyze amino acid
alignments. The CAT model recently proved successful in a
number of empirical [159, 160] and simulation [161] stud-
ies in avoiding the artifact known as long-branch attraction
[148]. This model is freely available in the PhyloBayes soft-
ware (see Table 1).

All these models assume that each site evolve indepen-
dently. The independence assumption greatly simplifies the
computations, but is also highly unrealistic. Models that de-
scribe the evolution of doublets in RNA genes [162], triplets
in codon models [163, 164], or other models with local or
context dependencies [165–167] exist, but complete depen-
dence models are still in their infancy and, so far, have only
been implemented in a Bayesian framework [168, 169]. One
particularly interesting feature of this approach is that com-
plete dependence models incorporate information about the
three-dimensional (3D) structure of proteins and therefore
permit the explicit modeling of structural constraints or of
any other site-interdependence pattern [170]. The incorpo-
ration of 3D structures also allows the establishment of a di-
rect relationship between evolution at the DNA level and at
the phenotypic level. This link between genotype and pheno-
type is established via a proxy that plays the role of a fitness
function which, in retrospect, can be used to predict amino-
acid sequences compatible with a given target structure, that
is, to help in protein design [171].

3. DETECTING POSITIVE SELECTION

Fitness functions are however difficult to determine at the
molecular level. In addition, while examples of adaptive evo-
lution at the morphological level abound, from Darwin’s
finches in the Galapagos [172] to cichlid fishes in the East
African lakes [173], the role of natural selection in shap-
ing the evolution of genomes is much more controversial
[147, 174]. First, the neutral theory of molecular evolution
asserts that much of the variation at the DNA level is due to
the random fixation of mutations with no selective advan-
tage [175]. Second, a compelling body of evidence suggests
that most of the genomic complexities have emerged by non-
adaptive processes [176]. A number of statistical approaches

exist either to test neutrality at the population level or to de-
tect positive Darwinian evolution at the species level [147]. A
shortcoming of neutrality tests is their dependence on a de-
mographic model [177] and their sensitivity to processes of
molecular evolution such as among-site rate variation [178].
They also do not model alternative hypotheses that would
permit distinguishing negative selection from adaptive evo-
lution. The development of demographic models based on
Poisson random fields [179] and composite likelihoods [180]
makes it possible both to estimate the strength of selection
and to assess the impact of a variety of scenarios on allele
frequency spectra [9]. But demographic singularities such as
bottlenecks can still generate spurious signatures of positive
selection [180, 181].

When effective population sizes are no longer a concern,
for instance in studies at or above the species level, the de-
tection of positive selection in protein-coding genes usually
relies on codon models [163, 164] (see [182] for a review
including methods based on amino-acid models). Codon
models permit distinguishing between synonymous substi-
tutions, which are likely to be neutral, and nonsynonymous
substitutions, which are directly exposed to the action of se-
lection. If synonymous and nonsynonymous substitutions
accumulate at the same rate, then the protein-coding gene
is likely to evolve neutrally. Alternatively, if nonsynonymous
substitutions accumulate slower than synonymous substitu-
tions, it must be because nonsynonymous substitutions are
deleterious and this suggests the action of purifying selec-
tion. Conversely, the accumulation of nonsynonymous sub-
stitutions faster than synonymous substitutions suggests the
action of positive selection. The nonsynonymous to synony-
mous rate ratio, denoted ω = dN/dS, is therefore interpreted
as a measure of selection at the protein level, with ω = 1, <1
and >1 indicating neutral evolution, negative or positive se-
lection, respectively. This ratio is also denoted Ka/Ks, in par-
ticular in studies that rely on counts of nonsynonymous and
synonymous sites (e.g., [183]). An extension exists to detect
selection in noncoding regions [184], and a promising phy-
logenetic hidden Markov or phylo-HMM model permits de-
tection of selection in overlapping genes [185].

These rate ratios can be estimated by a number of meth-
ods implemented in MEGA, DAMBE, HyPhy [42], and
PAML. The most intuitive methods, called counting meth-
ods, work in three steps: (i) count synonymous and nonsyn-
onymous sites, (ii) count the observed differences at these
sites, and (iii) apply corrections for multiple substitutions
[186]. Counting methods are however not optimal in the
sense that most work on pairs of sequences and therefore,
just like neighbor-joining, fail to account for all the infor-
mation contained in an alignment. In addition, simulations
suggest that counting methods can be sensitive to a variety of
biases such as unequal transition and transversion rates, or
uneven base, or codon frequencies [187]. Counting methods
that incorporate these biases perform generally better than
those that do not, but the maximum likelihood method still
appears more robust to sever biases [187]. In addition, the
maximum likelihood method that accounts for all the infor-
mation in a data set has good power and good accuracy to
detect positive selection [188, 189].
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However, the first studies using these methods found
little evidence for adaptive evolution essentially because
they were averaging ω rate ratios over both lineages and
sites [147]. Branch models were then developed [190, 191]
quickly followed by site models [192–196] and by branch-site
models [189, 197]. All these approaches, as implemented in
PAML, rely on likelihood ratio tests to detect adaptive evolu-
tion: a model where adaptive evolution is permitted is com-
pared with a null model where ω cannot be greater than one.
Simulations show that some of these tests are conservative
[189], so that detection of adaptive evolution should be safe
as long as convergence of the analyses is carefully checked
[198], including in large-scale analyses [199]. If the model al-
lowing adaptive evolution explains the data significantly bet-
ter than the null model, then an empirical Bayes approach
can be used to identify which sites are likely to evolve adap-
tively [192]. The empirical Bayes approach relies on estimates
of the model parameters, which can have large sampling er-
rors in small data sets. Because these sampling errors can
cause the empirical Bayes site identification to be unreliable
[200], a Bayes empirical Bayes approach was proposed and
was shown to have good power and low-false positive rates
[201]. Full Bayesian approaches that allow for uncertain pa-
rameter estimates were also proposed [202]. Yet, simulations
showed that they did not improve further on Bayes empir-
ical Bayes estimates [203], so that the computational over-
head incurred by full Bayes methods may not be necessary
in this case. One particular case, where a Bayesian approach
is however required, is to tell the signature of adaptive evo-
lution from that of recombination, as these two processes
can leave similar signals in DNA sequences. Indeed, simu-
lations show that recombination can lead to false positive
rates as large as 90% when trying to detect adaptive evolution
[204]. The codon model with recombination implemented
in OmegaMap [48] can then be used to tease apart these two
processes (e.g., see [205]).

4. ESTIMATING DIVERGENCE TIMES
BETWEEN SPECIES

The estimation of the dates when species diverged is often
perceived to be as important as estimating the phylogeny
itself. This explains why so-called “dating methods” were
first wished for when molecular phylogenies were first re-
constructed [206]. In spite of over four decades of history,
molecular dating has only recently seen new developments.
One of the reasons for this slow progress is that, unlike the
other parts of phylogenetic analysis, divergence times are
parameters that cannot be estimated directly. Only sitewise
likelihood values and distances between pairs of sequences
are identifiable, that is, directly estimable. Distances are ex-
pressed as a number of substitutions per site (sub/site) and
can be decomposed as the product of two quantities: a rate
of evolution (sub/site/unit of time) and a time duration (unit
of time). As a result, time durations and, likewise, divergence
times cannot be estimated without making an additional as-
sumption on the rates of evolution. The simplest assumption
is to posit that rates are constant in time, which is known as
the molecular clock hypothesis [207]. This hypothesis can

be tested, for instance, with PAUP or PAML, by means of
a likelihood ratio test that compares a constrained model
(clock) with an unconstrained model (no clock). These two
models are nested, so that twice the log-likelihood differ-
ence asymptotically follows a χ2 distribution. If n sequences
are analyzed, the constrained model estimates n − 1 diver-
gence times, while the unconstrained model estimates 2n− 3
branch lengths. The degree of freedom of this test is then
(2n − 3) − (n − 1) = n − 2 [4]. The systematic test of the
molecular clock assumption on recent data shows that this
hypothesis is too often untenable [208].

The most recent work has then focused on relaxing this
assumption, and three different directions have emerged
[209]. A first possibility is to relax the clock globally on the
phylogeny, but to assume that the hypothesis still holds lo-
cally for closely related species [210–212]. Recent develop-
ments of these local clock models now allow the use of mul-
tiple calibration points and of multiple genes [213], the au-
tomatic placement of the clocks on the tree [214] and the
estimation of the number of local clocks [209]. PAML can be
used for most of these computations. However, local clock
models still tend to underestimate rapid rate change [209].
The second possibility to relax the global clock assumption
is to assume that rates of evolution evolve in an autocorre-
lated manner along lineages and to minimize the amount
of rate change over the entire phylogeny. The most popular
approach in the plant community is Sanderson’s penalized
likelihood [215], implemented in r8s [55]. This approach
performs well on data sets for which the actual fossil dates
are known [216] but still tends to underestimate the actual
amount of rate change [209].

Bayesian methods appear today as the emerging ap-
proach to estimate divergence times. Taking inspiration from
Sanderson’s pioneering work [217], Thorne et al. developed
a Bayesian framework where rates of evolution change in an
autocorrelated manner across lineages [45–47]: the rate of
evolution of a branch depends on the rate of evolution of
its parental branch; the branches emanating from the root
require a special treatment. These Bayesian models work by
modeling how rates of evolution change in time (rate prior),
and how the speciation/population process shapes the dis-
tribution of divergence times (speciation prior). These prior
distributions can actually be interpreted as penalty functions
[45, 209], and they can have simple or more complicated
forms [218]. The Multidivtime program [45–47] is extremely
quick to analyze data thanks to the use of a multivariate nor-
mal approximation of the likelihood surface. It assumes that
rates of evolution change following a stationary lognormal
prior distribution. Further work suggested that it might not
always be the best performing rate prior [218–220], but these
latter studies had two potential shortcomings: (i) they were
based on a speciation prior that was so strong that it biased
divergence times towards the age of the fossil root [219, 221],
and (ii) they used a statistical procedure, the posterior Bayes
factor [222], that is potentially inconsistent. One potential
limitation of the Bayesian approach described so far is its de-
pendence on one single tree topology, which must be either
known ahead of time or estimated by other means. Recently,
Drummond et al. found a way to relax this requirement by
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positing that rates of evolution are uncorrelated across lin-
eages, while all the branches of the tree are constrained to
follow exactly the same rate prior [223]. As a result, their
approach is able to estimate the most probable tree (given
the data and the substitution model), the divergence times
and the position of the root even without any outgroup or
without resorting to a nonreversible model of substitution
[224]. Drummond et al. further argue that the use of explicit
models of rate variation over time might contribute to im-
proved phylogenetic inference [223]. In addition, when the
focus is on estimating divergence times, a recent analysis sug-
gests that this uncorrelated model of rate change could out-
perform the methods described above to accommodate rapid
rate change among lineages [209]. Implemented in BEAST,
this approach offers a variety of substitution models and
prior distributions and presents a graphic user interface that
will appeal to numerous researchers [39].

5. CHALLENGES AND PERSPECTIVES

With the advent of high-throughput sequencing technolo-
gies such as the whole-genome shotgun approach by py-
rosequencing [225], fast, cheap, and accurate genomic in-
formation is becoming available for a growing number of
species [226]. If low coverage limits the complete assembly of
many genome projects, it still allows the quick access to draft
genomes for a growing number of species [227]. As a result,
phylogenetic inference can now incorporate large numbers
of expressed sequence tags (ESTs), genes [228], and occasion-
ally complete genomes [229]. The motivation for developing
these so-called phylogenomic approaches is their presumed
ability to return fully resolved and well-supported trees by
decreasing both sampling errors [230] and misleading signals
due for instance to horizontal gene transfer [231] or to hid-
den paralogy [232]. In practice, these large-scale studies can
give the impression that incongruence is resolved [228], but
they also can fail to address systematic errors due to the use
of too simple models [233]. If the genes incorporated in phy-
logenomic studies are often concatenated to limit the num-
ber of parameters entering the model, it remains important
to allow sitewise heterogeneities [234]. If partition models
can reduce systematic biases [234], Bayesian mixture mod-
els such as CAT [151] appear to be robust to long-branch at-
traction [159], a rampant issue in phylogenomics [235]. All
together, the accumulation of genomic data and these latest
methodological developments seem to make the reconstruc-
tion of the tree of life finally within reach. In comparison,
dating the tree of life is still in its infancy, even if a number
of initiatives such as the TimeTree server are being developed
[236]. These resources are limited to some vertebrates but
will hopefully soon be extended to include other large taxo-
nomic groups such as plants. To achieve this goal, however,
phylogenetic studies should systematically incorporate diver-
gence times, as is now routine in some research communities
(e.g., [237]). This joint estimation of time and trees is today
facilitated by the availability of user-friendly programs such
as BEAST. The near future will probably see the development
of mixture models for molecular dating and more sophisti-
cated models that integrate most of the topics discussed here

from sequence alignment to detection of sites under selection
into one single but yet user-friendly [238] toolbox.
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