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Peroxisome proliferators-activated receptors (PPARs) that are members of the nuclear receptor superfamily have three different
isoforms: PPARα, PPARδ, and PPARγ. PPARs are ligand-activated transcription factors, and they are implicated in tumor
progression, differentiation, and apoptosis. Activation of PPAR isoforms lead to both anticarcinogenesis and anti-inflammatory
effect. It has so far identified many PPAR ligands including chemical composition and natural occurring. PPAR ligands are reported
to activate PPAR signaling and exert cancer prevention and treatment in vitro and/or in vivo studies. Although the effects depend
on the isoforms and the types of ligands, biological modulatory activities of PPARs in carcinogenesis and disease progression are
attracted for control or combat cancer development. This short review summarizes currently available data on the role of PPAR
ligands in carcinogenesis.

Copyright © 2008 Yumiko Yasui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Peroxisome proliferators-activated receptors (PPARs) are
member of the nuclear hormone receptor superfamily that
were initially characterized as molecules that mediated the
proliferation of peroxisomes in rodent liver parenchymal
cells in response to the hypolipidemic drug clofibrate [1].
Subsequently, PPARs have been shown to regulate the
expression of genes involved in a variety of biological
processes, including lipid metabolism and insulin sensitivity
[2, 3]. Three isotypes of PPAR exist; PPARα, PPABβ/δ or
simply δ, and PPARγ which are known and they are encoded
by three separate genes and display distinctly different tissue
distributions and functions. PPARα regulates numerous
aspects of fatty acid catabolism, where as PPARγ controls
adipocyte differentiation, systemic glucose levels, and lipid
homeostasis [4, 5]. PPARδ is involved in development,
embryo implantation, myelination of the corpus callosum,
lipid metabolism, and epidermal cell proliferation [6]. The
PPARs are ligand-dependent transcription factors that regu-
late target genes expression by binding to characteristic DNA
sequences termed peroxisome proliferators response element
(PPREs) located in the 5′-flanking region of target genes
[7, 8]. Each receptor binds to its PPRE as a heterodimer with
the receptor for 9-cis retinoic acid, the retinoid X receptor
(RXR) (Figure 1). Upon binding a ligand, the conformation

of a PPAR is altered and stabilized such that a binding cleft
is created, and recruitment of transcriptional coactivators
occurs. The result is an increase in gene transcription,
therefore PPARs are able to regulate such divers effects as cell
proliferation, differentiation, or apoptosis.

2. PPARα LIGANDS AND CARCINOGENESIS

PPARα is the first member of this nuclear receptor subclass
to be cloned [9]. PPARα is expressed preferentially in the
liver [10] and tissues with high fatty acid catabolism, such
as the kidney, heart, skeletal muscle, and brown fat [11–
13]. The PPARα isotype is the cellular target for leukotriene
B4 (LTB4) fibrates such as bezafibrate and fenofibrate,
which are hypolipidemic drugs widely used for reducing
triglyceride levels, a risk of cardiovascular diseases. Several
studies have established a link between PPARα activation
and epidermal differentiation. Fibrates induce differentiation
and inhibit proliferation in normal and hyperproliferating
mouse epidermis and regulate apoptosis, but are inactive
in PPARα-deficient mice [14, 15]. Farnesol also stimulates
PPARα-dependent differentiation in epidermal keratinocytes
[16]. Topical PPARα ligands have weak preventive effects
on tumor promotion in mouse skin, despite upregulation
of PPARα in untreated tumors compared with normal
epidermis [17]. These observations suggest that the use of
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Figure 1: PPAR activation pathway and its target genes.

PPARα activators may have chemopreventive properties in
skin carcinogenesis. PPARα expression is also upregulated in
human prostate adenocarcinomas [18]. In addition, PPARα
ligands suppress the growth of several cancer lines, including
colon [19], endometrial [20], and breast [21] in vivo or
in vitro. PPARα ligands are able to suppress the metastatic
potential of melanoma cells in vivo and in vitro [22, 23].
More recently, a PPARα ligand WY14643 suppresses both
endothelial cell proliferation and tumorigenesis in a PPARα-
dependent manner [24]. These data suggest that certain
PPARα ligands may act as antitumor agents, although
the exact mechanisms remain unclear. PPARα activation
has been associated with both anti and proinflammatory
actions in rodents. PPARα ligands reduce expression of
inflammatory markers [25]. In contrast, the expression of the
inflammatory mediator cyclooxygenase (COX)-2 in human
breast and colon cancer cells is upregulated by PPARα ligands
[26]. The increased COX-2 expression is known to link to the
risk of epithelial malignancies [27]. These findings indicate
that PPARα ligands may be interesting candidates for the
chemoprevention of several types of cancers, but we should
consider negative face of influence of PPARα ligands on
cancer development.

3. PPARδ LIGANDS AND CARCINOGENESIS

A number of reports have described a variety of biological
functions of the PPARα and γ isotypes. These two isotypes
also have clinical significance in the treatment of dyslipi-
deamia and type II diabetes mellitus [28]. In contrast, less
is known about the physiological role of the PPARδ isoform,
although there is some evidence supporting its involvement
in embryo implantation and development [6, 29], epidermal
maturation and wound healing [30], and regulation of fatty
acid metabolism [31]. Recently, the effect of PPARδ function
on colon carcinogenesis has been reported. However, the
role of PPARδ in colon cancer is still unclear, as there are
data suggesting that it either inhibits or promotes colon
carcinogenesis. PPARδ expression is increased in colon
tumor cells with a mutant Apc (adenomatous polyposis coli)

allele (min) [32]. The number of polyps was the same
among the multiple intestinal neoplasia (Min) mice that
were Ppard−/−, Ppard+/−, or Ppard+/+. These findings suggest
that PPARδ is not essential for colon carcinogenesis, but
PPARδ may affect size and/or growth of polyps [29]. The
most striking results were provided by a study demonstrating
that in PPARδ deficient (Ppard−/−) mice, both Min mutants
and those with chemically induced cancers, colon polyp
formation was significantly greater in those nullizygous for
PPARδ [33]. These results suggest that PPARδ attenuates
colon carcinogenesis. On the other hand, the following
observations strongly suggest that PPARδ enhances colon
cancer formation. PPARδ was elevated in colon cancer cells
and was repressed by APC gene via the β-catenin/Tcf-4
response elements in its promoter [32]. Genetic disruption
of PPARδ decreases the tumorigenicity of human colon
cancer cells [34]. Nitric oxide donating aspirin is reported to
suppress intestinal tumors in Min mice and downregulates
the expression of PPARδ and enhance apoptosis and perhaps
atypical cell death [35]. This suggests that PPARδ contributes
to intestinal carcinogenesis.

GW501516 was shown to be a PPARδ subtype-selective
ligand using combinatorial chemistry and structure-based
drug design [36]. There are some reports describing the
effects of PPARδ ligand on colon carcinogenesis. Exposure
of APCmin /+ mice to the GW501516 resulted in activation
of PPARδ and significant acceleration of intestinal adenoma
growth [37]. Furthermore, PPARδ activation by PPARδ
ligand promotes tumor growth by inhibiting epithelial tumor
cell apoptosis through activation of a VEGF autocrine
signaling loop in APCmin /+ mice [38]. GW501516 stimulates
proliferation of human breast, prostate, and hepatocellular
carcinoma cells [39, 40]. In a mouse mammary tumori-
genesis model, GW501516 activates 3-phospholinositide-
dependent protein kinase-1 that is oncogenic when expressed
in mammary ductal cells, and leads to accelerated tumor
formation [41]. From these findings, PPARδ selective-ligand
tends to exert enhancing effects on carcinogenesis, while its
antagonists are expected to prevention and/or treatment of
cancer.
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Figure 2: Synthetic and naturally occurring ligands for PPARγ.

4. PPARγ LIGANDS AND CARCINOGENESIS

PPARγ plays an important role in the regulation of prolif-
eration and differentiation of several cell types. PPARγ is
known to be expressed in various organs, including adipose
tissue [42], mammary glands [43], small intestine [44], lung
[45], colon [44], and stomach [46], and is also upregulated
in various types of cancer cells.

This receptor has the ability to bind a variety of small
lipophilic compounds derived from both metabolism and
nutrition. These ligands, in turn, direct cofactor recruitment
to PPARγ, regulating the transcription of genes in a variety
of complex metabolic pathways. Several specific ligands
(Figure 2) have been identified, such as the thiazolidine-
diones (including pioglitazone, rosiglitazone, and troglita-
zone), naturally occurring lipid, polyunsaturated fatty acids
(PUFA) (including arachidonic, oleic, and linoleic acid) and
the cyclopentenone prostaglandin (PG) 15-deoxy Delta12,14-
PGJ2, a metabolite of PGD2. PPARγ ligands have been
reported to induce cell differentiation and apoptosis in sev-
eral types of cancer [47–51], suggesting potential application
as anticancer agents. Furthermore, some reports recently
suggested that PPARγ ligands can be used as chemopreven-
tive agents for colon, breast, and tongue carcinogenesis [52–
54].

The most widely used synthetic agents belong to the
thiazolidinedione class of antidiabetic drugs (also referred

to as glitazones). These include ciglitazone, troglitazone,
pioglitazone, rosiglitazone, and LY171.833. Pioglitazone,
rosiglitazone, and troglitazone have already been used clin-
ically to treat type 2 diabetes, making use of the ability of
synthetic PPARγ ligands to sensitize insulin and to lower
blood glucose concentration. Recent evidence indicates that
certain thiazolidinedione members, especially troglitazone
and ciglitazone, exhibit moderate anitproliferative activities
against epithelial-derived human cancer cell lines, including
those of prostate [55], breast [56], colon [57], thyroid [51],
lung [58], and pituitary carcinoma [50]. PPARγ is known to
be expressed in a variety of cancer, and the treatment of these
cancer cells with PPARγ ligands often induces cell differen-
tiation and apoptosis [47–51], and exerts antiproliferative
effects on human colon cancer [59], breast cancer [47],
pituitary adenomas [50], gastric cancer [60], and bladder
cancer [61]. Furthermore, postulated mechanisms by which
PPARγ ligands exert their effects include modulation of the
oncogenic Wnt pathway, inhibition of nuclear factor kappaB
(NF-κB), and modulation of cell cycle pro and antiapoptotic
proteins (Figure 3). Wnt signaling is a complex pathway in
which β-catenin binds to transcription factors in the nucleus
and plays a role as a central mediator in regulating cell pro-
liferation and differentiation [62]. PPARγ activation causes
a decrease in β-catenin expression in adipocytes in vitro
and in normal intestinal mucosa in mice [63]. In the cul-
tured human monocytes, PPARγ inhibits NF-κB activation
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Figure 3: Molecular mechanisms for anticarcinogenic and/or chemopreventive effects of PPARγ ligands.

thus influencing the transcription of both survival- and
apoptosis-related genes [64]. PPARγ activation also induces
the activation of the proapoptotic caspase-3 protein in
human liver cancer cell lines and a reduction in antiapoptotic
Bcl-2 and Bcl-XL protein level in human colon and gastric
cancer cell lines, respectively [65–67]. Furthermore, colon
cancer development is related to hyperlipidemia [68], with
clear links to high level of serum triglycerides (TGs) [69]. A
PPARγ ligand, pioglitazone, suppresses both hyperlipidemia
and intestinal polyp formation in the APC-deficient mice in
conjunction with elevation of lipoprotein lipase (LPL), which
catalyzes TG hydrolysis [70].

We previously investigated the modifying effects of
PPARγ or α ligands (troglitazone, pioglitazone, or bezafi-
brate) on early phase of colon carcinogenesis with or
without colitis in male F344 rats [19, 71]. The role of
PPARγ in AOM-induced colon tumorigenesis was directly
demonstrated by the study showing that the incidence of
colonic tumors increased in the hemizygous knockout of
PPARγ that received AOM [72]. Although thiazolidinediones
inhibit AOM-induced colon carcinogenesis in the wild type
mice, the observation using APC-deficient mouse models
showed conflicting results regarding the effects of PPARγ
ligand treatment [73–76]. This may be caused by use of
different PPARγ agonists (troglitazone versus pioglitazone),
and different doses (100–2000 ppm in diet) examined.
Colonic inflammation is associated with a high risk of
colorectal cancer (CRC) [77]. CRC is thus one of the
most serious complications of inflammatory bowel disease,
such as ulcerative colitis and Crohn’s disease [77]. In the
experiments, dietary administration of PPARα or γ lig-
ands effectively suppressed azoxymethane (AOM)-induced
or dextran sodium sulfate (DSS)/AOM-induced aberrant
crypt foci, which are precursor lesions for colon carcinoma
(Table 1). Our findings suggested that synthetic PPARγ and

PPARα ligands are able to inhibit the early stages of colon
tumorigenesis with or without colitis, and the findings
were confirmed by the study conducted by Osawa et al.
[78]. Furthermore, we demonstrated ligands for PPARγ and
PPARα inhibit colitis-related colon carcinogenesis [79] using
our AOM/DSS mouse model [80]. In the experiment, dietary
administration (0.05% in diet for 14 weeks) with troglitazone
and bezafibrate significantly inhibited both the incidence
and multiplicity of colonic adenocarcinoma induced by the
treatment with AOM/DSS, although bezafibrate feeding did
not significantly lower the multiplicity (Table 2). Dietary
exposure of troglitazone and bezafibrate suppressed cell
proliferation and induced apoptosis and lowered immnore-
activity of COX-2, inducible nitric oxide, and nitrotyrosine
in the colonic malignancies.

PPARγ receptors are activated by certain lipophilic
ligands, such as PUFAs and eicosanoid derivatives. They
bind to the PPARγ receptor at micromolar concentrations.
The essential fatty acids (arachidonic acid, docosahexanoic
acid, and eicosapentaenoic acid) as well as modified oxi-
dized lipids (9-hydroxyoctadecanoic acid and 13-hydroxy-
octadecanoic acid) bind to and activate PPARγ [5]. Recently,
conjugated linoleic acid (CLA) was shown to act as a high
affinity ligand and an activator of PPARγ [81]. Anticarcino-
genic activity of CLA is mediated by PPARγ activation in
susceptible tumors [81]. When treated with CLA, PPARγ
expression is increased, and APC and c-myc proteins are
downregulated in the human colon cancer cells, and finally
proliferation of cancer cells is inhibited by CLA [82–85]. In
fact, feeding with seed oils containing 9c, 11t, 13t-, 9c, 11t,
13c-, and 9t, 11t, 13c-conjugated linolenic acid, which are
converted to 9c, 11t- and 9t, 11t-CLA within colonic and
liver cells, suppresses AOM-induced colon carcinogenesis by
increased expression of PPARγ protein in the colon mucosa
[86–89].
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Table 1: Effects of PPAR ligands on ACF formation in rats.

Treatment (No. of mice) ACF/colon (% inhibition) ACs/colon (% inhibition)

AOM alone (12) 83 ± 6(a) 2.0± 0.24

AOM + 0.01% troglitazone(8) 68 ± 16 (18%) 1.7± 0.21 (15%)

AOM + 0.05% troglitazone(8) 55 ± 13(b) (34%) 1.5± 0.13(c) (25%)

AOM + 0.01% bezafibrate (8) 75±8 (10%) 2.0± 0.20 (0%)

AOM + 0.05% bezafibrate (8) 53± 9(d) (36%) 1.9± 0.10 (5%)

None 0 0

1% DSS + AOM (10) 115 ± 22 2.4± 0.29

1% DSS + AOM + 0.01% pioglitazone (7) 71 ± 24(e) (38%) 1.8± 0.17(f) (25%)

1% DSS + AOM + 0.01% troglitazone(7) 57 ± 14(g) (50%) 1.6± 0.14(g) (33%)

1% DSS + AOM + 0.01% bezafibrate (7) 59 ± 18(h) (49%) 1.7± 0.16(i) (29%)

None 0 0
(a)Mean ±SD.
(b–d)Significantly different from the AOM alone group: (b) P < .01; (c) P < .005; and (d) P < .001.
(e–i)Significantly different from the DSS/AOM group: (e) P < .05; (f) P < .01; (g) P < .001; (h) P < .005; and (i) P < .002.

Table 2: Effects of PPAR ligands on colon carcinogenesis in mice.

Treatment (no. of mice)
Incidence/Multiplicity (% inhibition)

Total Adenoma Adenocarcinoma

AOM/DSS 100%/5.2± 3.0(a) 100%/2.1± 1.8 100%/3.0± 1.8

AOM/DSS/0.05% Troglitazone 90%/2.5± 1.8(b)(52%,) 90%/1.6± 1.1 (24%) 40%(c)/1.2± 2.5(b) (60%)

AOM/DSS/0.05% Bezafibrate 80%/2.6± 2.5(b)(50%) 70%/1.1± 1.0(b) (48%) 60%(b)/1.8± 2.6 (40%)

None 0%/0 0%/0 0%/0
(a)Mean ±SD.
(b,c)Significantly different from the AOM/DSS group: (b) P < .05; and (c) P < .01.

5. CLINICAL TRIAL FOR PPARγ LIGANDS
AGAINST TUMORS

There are several clinical studies on the effects of PPARγ
ligands on malignancies (Table 3). The beneficial effects
of glitazones on liposarcomas have been demonstrated in
a small clinical trial [90]. Three patients with interme-
diate to high-grade liposarcomas were given troglitazone
(800 mg/day orally). In the patients, differentiation of the
neoplasms occurred as revealed by histological and bio-
chemical analysis. The clinical outcome of these patients
was not reported, but the therapy was well tolarated [90].
However, a phase II study on 12 patients with liposar-
coma showed that the PPARγ ligand rosiglitazone did not
significantly improve clinical outcome [94]. In prostate,
PPARγ immunoreactivity was significantly higher in prostate
cancer and prostatic intraepithelial neoplasia than in those
with benign prostate hyperplasia and with healthy prostate
[98]. A high incidence of prolonged stabilization of serum
prostate-specific antigen (PSA) was observed in a phase
II clinical study, where patients with advances prostate
cancer who had no symptoms of metastasis were treated
with troglitazone (800 mg/day orally). Moreover, one patient
had a striking decrease in PSA concentration to almost
undetectable amounts [91]. In a 75-year-old man with occult
recurrent prostate cancer showed a decrease in PSA after
oral treatment with toroglitazone (600–800 mg/day for 1.5

years) [92]. Thus, PPARγ is expressed in prostate cancer and
activation of PPARγ might offer an additional therapeutic
option for treatment of prostate cancer in the near future.
At present, most of the available data suggest that PPARγ
has antineoplastic effect on malignant neoplasms [99],
including colonic malignancies. However, in a clinical phase
II study on CRC, orally administrated troglitazone did not
lengthen median progression-free survival or median sur-
vival in 25 patients with chemotherapy-resistant metastatic
colon carcinoma [93]. In phase II study [95] for the use
of troglitazone to treat patients with advanced refractory
breast cancer, no objective tumor response was observed.
However, the study was incomplete because troglitazone was
withdrawn from commercial availability after a warning by
the US Food and Drug Administration about hepatic toxic
effects. On the other hand, it is important to note that
neither hormone status of the tumors nor the amount of
PPARγ protein is assessed before patients were included
in the study. In an open labeled phase II study where
ten patients with thyroglobulin-positive and radioiodine-
negative differentiated thyroid cancer were enrolled and they
were given oral rosiglitazone treatment (4 mg/day for 1 week,
then 8 mg per day for 7 weeks), rosiglitazone treatment
resulted in a 40% partial response rate, but no complete
responses, and the expression level of PPARγ mRNA and
protein in the neoplasm appeared unrelated to rosiglitazone
treatment response [96]. The findings also suggest that
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Table 3: Clinical trials on the anticancer effects of PPARγ ligands.

Clinical trials Drug Results Reference no.

Patients with intermediate to
high-grade liposarcomas (case
reports)

Troglitazone Histlogical and biochemical differentiation [90]

Phase II study on patients with
histologically-confirmed prostate
cancer and no symptomatic
metastatic disease

Troglitazone Lengthened stabilization of prostate-specific antigen [91]

75-year-old patient with an
occult recurrent prostate cancer
(case reports)

Troglitazone Reduced prostate-specific antigen [92]

Phase II study on patients with
metastatic colon cancer

Troglitazone No significant effect [93]

Phase II study on patients with
liposarcoma

Rosiglitazone Lengthened mean time of progression [94]

Phase II study on patients with
refractory breast cancer

Troglitazone No significant effect [95]

Phase II study on patients with
thyroglobulin-positive and
radioiodine-negative
differentiated thyroid cancer

Rosiglitazone Induced radioiodine uptake [96]

Phase I study on patients with
solid tumors

LY293111 The recommended oral dose (600 mg/day) for phase II trial [97]

higher doses and longer duration of rosiglitazone therapy
may be useful to better define the role of rosiglitazone as a
redifferentiation agent in differentiated thyroid cancer. There
is a phase I clinical study of a PPARγ ligand (LY293111)
that is not thiazolidinedione members [97]. LY293111 is a
novel diaryl ether carboxylic acid derivative and is known as
PPARγ agonist and LTB4 antagonist. The study suggested the
dose (600 mg) of LY293111 in combination with irinotecan
(200 mg/m2 IV every 21 days for phase II clinical study
against solid tumors.

6. CONCLUSIONS

PPARs were originally recognized to be genetic regulators
of complex pathways of mammalian metabolism, including
fatty acid oxidation and lipogenesis. However, the receptors
have been shown to be implicated in carcinogenesis and
inflammation. PPARs are involved in cell proliferation and
differentiation of a variety of cancer. Numerous reports
indicate that PPARs ligands could play an important role in
prevention and inhibition of cancer development. Synthetic
PPAR ligands used for drugs or those of naturally occurring
lipids are promising cancer chemopreventive agents with
slight side effects against several types of cancer. We should
characterize expression patterns of different isoforms of
PPAR in cancerous and precancerous tissues and determine
their precise roles in the carcinogenic process for develop-
ment of PPARs ligands as a novel class of cancer preven-
tive/theraputic drugs. Based on current data from preclinical
and clinical studies, we believe that thiazolidinediones,
especially PPARγ agonists, have important role in short-

term prophylactic therapy designed to reduce the number of
putative preneoplasia, ACF, in patients who are at high risk
for CRC development.

ABBREVIATIONS

AOM: Azoxymethane
APC: Adenomatous polyposis coli
CLA: Conjugated linoleic acid
COX-2: Cyclooxygenase-2
CRC: Colorectal cancer
DSS: Dextran sodium sulfate
LPL: Lipoprotein lipase
LTB4: Leukotriene B4
PG: Prostaglandin
PPARs: Peroxisome proliferators-activated receptor
PPRE: Peroxisome proliferators response element
PSA: Prostate-specific antigen
PUFA: Polyunsaturated fatty acid
RXR: Retinoid X receptor
TG: Triglyceride
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