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Abstract

Germline-stem cells (GSCs) produce gametes and are thus true ‘‘immortal stem cells’’. In Drosophila ovaries, GSCs divide
asymmetrically to produce daughter GSCs and cystoblasts, and the latter differentiate into germline cysts. Here we show
that the histone-lysine methyltransferase dSETDB1, located in pericentric heterochromatin, catalyzes H3-K9 trimethylation in
GSCs and their immediate descendants. As germline cysts differentiate into egg chambers, the dSETDB1 function is
gradually taken over by another H3-K9-specific methyltransferase, SU(VAR)3–9. Loss-of-function mutations in dsetdb1 or
Su(var)3–9 abolish both H3K9me3 and heterochromatin protein-1 (HP1) signals from the anterior germarium and the
developing egg chambers, respectively, and cause localization of H3K9me3 away from DNA-dense regions in most posterior
germarium cells. These results indicate that dSETDB1 and SU(VAR)3–9 act together with distinct roles during oogenesis, with
dsetdb1 being of particular importance due to its GSC-specific function and more severe mutant phenotype.
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Introduction

Drosophila oogenesis is a complex developmental process

involving the coordinated differentiation of germline and somatic

cells, and begins with asymmetric division of a single germline

stem cell (GSC) [1,2]. This GSC is located at the tip of each

ovariole in the germarium, which is a generative region that is

divided into sub-regions such as region-1, -2a, -2b and -3. After

each GSC division, the posterior daughter cell becomes a

‘‘cystoblast’’, leaves region-1, undergoes four synchronous, incom-

plete divisions to form a 16-cell germline cyst [3,4], and steadily

moves in a posterior direction through the germarium. Of the 16

interconnected cells, one cell develops into the oocyte whereas the

other 15 develop into polyploid nurse cells [5]. This 16-cell cyst

becomes surrounded by a monolayer of follicle cells and buds off

from the posterior germarium to form an egg chamber [6,7],

which ultimately gives rise to a single mature oocyte ready for

fertilization.

The germline cells, including the GSCs are the only population

from which both parental epigenetic information and

genetic information can be transferred to progeny. This

indicates that, other than the known pluripotency [8], the

germline cells possess another important property - an exceptional

capacity for epigenetic modifications of the genome [9]. In

fact, germ-cell development is associated with a dynamic process

of epigenetic reprogramming, leading to re-construction of the

whole genome-level epigenetic state [9,10,11,12,13]. The

developmental significance of this has driven studies to

investigate the epigenetic changes occurring in the germline

cells. Therefore, germ-cell development is an excellent

system to study how the epigenetic system involving

DNA methylation and histone lysine methylation is erased, re-

established, and maintained in the germ cells at the genome-wide

level.

Histone-lysine methylation, which mainly occurs in the tails of

histones H3 and H4, plays a pivotal role in cellular processes

including heterochromatin formation, X-chromosome inactiva-

tion, and transcription regulation [14]. Lysine methylation is of

particular interest because it can modulate the chromatin structure

to a compacted state or a relaxed one, depending on which lysine

residues are methylated. With regard to heterochromatin

formation, histone H3 trimethylated at lysine 9 (H3K9me3) is

enriched in pericentric heterochromatin and thereby recognized

as typical of a heterochromatin marker [15,16,17,18,19]. Correct

formation of heterochromatin is essential for chromosome stability

and integrity, and is required for the proper segregation of

chromosomes during mitosis [20] and the recombination events in

fission yeast [21], which further demonstrates the biological

significance of H3K9me3 that participates in heterochromatin

formation. So far, several histone-lysine methyltransferases

(HKMTases) with specificity to H3-K9 residues have been

identified [14]. Some of them are implicated in germ-cell

development. Male germ cells in mice lacking suv39h, which

synthesizes H3K9me3 in pericentric heterochromatin, display

severely impaired viability and chromosomal instability [22].

Mutant mice in which G9a is specifically inactivated in the germ-

cell lineage exhibited a marked loss of mature sperm and oocytes

[23].
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In Drosophila, as in other organisms, H3-K9 methylation is

associated with heterochromatin formation and gene silencing,

and is catalyzed by multiple HKMTases including SU(VAR)3-9

[24], dG9a [25] and dSETDB1 (also known as dmsetdb1 and egg)

[26,27,28]. Unlike mammalian suv39h, Su(var)3-9 mutants are

viable, fertile, and morphologically indistinguishable from the

wild-type flies, and so far have not been associated with defects in

germ-cell development in Drosophila (Tschiersch et al., 1994). In

addition, dG9a is abundantly expressed in the gonads of both sexes

[29], and female mutants for dG9a are also fertile [25]. Even the

dG9a and Su(var)3-9 double mutants, dG9a13414/dG9a13414; Su(-

var)3-906/Su(var)3-906, can produce mature oocytes and are

therefore fertile; although the proportion of larvae that survive

the pupal stage is greatly reduced [25]. Therefore, in Drosophila,

both Su(var)3-9 and dG9a are expected to have less of a critical role

in germ-cell development than in mammals.

Until recently, mammalian SETDB1/Eset has not shown a

function related to germ-cell development. However, its Drosophila

counterpart, dsetdb1, is closely associated with germ-cell develop-

ment. dsetdb1 homozygous mutants were shown to have degener-

ated egg chambers, and therefore be sterile [28]. SETDB1/Eset,

like G9a, functions in euchromatic DNA regions by forming

complexes with various transcription factors including KAP1

[30,31]. Our previous results have demonstrated that homozygous

mutation of Eset leads to peri-implantation lethality [32],

indicating that Eset is necessary for early mammalian development.

Recent observations in Drosophila demonstrated that dsetdb1

localizes mainly to the whole fourth chromosome [27], and shows

H3-K9 methylation activity and transcriptional repression, both of

which are specific to the fourth chromosome in the polytene

chromosomes of the salivary glands [26,27]. These results indicate

that dsetdb1 has functions and plays distinct roles in different tissues

in Drosophila.

Germ-cell development ultimately generates the haploid cells

that are responsible for the maintenance of the species.

Understanding how epigenetic patterns are established in the

germ line may eventually help in the prevention of heritable

diseases, improvement of assisted reproductive technologies, and

stem cell therapy [10]. As a trial to determine the molecular

processes of germ-cell development, we investigated the roles of

HKMTases in the Drosophila oogenesis. We found that dSETDB1,

localized to pericentric heterochromatin in germ cells including

the oocytes, is the only HKMTase that synthesizes trimethylated

H3-K9 in the germ-cell lineages in the germarium, and this

function is transferred to SU(VAR)3-9 in later oogenesis. Our

results indicate that dSETDB1 is necessary for Drosophila

oogenesis, and suggest that dSETDB1 has a role in coordinating

the chromosomal integrity in the germ-cell lineages, and that loss

of dsetdb1 function leads to dysregulation of chromosome

organization.

Results

Mutations in dsetdb1 gene cause severe defects in the
ovary

We studied on dsetdb1 ([26], also named ‘egg’ [28] or

‘dmsetdb1’[27]) (Fig. 1A), a Drosophila homologue of human

SETDB1. When the transcription level of dsetdb1 was examined,

a pattern of continuous oscillation during the life cycle was seen

(Fig. 1B, upper panel). This result indicated that dsetdb1 may have

a vital role throughout Drosophila development. In the adult fly,

dsetdb1 was expressed slightly more in females than in males, and,

in females, dsetdb1 expression was predominantly in the abdominal

area (Fig. 1B, lower panel).

We obtained a hypomorphic EP mutant [33], dsetdb1G19561, and

a mutant (dsetdb1G19561/Df(2R)ED4065) transheterozygous for

dsetdb1G19561 and the chromosomal deficiency Df(2R)ED4065

deleting the dsetdb1 gene (deleted region, 60C8-60E7). The

dsetdb1 transcript was rarely detected in dsetdb1 homozygous

mutant flies (Fig. 1B). Drosophila with these mutants possessed

ovaries of a markedly reduced size compared with wild-type flies

(Fig. 1Ca). The dsetdb1G19561/Df(2R)ED4065 mutant caused a

slightly more-severe phenotype than the dsetdb1G19561 mutant

(Fig. 1Cb–d). Homozygous mutant females were unable to lay

eggs, and were therefore sterile, which was in agreement with a

previous report [28]. The dsetdb1G19561 ovary carried egg

chambers, but these were mostly degenerated in appearance, as

demonstrated by analysis with the TUNEL assay (Fig. 1Ce–f). We

raised an anti-dSETDB1 polyclonal antibody from rabbit.

Western-blot analysis of abdominal protein extracts found only a

negligible level, if any, of dSETDB1 in dsetdb1G19561 mutants

(Fig. 1D).

dSETDB1 is primarily expressed in the germarium and is
exclusively localized to DNA-dense regions of nuclei in
the ovary

We performed whole-mount RNA in situ hybridization

(RISH) using a dsetdb1 antisense probe. As shown in Fig. 2A,

dsetdb1 transcripts were mainly detected in the germarium,

although not to a high level; these transcripts reappeared in

the stage-10 egg chambers, most likely as maternal mRNA stock

for embryonic development (data not shown). Analysis of

expression of Su(var)3-9, the first and best characterized H3-K9-

specific methyltransferase [34], in the ovary showed that it

was highly expressed in developing egg chambers (Fig. 2A).

When the RISH pattern of dsetdb1 was paralleled with that of

Su(var)3-9, a well-orchestrated, yin-yang expression pattern of

Su(var)3–9 and dsetdb1 was evident. The RISH results simply

show the main region of expression for each of dsetdb1 and

Su(var)3-9 genes in the ovariole strings, and it does not

necessarily mean that dsetdb1 transcripts are more abundant in

the germarium than Su(var)3-9 transcripts. These results

indicate that both dsetdb1 and Su(var)3-9 are expressed in the

ovary and have roles in gametogenesis. On the other hand, dG9a,

another H3-K9-specific methyltransferase, was shown to be

mainly transcribed in stage-10 egg chambers, which indicates that

the dG9a transcripts are mostly maternal stock for embryo

development (Fig. S1). We isolated the germaria by separating

them from stretches of developing egg chambers under a

stereomicroscope. RT-PCR with germarial RNAs demonstrated

that both dsetdb1 and Su(var)3-9 are expressed in the germarium

(Fig. 2A inset).

Immunostaining of wild-type ovaries showed that dSETDB1

was particularly obvious in the germarium (Fig. 2B, left panel;

see Fig. 3C for a schematic of the germarium structure).

Interestingly, dSETDB1 signals were mainly detected in 49,6-

diamidino-2-phenylindole (DAPI)-dense, pericentric heterochro-

matic DNA regions in all germarium cells. This was unexpected

because mammalian SETDB1/Eset is known to have a euchro-

matin-associated function [30] and also because Egg was

expressed both in the cytoplasm and nucleus equivalently in the

germarium [28]. The unusual heterochromatic localization of

dSETDB1 was confirmed using a dsetdb1-DSET:DsRed2

transgenic line in which dsetdb1 expression was driven by a nanos-

gal4 promoter (Fig. 2B, right panel); DsRed2-dSETDB1

signals were localized to DAPI-dense regions in the transgenic

germarium.

dSETDB1, SU(VAR)3–9, Oogenesis
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Figure 2. Pericentric heterochromatin localization of dSETDB1 in the germarium. (A) Whole-mount mRNA in-situ hybridization using a
probe either for dsetdb1 or Su(var)3–9. Arrows indicate the germaria. Germaria only were removed from the residual egg chambers and used for RT-
PCR analyses (inset; germ, germaria sample; OV, ovarian sample). (B) Localization of endogenous (left panel) and exogenously expressed (right)
dSETDB1 to pericentric heterochromatin in a wild-type and a transgenic nanos-gal4.dsetdb1-DSET:DsRed2 germarium, respectively. The germarium
was also stained for VASA, a germ-cell lineage marker, and counterstained for DNA, with 49,6-diamidino-2-phenylindole (DAPI; blue). Dashed lines
(gray) indicate boundaries of germaria. (C, D) The dSETDB1 signals are not co-localized with paint-of-fourth chromosome (POF, C) and SU(VAR)3-9-
eGFP (D). Boxed areas are enlarged into individual channels or merged channels, together with the schematic illustration of the relative positions of
individual signals (the right-most panel). In (D) GSC, germline-stem cell; Cc, cystocyte. Dotted circles are nuclear boundaries. Expression of SU(VAR)3-
9-eGFP was induced by heat shock treatment. Scale bars, 10 mm.
doi:10.1371/journal.pone.0002234.g002

Figure 1. Expression of dsetdb1 in Drosophila melanogaster. (A) Schematic illustration of the dSETDB1 structure. MBD, methyl-binding domain; S
and ET, bifurcated SET domain. (B) The dsetdb1 transcript levels during Drosophila development (upper panel), or in female body segments (lower
panel). =, male; R, female; 2/+, heterozygotes (n = 15); 2/2, homozygotes (n = 15); Hd, head; Th, thorax; Ab, abdomen. Rp49, loading control. (C)
Apoptotic phenotypes of dsetdb1G19561 ovaries. Ovaries isolated from wild-type and dsetdb1G19561 females (a). Note the difference in size between
wild-type and dsetdb1 mutant ovaries. (b–d) Ovarioles from wild-type (b), dsetdb1G19561 (c), and dsetdb1G19561/Df(2R)ED4065 (d) flies. Homozygote
females were unable to lay eggs, and were thus sterile; beyond stage 8 (in dsetdb1G19561), or in some cases at even earlier stages (dsetdb1G19561/
Df(2R)ED4065), egg chambers were undetectable. (e–f) TUNEL assay. Most egg chambers were TUNEL-positive in dsetdb1G19561 flies. Images were
taken using a Carl Zeiss Axiovert 200M fluorescence microscope equipped with an ApoTome, or using an Olympus BX60 microscope. Scale bars,
1 mm in parts a and b, and 100 mm in parts c-e. (D) The protein levels of dSETDB1 in wild-type (wt) ovarian (Ov) and abdominal (Ab) protein extracts,
and dsetdb1G19561 abdominal extracts. a-TUBULIN, a loading control. (E) Western-blot analyses for H3K9me1, H3K9me2, H3K9me3, and HP1 in ovarian
protein extracts. Histone H3 and b-ACTIN, loading controls. Wt, wild type; 2/+, heterozygotes; 2/2, homozygotes.
doi:10.1371/journal.pone.0002234.g001
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dSETDB1 has distinct roles during Drosophila oogenesis,
localizing at pericentric heterochromatin

Recent studies have reported that dSETDB1 is specifically

localized to the entire fourth chromosome in the polytene

chromosome spreads of the salivary glands [26,27], which

prompted us to immunostain the germarium for the painting of

fourth chromosome (POF) [35] that is known to coat the entire

fourth chromosome. When the germarium was doubly stained for

dSETDB1 and POF, however, the POF signals, which were

detected as one or two spots (reflecting the diploid genome)

flanking the DAPI-dense region, were not localized with the

dSETDB1 signals (Fig. 2C). This POF staining pattern was in

agreement with a previous observation that POF signals

decorating the pair of whole fourth chromosomes were seen as

one or two clear foci in S2 and other somatic cells including

ovarian follicle cells [36]. Since we identified the expression of

Su(var)3-9 in the germarium (Fig. 2A), we attempted to correlate

dSETDB1 signals with SU(VAR)3-9 signals. Antibody specific to

SU(VAR)3-9 was unavailable, so we used a GFP-tagged

SU(VAR)3-9-expressing transgenic fly [24]. The main GFP-

tagged SU(VAR)3-9 signals did not coincide with the

dSETDB1 signals (Fig. 2D). This was especially true in the

germarium region-1 and -2a (middle panels) where endogenous

SU(VAR)3-9 is not thought to function (see below); however, in

region-3 germarium (lower panels), in which the endogenous

SU(VAR)3-9 is thought to function, both signals appeared to be

largely overlapped (Fig. S2). Therefore, these findings indicate a

peculiar function of dSETDB1 in the germarium.

The nuclei of would-be oocytes in posterior regions of the

developing egg chambers had DAPI-dense spots, known as the

karyosomes [37], at which strong dSETDB1 signals were

identified (Fig. S3A), as reported recently [28]. Interestingly,

ectopically expressed SU(VAR)3-9-eGFP signals were not

detected in the karyosomes (Fig. S3B). It would be interesting to

investigate the reason for the exclusion of SU(VAR)3-9-

eGFP from the nuclei of would-be oocytes as the SU(VAR)3-9-

eGFP appears in all egg chamber cells (data not shown). Taken

together, these data indicate that dSETDB1, which is mainly

located in the pericentric heterochromatin in the cells of the

germarium and early egg chamber including would-be

oocytes, presumably fulfills peculiar roles in the ovary. These

roles differ from the known POF-associated function in the

salivary glands [27] and SU(VAR)3-9 might not be a substitute for

dSETDB1.

Figure 3. H3-K9 trimethylation in dsetdb1G19561 ovaries is abolished in a germ-cell-specific manner. (A) Colocalization of H3K9me3
signals with dSETDB1 signals and DAPI-dense spots. A boxed area is enlarged into individual or merged channels, together with a schematic
illustration of the relative positions of individual signals (the right-most panel). Dotted circles indicate nuclear boundaries. (B) Loss of H3K9me3
signals in the inner region of the anterior germarium (the ‘inner’ germarium) in the dsetdb1G19561 germarium. Different cell populations in the
germarium were stained either for VASA (upper panel) or Fas III (lower panel). (C) Diagram of the Drosophila germarium (upper panel). TF, terminal
filament; CC, cap cell; GSC, germline-stem cell; ISC, inner-sheath cell; CB, cystoblast; Cc, cystocyte; SSC, somatic stem cell; FC, follicle cell. Subregions of
the germarium (1, 2a, 2b, and 3) are indicated. Typical H3K9me3 pattern in a mutant germarium (lower panel), where the signal is absent from the
inner germarium (dashed boundary in green; see text) but intact in the outer germarium (the region in between grey and green boundaries). (D)
H3K9me3 signals are abolished in the VASA-positive primordial germ cells in the third-instar larval ovary of the dsetdb1 mutant. Dashed lines (red in B
and white in D) indicate the boundaries of VASA-positive cells. Germaria in A-C are outlined by dashed lines. The nuclei were counterstained with
49,6-diamidino-2-phenylindole (DAPI; blue). Arrows and arrowheads in B (right panel) and C (lower panel) indicate H3K9me3 signals detected in the
nurse cells and somatic cells of the outer germarium of the dsetdb1 mutant. Scale bars, 10 mm.
doi:10.1371/journal.pone.0002234.g003
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dSETDB1 synthesizes trimethylated H3-K9 in the
primordial germ cells and germ-line stem cells

Mammalian SETDB1/Eset [30,32,38,39], like SU(VAR)3-9

[15,22,34,40], synthesizes H3K9me3 [38]. Examination of a wild-

type germarium showed that the major H3K9me3 signals were

detected in DAPI-dense regions [16,28] and, overall, were

localized with the dSETDB1 signals (Fig. 3A). In the dsetdb1G19561

mutant, however, H3K9me3 signals were absent from the inner

part of the anterior germarium (Fig. 3B). As shown in Fig. 3C, for

convenience of discussion, we divided the germarium into two

parts: the ‘inner’ germarium consisting of VASA-positive cells [41]

such as GSCs, cystoblasts and cystocytes in region-1 and region-

2a; and the ‘outer’ germarium, which comprises the rest of the

germarium, including region-2b and region-3 as well as a layer of

the somatic cells surrounding region-1 and region-2a. The inner

germarium cells of the dsetdb1G19561 mutant lacked H3K9me3

signals, whereas the outer germarium cells maintained H3K9me3

signals (Fig. 3B, upper panel). When stained for Fasciclin III (Fas

III), a marker for follicle and stalk cells derived from somatic stem

cells [7], the mutant germarium was observed to have H3K9me3

signals crowded in Fas III-positive cells of region-2b and -3

germarium [42,43] (Fig. 3B, lower panel). This phenotype was

different from the previously reported one that used egg1473 mutant

flies to show that the whole germarium lost H3K9me3 signals [28],

which reflects the severer phenotype of the egg1473 mutant lacking

the entire SET domain than our EP mutants. Representative

H3K9me3 features in dsetdb1G19561 mutant germarium are

presented in Fig. 3C (lower panel). Examination of the third-

instar larval ovary of mutants showed that VASA-positive

primordial germ cells (PGCs) [44], which are precursors of the

germline stem cells (GSCs) and normally express H3K9me3

signals (Fig. 3D, left panel), also lacked the H3K9me3 signals

(right). The in situ database at Berkeley Drosophila Genome

Project (BDGP; http://www.fruitfly.org.cgi-bin/ex/insitu.pl) site

shows germ-cell- and gonad-specific dsetdb1 expression in stage 13–

16 embryos. These results demonstrate that dsetdb1 functions in a

germline-specific manner and, in the germarium of an adult ovary,

trimethylates H3-K9 residues of GSCs and their early progeny

cells.

In a wild-type germarium, H3K9me3 signals overlapped with

HP1 signals (Fig. 4A, left). However, lack of H3K9me3 in the

dsetdb1G19561 inner germarium led to failure of HP1 recruitment

(middle). It was interesting that the mutant germaria have normal-

looking H3K9me2 signals in the regions devoid of H3K9me3

(Fig. 4B, middle) and HP1 (Fig. 4C, middle) signals. This indicates

that HP1 recruitment relies exclusively on H3K9me3 and not on

H3K9me2, and that the presence of HKMTase(s) to synthesize the

H3K9me3 substrate is essential for HP1 tethering to chromatin in

modified histones. Western-blot analyses (Fig. 1E) showed that, in

the dsetdb1G19561 ovaries, H3K9me3 levels were obviously reduced,

consistent with immunostaining observations, whereas the

H3K9me2, H3K9me1, and HP1 levels did not seem to be

significantly altered compared to the wild-type ovaries.

dSETDB1 collaborates with SU(VAR)3-9 to establish
H3K9me3 patterns in the outer germarium

We found that the dSETDB1 signals were in cells throughout

the germarium (Fig. 2C), but that only the ‘inner’ germarium cells

were affected in the mutant germarium (Fig. 3B and C).

Importantly, when GSC-derived cystocytes approached the

region-3 and became nurse cells, they gained H3K9me3 signals

in the dsetdb1G19561 mutant (see arrows in Fig. 3C). This indicates

that another H3-K9-specific methyltransferase might operate in

the outer germarium, and the SU(VAR)3–9 is the most likely

candidate. However, analysis of a Su(var)3-917 null mutant [45]

showed that the whole germarium had solid H3K9me3 and HP1

signals (Fig. 4A). We hypothesized that dsetdb1 might have a

compensatory role in the Su(var)3–917 germarium, and therefore

made a double mutant: dsetdb1G19561; Su(var)3–917. The double

mutants mostly had gourd-shaped germaria and defects in the

budding off of new egg chambers; as a result, the double mutant

had no developing egg chambers in the ovary (Fig. 5A). As shown

in Fig. 5B, H3K9me3 signals were completely absent from the

entire germarium in the double mutant. These results indicate

that, in the outer germarium, dSETDB1 acts in concert with

SU(VAR)3–9 to synthesize H3K9me3. Meanwhile, it is interesting

to note that the Drosophila dG9a and Su(var)3-9 double mutants

dG9a13414/dG9a13414 ;Su(var)3-906/Su(var)3-906 are fertile [25].

The disappearance of H3K9me3 signals from even the outer

germarium in the dsetdb1G19561;Su(var)3–917 double mutant, but

not in either of the single mutants, indicates that dSETDB1 or

SU(VAR)3–9 alone can synthesize H3K9me3 signals in this area,

but the resulting pattern may not be suitable for further

development. We further explored the differences in H3K9me3

patterns produced by the two enzymes. It was repeatedly found

that, compared with the wild type Drosophila, the dsetdb1G19561

mutant contained relatively weak H3K9me3 signals, whereas the

Su(var)3–917 mutant possessed stronger and more disperse signals

Figure 4. Relationship among di- and tri-methylated H3-K9
patterns, and HP1 pattern in dsetdb1G19561 and Su(var)3–917

germaria. (A) H3K9me3 versus HP1 patterns. (B) H3K9me2 versus
H3K9me3 patterns. (C) H3K9me2 versus HP1 patterns in wild-type (left
panel), dsetdb1G19561 (middle panel), and Su(var)3–917 (right panel) flies.
Note that HP1 is absent from the inner germarium of the dsetdb1G19561

mutant, from which H3K9me3 signals are absent (in A), whereas
H3K9me2 signals remain unaltered (in C). Nuclei were counterstained
with 49,6-diamidino-2-phenylindole (DAPI; blue). Scale bars, 10 mm.
doi:10.1371/journal.pone.0002234.g004
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(Fig. 5C). Detailed inspection allowed the H3K9me3 patterns of

the region-3 nurse cells and pre-follicle cells in the germarium to

be divided into two types on the basis of association (type-1) or

non-association (type-2) of major H3K9me3 spots with DAPI-

dense regions. In Fig. 5D, the type-2 cells account for 4% of wild-

type nurse cells and for 73% and 52% of dsetdb1G19561 and

Su(var)3–917 nurse cells, respectively. Similar results were seen in

pre-follicle cells, although the figures were less marked (20%, 57%,

and 46% of wild-type, dsetdb1G19561 and Su(var)3–917 cells,

respectively). These results could indicate the question about

how the absence of chromosomal H3K9me3 in the GSCs could be

translated into the degeneration of egg chambers and result in

female sterility. Our results show that both dSETDB1 and

SU(VAR)3–9 are necessary to establish a proper H3K9me3

pattern in the outer germarium. Meanwhile, such aberrant

localization of H3K9me3 signals was not found in a dG9a mutant

[25], the mutant germarium of which exhibited normal-looking

H3K9me3 and H3K9me2 patterns (Fig. S1).

Figure 5. Disturbed trimethylated H3-K9 patterns in dsetdb1G19561 and Su(var)3–917 germaria. (A) A dsetdb1G19561; Su(var)3–917 double
mutant with gourd-shaped germaria. Note the VASA-positive cells accumulated in a mass in the posterior region of the germarium. (B) A
dsetdb1G19561; Su(var)3–917 double mutant germarium lacked H3K9me3 signals. (C) H3K9me3 patterns in region-3 nurse cells of wild-type (upper
panel), dsetdb1G19561 (middle panel), and Su(var)3–917 germaria (lower panel). Boxed areas are enlarged into individual channels. Dotted lines indicate
boundaries of nurse cell nuclei. Scale bars, 10 mm. (D) Frequency (%) of type-1 (white) and type-2 (gray) H3K9me3 patterns in nurse-cell (NC) nuclei
and pre-follicle-cell (FC) nuclei (see text for classification). ‘n’ indicates the number of cells counted in each group. The schematic in the box illustrates
the features of type-1 and type-2 cells graphically.
doi:10.1371/journal.pone.0002234.g005
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SU(VAR)3-9 solely functions in the developing egg
chambers to trimethylate H3-K9 residues

If the inner germarium was the primary region of H3K9me3

synthesis deficiency in the dsetdb1G19561 ovary, the egg chambers

were mainly affected in the Su(var)3–917 mutant ovary. Immuno-

staining of the Su(var)3–917 ovarioles showed that the egg

chambers were totally devoid of H3K9me3 and HP1 signals

(Fig. 6A, right panel), whereas egg chambers of the dsetdb1G19561

mutants possessed strong signals for H3K9me3 and HP1 (middle).

The RISH results showed that SU(VAR)3-9 functions in the

developing egg chambers (Fig. 2A). Nonetheless, a complete

absence of H3K9me3 signals from the developing egg chambers

was unexpected because none of the H3-K9-specific methyltrans-

ferases, including dsetdb1 and/or dG9a, replaced Su(var)3-9 in the

Su(var)3–917 egg chambers. We found that the ectopically

expressed SU(VAR)3-9-eGFP signals were overlapped with

H3K9me3 and with HP1 (data not shown) signals in developing

egg chambers (Fig. 6B). The expression of Su(var)3-9 transcripts

was identified in the ovary, so it is likely that its translation

products function and behave similarly to the GFP-tagged

SU(VAR)3-9 in the developing egg chambers. These findings

indicate that, during egg chamber growth, SU(VAR)3–9 solely

maintains the H3K9me3 pattern inherited from the germarium,

and that other H3-K9-specific methyltransferases involving

dSETDB1 have nothing to do with this enzymatic process

occurring in the egg chambers.

Discussion

Here, we showed that dSETDB1 is the only HKMTase

responsible for the synthesis of H3K9me3 signals in the inner

germarium where GSCs and their early descendants are found.

When these vasa-positive cells move to region-3 germarium, the

H3-K9 trimethylating task is transferred to a combination of

dSETDB1 and SU(VAR)3–9, as both enzymes act cooperatively

in all other somatic-type cells of the germarium. After the egg

chamber buds off from the germarium, the trimethylation activity

is now entirely the province of SU(VAR)3–9. The results, as

illustrated in Fig. 7, disclose that the developmental program uses

dSETDB1 first and then SU(VAR)3–9 during GSC differentia-

tion, indicating that the two HKMTases perform distinct functions

in these germ cells. The role of dSETDB1 in early GSC

differentiation is presumably to ‘‘pre-mark’’ certain regions of

chromatin, including the pericentric heterochromatin, with

H3K9me3. The biochemical features of these pre-marked regions

might be different from those of regions that are substrates of

SU(VAR)3–9, and the pre-marked regions may be the platform on

which incoming SU(VAR)3–9 further modulates the pre-methyl-

ated chromatin regions in later-developing VASA-positive cells.

The functional significance of trimethylating, or ‘‘priming’’, GSC

chromatins with dSETDB1 is highlighted by the catastrophic

ovarian phenotypes observed in, and the sterility of, the dsetdb1

female homozygote. By contrast, although the egg chambers of the

Su(var)3–917 mutant completely lacked H3K9me3 signals, which

might be expected to result in a phenotype more severe than that

of the dsetdb1 mutant, the Su(var)3–917 mutant is capable of

oogenesis, is able to lay eggs, and is fertile [45].

Meanwhile, the localization of both dSETDB1 and Su(var)3-9

at DAPI-dense heterochromatin does not necessarily mean that

they target the same chromatin loci in early- and late-stage of

oogenesis, respectively. The observation that dSETDB1, but not

Su(VAR)3-9, is essential for Drosophila oogenesis provides a

possibility that the two HKMTases may have different sets of

target chromatin regions during oogenesis. It would be interesting

to examine whether dsetdb1 phenotypes could be rescued or not if

exogenous Su(var)3-9 were expressed at high level in GSCs and

their close derivatives.

In germ cells, dSETDB1 locates at DAPI-dense, pericentric

heterochromatin (Fig. 2). This was unexpected because the

mammalian counterpart, SETDB1/Eset, is known to have

euchromatin-associated function [30]. Seum et al. recently

reported that, in Drosophila polytene chromosomes, dSETDB1

locates at the fourth chromosome [27]. This fourth chromosome is

Figure 6. Lack of H3K9me3 signals in the Su(var)3–917 egg
chambers. (A) H3K9me3 and HP1 expression patterns in wild-type,
dsetdb1G19561 and Su(var)3–917 egg chambers. The H3K9me3 signals
colocalize with HP1 spots in wild-type and dsetdb1G19561 cells, but
neither H3K9me3 nor HP1 signals were detected in the Su(var)3–917 egg
chambers. (B) Ectopic expression of SU(VAR)3-9-eGFP in the ovaries of
transgenic flies, {Gs[ry+,hs(Su(var)3-9 cDNA-EGFP)]} [24], the expression
of which was regulated by a heat-shock promoter. SU(VAR)3-9 signals in
the nuclei of nurse cells and follicle cells co-localize with H3K9me3
signals in the developing egg chambers. Scale bars, 10 mm.
doi:10.1371/journal.pone.0002234.g006

Figure 7. Illustration of differential allocation of dSETDB1 and
SU(VAR)3-9 functions to GSC differentiation. The dSETDB1 (red)
and the SU(VAR)3-9 (blue) proteins function in early and late GSC
differentiation, respectively. The intensity of the color indicates the
relative level of the activity. Both activities co-exist around region-3
germarium (stage-1 egg chamber, purple). Asterisks indicate self-
renewing GSCs. For abbreviations, see the legend for Fig. 3.
doi:10.1371/journal.pone.0002234.g007
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known to be unusual as it has many characteristics of

heterochromatic domains (such as a high-repeat density, no

recombination and late replicating) and, at the same time, it shows

features of euchromatin (such as being transcriptionally active and

having a high gene density) [46]; in fact, many of the genes in the

fourth chromosome are expressed during development [47]. These

characteristics indicate that the banded regions of the fourth

chromosome are different from pericentric heterochromatin,

which highlights the peculiarity of dSETDB1 localization to

DAPI-dense heterochromatin in the germarium.

The location of dSETDB1 at pericentric heterochromatin

probably indicates that dSETDB1 participates, at a global level, in

regulating chromosome organization and maintaining the chro-

mosome integrity in the germ-lineages. This hypothesis is

supported by the observation that the main H3K9me3 spots were

displaced and went astray from DNA-dense heterochromatin

regions in most region-3 cells of the dsetdb1G19561 germarium

(Fig. 5C). In addition, the egg chambers of the dsetdb1G19561

mutant ovary that survived stage six were shown to have

disorganized chromosomes in the nurse cell nuclei (Fig. S4). The

nurse cell chromosomes of the stage-7 egg chambers in both wild-

type and Su(var)3–917 ovaries were organized into bundles with

well-developed, large nucleoli, whereas those in the dsetdb1G19561

ovaries were simply scattered throughout the nucleoplasm without

nucleolar regions; otherwise, all were stained positive in the

TUNEL assay (Fig. 1Cf). HP1 was diffusely located in these nuclei

of dsetdb1G19561 mutant egg chambers but the HP1 mislocalization

is unlikely to be the reason for the scattered chromosomes because

the Su(var)3–917 egg chambers totally lacked HP1 but had

nucleolar regions between bundles of chromosomes (Fig. S4).

These results suggest that dSETDB1 has a role in coordinating the

chromosomal integrity in the germ-cell lineages, and the loss of

dSETDB1 function results in a dysregulation of chromosome

organization.

In the ovary, the main type of methylation catalyzed by

dSETDB1 is H3K9me3, in agreement with the results of a recent

study [28]. In the dsetdb1G19561 germarium, the loss of H3K9me3

was limited to the germ cells in the inner germarium. By contrast,

in the salivary glands, dSETDB1 primarily synthesizes H3K9me2

[26,27] at the fourth chromosome at which dSETDB1 itself

localizes [27] together with POF [26]. Alterations in the

H3K9me3 pattern and intensity were not detected in the polytene

chromosomes in these studies. This means that dsetdb1 synthesizes

either H3K9me2 or H3K9me3, depending on the type of cells in

which it functions. By analogy with mammalian SETDB1/Eset

[30], dSETDB1 can produce in vitro all the methylation types such

as H3K9me1, H3K9me2 and H3K9me3. Under in vivo conditions,

the specificity of SETDB1 activity and the resulting state of

methylation depend on regulatory protein(s) associated with

SETDB1/Eset. This is shown by the observation that a murine

ATFa-associated factor (mAM) tightly associates with SETDB1

and facilitates the SETDB1-dependent conversion of H3K9me2 to

H3K9me3 [38]. Therefore, the proteins that regulate SETDB1

activity determine the H3-K9 methylation state in certain tissue

cells and at particular developmental stages, and this might be true

for dSETDB1 in Drosophila.

Relating to likely dSETDB1-associated protein(s), a clue was

provided by a recent study. A dsetdb1 null mutant, DmSetdb110.1a

[27], dies at the late pupal stage, but it could be rescued to

progress to the adult stage by expression of a truncated

DmSETDB1421–1,261 transgene which was constructed by deleting

the N-terminal 420 amino acids of the full-length dSETDB1. Of

particular interest was the finding that the rescued females are

sterile whereas the males are fertile, which is the same phenotype

as seen with our dsetdb1G19561 mutant. This rescue experiment

indicates that the truncated DmSETDB1421–1,261 is enough for the

null DmSetdb110.1a mutants to survive the pupal stage, but is still

insufficient to overcome the female sterility. This provides

important clues about the tissue and substrate specificity of

dSETDB1. This indicates that the N-terminal region (spanning 1–

420 amino acids) of dSETDB1 is instrumental in female fertility.

This region likely forms a functional domain that provides a

binding site(s) for regulatory protein(s) that positions dSETDB1 at

pericentric heterochromatin in the PGCs and GSC-derived cells

instead of the fourth chromosomes, and preferentially synthesizes

H3K9me3 instead of H3K9me2. Mammalian SETDB1/ESET is

known to associate with several transcriptional regulators such as

the ERG protein [39], mAM [38], KRAB-zinc-finger protein

KAP1 [30,31], and MBD1/MCAF1 [48,49,50]. It would be

interesting to investigate the factor(s) that restricts dSETDB1 to

the germ-cell lineages and favors H3K9me3 over H3K9me2 in the

ovary.

At present, there is no information on SU(VAR)3-9 function

during the Drosophila oogenesis. Because an antibody capable of

immunocytochemically detecting SU(VAR)3-9 protein was

unavailable, we used a transgenic line that expresses GFP-tagged

SU(VAR)3-9 protein as an alternative [24]. It is clear that the

ectopic expression pattern shown by the GFP-tagged SU(VAR)3-

9 does not always reflect the pattern of endogenous SU(VAR)3-9.

Nevertheless, if the SU(VAR)3-9-eGFP were expressed in a cell

with endogenous SU(VAR)3-9, the SU(VAR)3-9-eGFP signals

would be localized to wherever endogenous SU(VAR)3-9 is

located. The results of RISH and RT-PCR analyses showed that

Su(var)3-9 is expressed in the ovarioles including the germarium

and participates in oogenesis (Fig. 2A), and the egg chambers

were shown to lack H3K9me3 in the Su(var)3–917 mutant flies

(Fig. 6A). Therefore, a GFP-tagged SU(VAR)3-9 transgenic fly

was used to determine the location of endogenous SU(VAR)3-9

from the ectopically expressed SU(VAR)3-9-eGFP signals in the

ovarian cells, and the results showed that the SU(VAR)3-9-eGFP

signals were overlapped with H3K9me3/HP1 signals in the egg

chambers, indicating that endogenous SU(VAR)3-9 is responsi-

ble for H3K9me3 signals in developing egg chambers. The

function of SU(VAR)3-9 in the germarium could also be deduced

from the localization of SU(VAR)3-9-eGFP signals. In the inner

germarium SU(VAR)3-9-eGFP signals were less co-localized

with H3K9me3 signals than in the outer germarium (Fig. S2).

Such a positioning of SU(VAR)3-9-eGFP in the germarium is in

agreement with our prediction of endogenous SU(VAR)3-9

function in the outer germarium. Therefore, it is certain that

SU(VAR)3-9 also has a role in the oogenesis. Despite its role as

an influential epigenetic modifier, the SU(VAR)3-9 function

during the oogenesis is likely to be dispensable because Su(var)3-9

null mutant flies are fertile.

HP1 recognizes H3K9me2 and H3K9me3 [15,40,51]. In the

polytene chromosomes of salivary glands, HP1 localizes at the

chromocenter and chromosome 4 [52], which is in agreement with

the pattern of H3K9me2, rather than H3K9me3 that is present at

the core of the chromocenter [53]. Mutations in the dsetdb1 gene

abolish both H3K9me2 and HP1 signals from the fourth

chromosome in the salivary glands [26,27]. By contrast, the

HP1 in the nuclei of both the germarium and the developing egg

chambers mainly associates with H3K9me3 instead of H3K9me2.

The dsetdb1G19561 germarium and the Su(var)3–917 egg chambers

have normal-looking H3K9me2 signals but lack H3K9me3, and

their nuclei also lack HP1 signals (Fig. 4 and 6). These observations

indicate that in some cells and tissues, HP1 binds either H3K9me2

or H3K9me3, and the preferred substrate depends on the
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HKMTase(s) itself that recruits and tethers HP1 to their sites of

action.

In summary, we have demonstrated that dsetdb1 is expressed, in

a germ cell-specific manner, in the germarium; the germline stem

cells and their early descendants reside in the anterior part of the

germarium and both H3K9me3 and HP1 signals are abolished

with mutations in the dsetdb1 gene. In the GSC-derived cells,

dSETDB1 trimethylates H3-K9 residues at pericentric hetero-

chromatin, but this function is performed by SU(VAR)3–9 as

germline cysts differentiate into egg chambers. Loss-of-function

mutation in Su(var)3–9 abolishes both H3K9me3 and HP1 signals

in developing egg chambers. Both dSETDB1 and SU(VAR)3-9

collaborate in the region-3 germarium and a mutation in either of

these genes causes localization of H3K9me3 away from DNA-

dense regions in the region-3 cells. Our findings, therefore,

indicate that dsetdb1 and Su(var)3-9 act sequentially to regulate

chromosome organization in accordance with the differentiation

of the germline-stem cells in Drosophila.

Materials and Methods

Fly stocks and genetics
Flies were cultured and kept at 25uC using standard methods.

Wild-type control, w1118, the deficiency line Df(2R)ED4065

(breakpoints 60C8-60E7), and dG9a13414, were obtained from the

Bloomington Stock Center. The dsetdb1G19561 mutant, which

carries an EP element [33] inserted at a position 60 nucleotides

downstream of the dsetdb1 translation initiation site, was obtained

from GenExel. The dsetdb1G19561 mutant alleles were balanced

over CyO,ActGFP or CyO, to facilitate identification of homozygous

individuals at larval and adult stages, respectively. To generate

detdb1 transgenic flies, a DNA fragment of ca. 2.7 kb, spanning the

IP14531 sequence from 77–2759, and including only the

regulatory domain, was first fused with a DsRed2 sequence and

then cloned into the pUAST vector. Primer set used to amplify the

dsetdb1 region was 59-CTA GAA TTC ATG TCT GGG CAG

CCA ACA GCC C-39 and 59-GAT GGA TCC CGA GGG ATC

AAC GGA GTA CTC GG-39. The resulting pUAST-dsetdb1-

DSET:DsRed2 construct was used for germline-mediated trans-

formation. The strain w2;apXa/CyO;TM3,Sb1 was the precursor of

the double mutant with dsetdb1G19561 and Su(var)3–917. For

Su(var)3-9 expression, adult pP{Gs[ry+,hs(Su(var)3-9 cDNA-EGFP)]}

females were heat shocked for 1 hr at 37uC and examined for GFP

expression 6 hr later.

Antibodies and immunohistochemistry
The antibodies against mono-methyl, di-methyl, and tri-methyl-

H3-K9 (1:200 for immunostaining; 1:2000 for protein blots) were

purchased from Upstate Biotechnology. The anti-HP1 antibody,

C1A9 (1:50 for immunostaining; 1:500 for protein blots), and an

anti-ORB antibody, 4H8, were purchased from the Developmental

Studies Hybridoma Bank, University of Iowa. The anti-b-ACTIN

and monoclonal anti-dimethyl-H3-K9 antibodies were from Abcam.

The anti-histone H3 (1:2000 for protein blots) and anti-VASA (used

at 1:100) antibodies were from Santa Cruz Biotechnology. An anti-

dSETDB1 polyclonal antibody (1:50 for immunostaining; 1:5,000

for protein blots) was raised using a synthetic peptide, N-

YFDGTTCSRGKDKGC-C, as an immunogen. Alexa-488-labeled

dSETDB1 antibody was made using Zenon rabbit IgG labeling kit

(Molecular Probes). Briefly, 2 mg of purified dSETDB1 antibody was

incubated with the Zenon Rabbit IgG labeling reagent for

10 minutes at room temperature, then 5 ml of the Zenon blocking

reagent was mixed to the mixture and incubated for 10 minutes at

room temperature. Fluorescence-conjugated (1:200, Molecular

Probes) or horseradish peroxidase (HRP)-conjugated (1:5000, Santa

Cruz Biotechnology) secondary antibodies were used to visualize

signals. Images were taken using a Carl Zeiss Axiovert 200M

fluorescence microscope equipped with an ApoTome.

TUNEL assay
TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated

dUTP nick end labeling) assay was carried out using the In Situ

Cell Death Detection Kit (Roche). Ovaries were dissected in PBS,

fixed for 20 minutes in 4% formaldehyde and rinsed three times in

PBT (0.1% Tween-20 in PBS). Ovaries were then incubated in

TUNEL reaction mixture (including FITC-conjugated modified

nucleotides and TdT) for 1 hour at 37uC with humidity. The

samples were rinsed in PBT and stained with DAPI. TUNEL

signal was visualized directly under a FITC filter. Images were

taken using a Zeiss AxioVert 200M fluorescence microscopy with

ApoTome.

RT-PCR
Total RNAs from designated tissues or organ were extracted by

TRIZOL (Invitrogen) according to the manufacturer’s instruc-

tions. Two micrograms of total RNAs were used for synthesis of

first-strand cDNA using oligo-d(T) primer and Superscript II

reverse transcriptase (Invitrogen) for 1 hour at 42uC. The dsetdb1

sequence was amplified with dsetdb1 specific primer set, 59-TTT

ACC AGG TGC TCC GAA AGT CT-39 and 59-TCT TCG

ATG AGC TGC AGC TTG TT-39 in a ABI 9700 thermal Cycler

(ABI) in the cycling condition of 95uC for 30 s, 55uC for 30 s, and

72uC for 30 s. For amplifying a 206-bp fragment of rp49 cDNA

sequence, we used primers, 59-AGT CGG ATC GAT ATG CTA

AG-39 and 59-TTC TCT TGA GAA CGC AGG TA-39. 600-bp

and 240-bp fragments of dsetdb1 sequence were individually

amplified using primers, 59-TTC CTG AAA AAG ATG AAA

AGA CCA A-39 and 59- TCT TCG ATG AGC TGC AGC TTG

TT -39, and 59- TTT ACC AGG TGC TCC GAA AGT CT -39

and 59- TCT TCG ATG AGC TGC AGC TTG TT -39,

respectively. For amplification of a 271-bp Su(var)3-9 sequence,

primers 59-CAA GCG GTC GAA AAA TAA CAT GGG-39 and

59-TGC CTC CAG CTG CTT CTC AAG CT-39 were used.

Whole mount mRNA in situ hybridization
For whole mount mRNA in situ hybridization, ovaries obtained

from wild-type females were dissected, fixed in 4% formaldehyde

and 10% DMSO in PBS, and incubated with proteinase K.

Extracted ovaries were prehybridized in hybridization buffer (50%

formamide, 56SSC and 100 mg/ml salmon sperm DNA, 50 mg/

ml heparin and 0.1% Tween-20) and hybridized overnight with

digoxygenin (DIG, Roche) labeled RNA probe at 45uC. After

several rinses with PBT (0.1% Tween-20 in PBS), ovaries were

incubated for 2 hr at room temperature or overnight at 4uC with

AP-conjugated anti-DIG antibody before color visualization using

the NBT/BCIP reaction (Roche). Ovaries were dehydrated in

100% ethanol for at least 10 min, and cleared and mounted in

50% glycerol. Images were taken using an Olympus BX60

microscopy.

DIG-labeled sense and anti-sense RNA probes were made

according to the manufacturer’s instructions. Primer sets for

preparation of dsetdb1 template (spanning IP14531 from 2201–

2896) was 59-TAC ACC AAG GAG ATG GAG TC-39 and 59-

CAG ATT CAG ATG AAC ACC CT-39. For Su(var)3-9

(spanning NM_079633.2 from 633-1184), we used primers, 59-

GCT GCG AGG AAC ATG ATG TGG AC-39 and 59-TAC

AAA TTG GGC CCG CTT GAT TTG-39. For dG9a, a primer

set we used was 59-GAT GGG AAA ACG AAA GCT TTA AAA
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C-39 and 59-TCC CCT AAT GAA TCC TCG CAG GG-39. The PCR

product was cloned into pGEM-T easy vector (Promega). These plasmids were

individually used for preparing sense and antisense RNA probes using the T7

and Sp6 promoters in the vector, respectively.

Supporting Information

Figure S1 H3-K9 methylation patterns in the dG9a13414

germarium. (A) Whole-mount mRNA in situ hybridization using

a RNA probes for dG9a. Arrows indicate the germarium. dG9a

transcripts are abundantly accumulated in the stage-10 egg

chambers but there is no clear evidence of expression at the

germarium and earlier-stage egg chambers. (B) H3K9me2

patterns in the dG9a 13414 germarium. (C) Double-staining for

H3K9me3 and HP1 in the dG9a13414 germarium. There were

no alterations in methylated H3-K9 patterns in the dG9a 13414

germarium. (D) Frequencies of type-1 and type-2 H3K9me3

patterns in stage-1 nurse cells and follicle cells in the region-2b/3

dG9a 13414 germarium (see text for type classification). NC, nurse

cell; FC, follicle cell. Scale bars, 10 mm.

Found at: doi:10.1371/journal.pone.0002234.s001 (10.04 MB

TIF)

Figure S2 Ectopic expression of SU(VAR)3-9-eGFP in the

germarium. GFP expression was examined in the germarium of

SU(VAR)3-9-eGFP-expressing transgenic flies, {Gs[ry+,hs(Su(var)3-

9 cDNA-EGFP)]} [24], in which SU(VAR)3-9 expression was

regulated by a heat-shock promoter. In general, SU(VAR)3-9-

eGFP signals were not localized with H3K9me3 signals in the

germarium. Ectopically expressed SU(VAR)3-9-eGFP signals are

less co-localized with H3K9me3 signals in the anterior part of the

germarium (Cc, cystocytes), where endogenous SU(VAR)3-9 is

assumed to be absent under normal conditions, than in the

posterior part of the germarium. NC, nurse cell; FC, pre-follicle

cell. Scale bars, 10 mm.

Found at: doi:10.1371/journal.pone.0002234.s002 (6.36 MB TIF)

Figure S3 dSETDB1 locates in DAPI-dense nuclear region of

would-be oocytes of the growing egg chambers. (A) Strong

dSETDB1 signals in the would-be oocytes (arrows). dSETDB1

locating at the karyosome of would-be oocyte that is stained for a

marker, ORB, for maturing oocytes. dSETDB1 signals in nuclei of

nurse cells and follicle cells (arrows) of a stage-4 egg chamber. (B)

Exclusion of SU(VAR)3-9-eGFP signal from the karyosome of a

would-be oocyte in an egg chamber. SU(VAR)3-9-eGFP was

ectopically expressed in the egg chamber. dSETDB1, but not the

SU(VAR)3-9-eGFP, localizes to the karyosome. Dashed circle in

(A) indicates the nucleus of a would-be oocyte. Scale bars, 10 mm.

Found at: doi:10.1371/journal.pone.0002234.s003 (4.55 MB TIF)

Figure S4 Disturbed chromosome organization in the nurse-cell

nuclei of dsetdb1G19561 stage-7 egg chamber. Nurse-cell chromo-

somes of the stage-7 egg chambers are organized into bundles with

well-developed, large nucleoli in both wild-type and Su(var)3-917

ovaries. By contrast, chromosomes at the same stage in the

dsetdb1G19561 ovary were distributed throughout the nucleoplasm

and there was not sufficient space for a normal-looking nucleolus

when compared with the wild type ovaries. Note that HP1 was

diffusely localized in these nuclei of dsetdb1G19561 mutant egg

chambers, and absent from the Su(var)3-917 egg chambers.

Found at: doi:10.1371/journal.pone.0002234.s004 (4.00 MB TIF)
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