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Abstract
Acute kidney injury (AKI) occurs in about half of patients in septic shock and the mortality of AKI
with sepsis is extremely high. An effective therapeutic intervention is urgently required. Statins are
HMG-CoA reductase inhibitors that also have pleiotropic actions. They have been reported to
increase survival of septic or infectious patients. But the effect of simvastatin, a widely used statin,
on sepsis-induced AKI is unknown. The effects of simvastatin and TNF-alpha neutralizing antibody
were studied in a clinically relevant model of sepsis-induced AKI using cecal ligation and puncture
(CLP) in elderly mice. Simvastatin siginificantly improved CLP-induced mortality and AKI.
Simvastatin attenuated CLP-induced tubular damage and reversed CLP-induced reduction of
intrarenal microvascular perfusion and renal tubular hypoxia at 24 hours. Simvastatin also restored
towards normal CLP-induced renal vascular protein leak and serum TNF-alpha. Neither delayed
simvastatin therapy nor TNF-alpha neutralizing antibody improved CLP-induced AKI. Simvastatin
improved sepsis-induced AKI by direct effects on the renal vasculature, reversal of tubular hypoxia,
and had a systemic anti-inflammatory effect.

Introduction
Acute kidney injury (AKI) is a common life-threatening disease whose mortality has remained
at about 45% over three decades, despite advances in supportive care. Sepsis is a contributing
factor in about half of patients of severe AKI [1]. Septic shock is the most common contributing
factor to AKI in intensive care unit [2]. AKI occurs in half of septic shock patients whose blood
cultures are positive [3]. The mortality is higher in AKI patients with sepsis (75%) than in those
without sepsis (45%) [4]. AKI independently increases the morbidity and mortality although
other organ failures also contribute [5]. Thus, the strategy of treatment for sepsis-induced AKI
is urgently required. Activated protein C decreases mortality from severe sepsis [6] and
intensive insulin therapy or early goal-directed therapy including early resuscitation is
beneficial in patients with severe sepsis or septic shock [7,8]. However, there are no drugs to
prevent or treat sepsis-induced AKI [9,10].

We have recently developed a clinically relevant sepsis-induced AKI model based on a classic
cecal ligation and puncture (CLP) model of polymicrobial sepsis that can be used to screen
drugs and investigate the pathogenesis of sepsis. CLP differs from endotoxin injection models
because there is bacterial infection that mimics human sepsis [11-13]. Serum creatinine starts
to increase at 12 hours (hrs) but not 6 hrs after CLP, although tubular damage can be detected
at 6 hrs by MRI techniques [14] and renal cyr61 expression, a tubular damage marker [15].
The renal pathophysiology after CLP is currently unknown.
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HMG-CoA reductase inhibitors (statins) such as simvastatin have pleiotropic effects
independent of lipid lowering [16-18]. Statin therapy has clinically beneficial effects on
cardiovascular, cerebrovascular and acute and chronic kidney diseases via diverse effects
[17,19-21]. The protective effects of statins on both human and animal sepsis have been
recently shown. A retrospective study in humans reported that statin therapy reduced both
overall and attributable mortality in patients with bacteremia [22]. A controlled study revealed
that prior statin therapy was associated with a reduction of severe sepsis and intensive care unit
admission [23]. In animals, simvastatin improved survival in a murine CLP model [24,25].
Despite these observations, the possible role of statins on sepsis-induced AKI remains
unknown.

In the present study, we investigated whether simvastatin has an effect on sepsis-induced AKI
and studied its mechanism of action. Specifically, we investigated renal vascular permeability,
microperfusion, tubular hypoxia and histologic damage. Because simvastatin decreased
circulating TNF-alpha during sepsis, treatment with anti TNF-alpha antibody was examined.

Results
Effect of simvastatin on sepsis-induced mortality and acute kidney injury

To determine whether simvastatin had an effect on CLP-induced mortality and renal
dysfunction in aged mice treated with fluid and antibiotics, we measured survival and renal
function. The survival for mice treated with saline was 100% at 24 hrs, 42% at 48 hrs and 26%
at 72 hrs after CLP. The survival for aged mice treated with simvastatin was 95% at 24 hrs,
84% at 48 hrs and 73% at 72 hrs (Fig1). Simvastatin significantly improved survival after CLP.
This survival advantage is consistent with the previous reports [24,25] of the effect of
simvastatin on sepsis in mice. However, previous studies did not evaluate renal function. Serum
creatinine and BUN were significantly increased at 6 hrs after CLP compared to sham and
further worsened at 24 hrs. Prior statin treatment significantly prevented the renal dysfunction
at 24 hrs but not 6 hrs after CLP as detected by BUN and HPLC creatinine (Fig. 2).

The effect of simvastatin on sepsis-induced tubular damage
As reported previously, CLP caused very subtle changes in renal histology consisting of patchy
tubular vacuolization but no thrombosis, tubular necrosis or cast formation [15]. The renal
histology in both of the cortex and the outer stripe of the outer medulla (OSOM) worsened
significantly after CLP (Fig.3). Simvastatin significantly prevented the deterioration of tubular
damage induced by CLP in both the cortex and the OSOM (Fig.3).

The effect of simvastatin on sepsis-induced vascular permeability
Changes in vascular permeability are thought to be important in the pathogenesis of sepsis-
induced organ injury [26]. LPS injection, which is another septic model, increases vascular
permeability in various organs including kidney, lung, liver, and heart [24,27-29]. However,
the renal vascular permeability after CLP is unknown. Therefore, vascular permeability was
assessed by Evans blue dye leakage. Since CLP did not significantly change vascular
permeability at 2 hrs after CLP (data not shown), we evaluated it at 6 hrs and 24 hrs after
surgery. Renal vascular permeability was similar at 6 hrs and 24 hrs in sham mice. CLP
significantly increased renal vascular permeability at 6 hrs and remained high at 24 hrs (Fig.
4). Simvastatin significantly decreased the CLP-induced increase in renal vascular
permeability at 24 hrs but not at 6 hrs after CLP.
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The effect of simvastatin on renal tubular hypoxia
Tissue hypoxia is thought to be a dominant factor in organ dysfunction of sepsis [30]. Therefore,
we assessed renal tubular hypoxia by pimonidazole incorporation, which is considered to react
with cellular proteins at oxygen tensions below 10 mmHg [31]. Pimonidazole incorporation
was detected in the tubules of the cortex and the OSOM but not in the inner stripe of outer
medulla or inner medulla after CLP (Fig. 5). Pimonidazole incorporation was significantly
increased in both the cortex and the OSOM at 24 hrs after CLP (Fig. 5). Simvastatin decreased
pimonidazole incorporation in both the cortex and the OSOM at 24 hrs. These findings suggest
that CLP caused renal hypoxia at 24 hrs and that simvastatin improved renal hypoxia.

The effect of simvastatin on intra-renal microcirculation
Since simvastatin improved CLP-induced renal hypoxia at 24 hrs, we hypothesized that
simvastatin might have a vascular effect during the late phase of CLP. Therefore, we evaluated
perfusion of the renal microcirculation by physiologic infusion of FITC-labeled lectin, which
binds to the capillary endothelium. In sham-surgery animals, peritubular capillaries were
clearly detected in the cortex and in the OSOM. Perfused capillaries were decreased in the
cortex and the OSOM at 24 hrs after CLP (Fig. 6). Simvastatin partially reversed the decrease
in peritubular capillary flow in the cortex and in the OSOM at 24 hrs after CLP (Fig. 6). As a
control for lectin binding, we evaluated FITC-labeled lectin binding to unperfused kidney
sections to confirm the ability of endothelium to bind lectin after CLP. There was no difference
in direct, topically applied lectin staining between CLP and sham sections (data not shown).
Therefore, the changes shown here can be attributed to altered perfusion, and not to changes
in lectin binding.

The effect of short-term administration of simvastatin on serum lipids
CLP did not significantly alter serum cholesterol or triglyceride at 24 hrs when compared to
sham (serum cholesterol; 62±6.2 vs 72±4.9 mg/mL, serum triglyceride; 44±6.0 vs 59.2±8.3
mg/mL). There was no significant difference in serum cholesterol and triglyceride at 24 hrs
between Statin+CLP and CLP groups (serum cholesterol; 62±6.2 vs 55.4±3.9 mg/dL, serum
triglyceride; 44±6.0 vs 40±2.0 mg/dL). CLP significantly increased serum CK at 24 hrs as
previously reported [15] (data not shown); however, simvastatin did not alter serum CK at 24
hrs after CLP surgery (data not shown), which suggests that rhabdomyolysis, a potentially
serious side effect of statin therapy [32], did not occur.

Effect of TNF-alpha neutralizing antibody on sepsis-induced acute kidney injury
TNF-alpha is a prototypical pro-inflammatory cytokine that is elevated in some sepsis models,
and is considered to be one of key mediators in developing AKI in several other renal injury
models [33]. We found that simvastatin inhibited serum TNF-alpha elevation at 24 hrs after
CLP (Fig. 7). We evaluated if simvastatin might improve renal injury via reduction of
circulating TNF-alpha. However, neutralization of TNF-alpha did not significantly reduce
serum BUN and creatinine at 24 hrs after CLP (Fig. 8).

Effect of delayed simvastatin treatment on sepsis-induced acute kidney injury
We also examined delayed administration of simvastatin using two different protocols. 1)
simvastatin administered subcutaneously 40 mg/kg at 6 hrs after CLP did not improve serum
BUN or creatinine (serum BUN; vehicle : 93.0±6.5 vs simvastatin : 102.3±2.7 mg/dL, serum
creatinine; 0.49 ± 0.07 vs 0.69 ± 0.17 mg/dL, N=6 mice per group). 2) 2 doses of simvastatin
administered subcutaneously (40 mg/kg) at 6 and 18 hrs after CLP did not improve serum BUN
or creatinine (serum BUN; 87.2±16.3 vs 89.7±4.7 mg/dL, serum creatinine; 0.39 ± 0.08 vs 0.45
± 0.16 mg/dL, N=6 mice per group).

Yasuda et al. Page 3

Kidney Int. Author manuscript; available in PMC 2008 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
We demonstrated that simvastatin, a widely used lipid-lowering drug, improved sepsis-induced
mortality and AKI. Simvastatin reversed the late renal microvascular injury and microvascular
perfusion defect with corresponding improvement in tissue oxygenation, and reduced a serum
pro-inflammatory cytokine (serum TNF-alpha). These results suggest that simvastatin has both
vascular and anti-inflammatory effects in this model.

Effects of simvastatin in sepsis-induced acute kidney injury
We found that simvastatin significantly improved survival after CLP in mice, which is
consistent with Merx's previous animal studies [24,25]. Two clinical natural history studies
showed that statin usage was associated with reduced mortality from sepsis and/or bacterial
infection [22,23]. We also demonstrated for the first time that simvastatin had a beneficial
effect on sepsis-induced AKI. Pretreatment with Simvastatin improved renal function, as
measured by serum BUN and creatinine (Fig. 2). Miyaji et al. showed that CLP caused subtle
injury to the renal tubules of the cortex and the OSOM [15]. Simvastatin also inhibited the
patchy tubular vacuolar degeneration found after CLP in both the cortex and the OSOM (Fig.
3). Statins have been shown to have beneficial effects in other kidney diseases including
ischemia-reperfusion injury, transplantation and chronic kidney disease [16-18,34,35].
Interestingly, these effects, including an effect on cardiovascular morbidity and mortality, were
independent of lowering serum cholesterol. Although the site of action of simvastatin is
unclear, simvastatin could have direct tubular effects. The mevalonate pathway or cholesterol
synthesis pathways are activated in cortical tubules after sepsis induced by LPS or E. Coli
injection, however, cholesterol accumulation was not reversed by statin therapy [36-38].

Vascular effects
Because of the rather subtle tubular changes in this model, and the known effects of statins on
the vasculature, we focused our remaining studies on the renal vasculature. Renal vascular
permeability measured by Evans blue dye extravasation was increased after CLP, and the late
increase at 24 hrs was reversed by simvastatin (Fig. 4). Changes in vascular permeability are
thought to be important in the pathogenesis of sepsis-induced organ injury [26]. Increased
vascular permeability can cause compression of peritubular capillaries [39],
hemoconcentration [40] and reduced microvascular flow. Indeed, alteration of vascular
permeability is thought to modulate renal function [41] and play an important functional role
in the pathophysiology of ischemic AKI [42,43]. Vascular permeability may be altered by
several multiple factors, including the interaction between activated leukocytes and the
endothelium, endothelial NO synthase (eNOS), vascular endothelial growth factor (VEGF),
angiopoietins, shear stress and matrix metalloproteinases [42,44,45], which might in turn be
therapeutic targets in sepsis. Statins have been shown to protect the endothelium with
preservation of eNOS function and to regulate several mediators associated with vascular
permeability such as VEGF and metalloproteinases [17,34]. Simvastatin enhanced eNOS
expression and improved vascular permeability in lungs subjected to ischemia-reperfusion
injury [46].

Interestingly, in our studies, simvastatin did not improve vascular permeability at 6 hrs,
although vascular permeability was improved at 24 hrs (Fig. 4). The late reversal was quite
unexpected, and suggests that prolonged increases in vascular permeability may contribute to
renal dysfunction as recently proposed in ischemic injury [47].

We next focused on renal microperfusion and hypoxia, two consequences of altered vascular
permeability. We detected decreased renal microvascular perfusion measured by FITC-lectin
infusion (Fig. 6) and renal tubular hypoxia measured by pimonidazole staining (Fig. 5) at 24
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hrs after CLP. Interestingly, both microvascular hypoperfusion and tubular hypoxia were found
in both the cortex and the OSOM at 24 hrs. A similar loss of global tubular function was detected
by dendrimer contrast MRI after CLP [14]. Taken together, our data suggests that increased
microvascular permeability and global worsening of renal microperfusion and tubular hypoxia
might be responsible for developing AKI after CLP since tissue hypoperfusion and hypoxia
are considered to be dominant factors in organ dysfunction of sepsis [30,48]. Also, the global
pattern of tubular and vascular injury differs from ischemia-reperfusion injury, which is limited
to the OSOM [43,49,50]. On the other hand, this reduced renal microvascular perfusion might
contribute to reduced tubular damage in our model because reduced cellular metabolism might
increase cell survival [51].

Another late effect of simvastatin was that it reversed the microperfusion defect and tubular
hypoxia at 24 hrs after CLP (Fig. 5, 6). This reversal might be caused by beneficial
hemodynamic effects and/or local effects on renal tubular or microvasculature. For example,
simvastatin preserved cardiac function and improved hemodynamic stability [24,25] in a CLP
model, although renal end points were not measured. Simvastatin could decrease tubular
oxygen consumption since it has been shown to reduce cardiac oxygen consumption [52,53].
However, that would not easily account for the reversal effect. Statins may also have direct
vascular protective effects via preservation of endothelial function, in part, mediated by eNOS
[54]. It is likely that simvastatin has a direct effect on the vasculature since renal vascular
permeability was restored towards normal after CLP by simvastatin (Fig. 4).

Inflammatory effects
Statins also have anti-inflammatory effects [17,20,21,34]. We found that simvastatin inhibited
serum TNF-alpha elevation at 24 hrs after CLP (Fig. 7). Inhibition of the TNF alpha pathway
reduced kidney injury in LPS model [55,56]. However, Anti-TNF alpha treatment does not
decrease mortality in CLP mice [57,58], and did not improve sepsis-induced AKI in our studies
(Fig. 8). Although anti-TNF-alpha did improve sepsis-induced AKI in a small human study
[59], the role of TNF-alpha in sepsis is still controversial.

Effect of delayed administration of simvastatin on sepsis-induced acute kidney injury
A recent study found that delayed administration of simvastatin starting at 6 hrs improved
mortality in a slightly different CLP model [25]. However, we found that delayed
administration of simvastatin starting at 6 hrs after CLP did not improve renal function. How
to reconcile these observations is not clear. Conceivably, delayed administration of simvastatin
could have a beneficial effect of mortality but not kidney injury. Alternatively, subtle
differences between animal models might be responsible.

Conclusion
We showed that simvastasin improved sepsis-induced mortality and acute kidney injury. The
mechanism of its renal protection may include effects on systemic circulation, direct effects
on the renal vasculature and subsequent reversal of tubular hypoxia and a systemic anti-
inflammatory action. The advantage of simvastatin in clinical settings is that it is clinically
well established and already widely used, has an adequate safety profile in septic patients
[22,23] and is relatively inexpensive. There are clinical situations where preventive therapy
with simvastatin might be useful. For example, one could prophylactically administer
simvastatin to septic patients who have been identified to be at high risk for sepsis-induced
AKI by either clinical characteristics or biomarker findings. Thus, simvastatin may be a
potential preventive intervention for sepsis-induced AKI.
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Methods
Animals

Animal care followed by National Institutes of Health (NIH) criteria for the care and use of
laboratory animals in research (K100-MDB-02). Male (38 to 44 week old) C57BL/6 mice
(NIH, Frederick, MD, USA) had free access to water and chow before and after surgery and
housed individually.

Polymicrobial CLP sepsis-induced acute kidney injury
CLP was performed as previously described with small modifications [15]. Briefly, a 4-0 silk
ligature was placed 15 mm from the cecal tip after laparotomy under isoflurane anesthesia.
The cecum was punctured twice with a 21-gauge needle and gently squeezed to express a small
amount of fecal material, then returned to the central abdominal cavity. In sham-operated
animals, the cecum was located, but neither ligated nor punctured. The abdominal incision was
closed in two layers with 6-0 nylon sutures. After surgery, 1 mL per 25 g body weight of pre-
warmed normal saline was given subcutaneously [13]. All animals received antibiotic and fluid
therapy subcutaneously (imipenem/cilastatin; 14 mg/kg in 1.5 mL of 2/3 saline at 6 hours and
7 mg/kg in 1.5 mL of 2/3 saline at 18 hours after surgery). Twenty-four hours after surgery,
blood was collected from the abdominal aorta for measurement of serum creatinine, BUN and
TNF-alpha. Serum creatinine was measured by HPLC [60]. Serum BUN and TNF-alpha were
measured as previously described [15]. Kidneys were fixed in 10% formalin or snap-frozen in
liquid nitrogen before storage at −80°C until further study.

Treatment of simvastatin and anti-TNF-alpha antibody
Simvastatin (EMD Biosciences, Inc. CA, USA) was prepared by dissolving 10 mg of
simvastatin in 500 μl of ethanol and 0.407 μl of 1N NaOH, incubating at 50°C for 2 h and then
storing at −80°C. The stock solution was diluted with saline at a ratio of 1:20 and adjusted to
pH 7.2 before use. The vehicle solution was prepared in the same way without simvastatin.
For pretreatment studies, mice were given 40mg/kg simvastatin or vehicle solution by oral
gavage for 3 consecutive days before the surgery; Simvastatin was not given after surgery. For
post-treatment studies, mice were given 40mg/kg or vehicle solution subcutaneously once at
6 hrs, or twice at 6 and 18 hrs after surgery.

TNF-alpha neutralizing antibody (R&D Systems, Inc. MN, USA) was administered as a single
i.p. injection at a dose of 800 μg/kg body weight [61] immediately after CLP. Normal mouse
IgG was used as a control.

Survival study
Survival was assessed every 6-12 hrs starting 6 hrs after surgery. Antibiotic injection and fluid
resuscitation were started 6 hrs after surgery by subcutaneous injection, and then repeated every
12 hrs for 4 days.

Renal histology analysis
Tissue was fixed in 10% formalin and embedded in paraffin. 4 μm sections were stained with
periodic acid-Schiff (PAS) reagent. Histologic changes in the cortex and the OSOM were
assessed by quantitative measurements of tissue damage. As tubular damage was mainly
vacuolization, the damage was defined as tubular vacuolar degeneration. The degree of kidney
damage was estimated at 400X magnification using more than 100 randomly selected tubules
for each animal by following the criteria: 0, normal;1, area of damage<25% of tubules; 2,
damage involving 25% to 50% of tubules; 3, damage involving 50% to 75% of tubules; 4, 75%
to 100% of tubules being affected.
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Assessment of renal microvascular protein leak using Evans blue dye
The microvascular leakage of Evans blue dye was assessed as previously [62-64] with slight
modifications. Thirty minutes before sacrifice, mice were injected intravenously with Evans
blue dye (Sigma-Aldrich, MO, USA) 2 mL/kg at 1 % in 0.9 % sodium chloride via a tail vein.
At sacrifice, mice were perfused with PBS through the left ventricle until blood was totally
eliminated. The kidneys were weighed, snap-frozen in liquid nitrogen, and stored at −80°C.
The kidneys were homogenized in 1mL formamide and incubated 55°C for 18 hr. The
supernatant was collected after centrifugation at 10,000Xg for 30 min. The amount of Evans
blue dye in the supernatant was analyzed by measuring absorbance at 620 nm. Results were
calculated from a standard curve of Evans blue dye and expressed as micrograms of Evans
blue dye per gm of kidney (wet weight).

Assessment of renal hypoxia
Renal hypoxia was assessed by pimonidazole immunohistochemistry. Pimonidazole
(Chemicon International, Inc. CA, USA) was administrated intraperitoneally at the dose of 60
mg/kg 2hrs before sacrifice. Kidneys were bisected and immersed, and gently agitated in 10%
formalin at room temperature for 24 hrs, and processed for paraffin embedding. 4μm sections
were processed by the manufacture's procedure. All procedures were conducted at room
temperature. Briefly, the sections were incubated with 0.01% pronase (Biomeda, CA, USA)
for 5 min after deparaffinization and peroxidase quenching. After washing with PBS, the
sections were incubated with 10% normal donkey serum in 1% bovine serum albumin (BSA)
in PBS for 20 min. The sections were sequentially incubated with Hypoxyprobe-1 Mab1 (1:100
dilution with PBS containing 1% BSA) for 2 hrs, biotin-SP-conjugated donkey anti-mouse IgG
(1:1000 dilution, Jackson Immunolaboratory, PA, USA) for 30 min, peroxidase-conjugated
streptavidin for 30 min, 3,3′-diaminobenzaidine (DAB), then counterstatined with
hematoxylin. No staining was detected without Mab1 (not shown). Renal hypoxia was
evaluated by semiquantitative measurements of pimonidazole staining on tubules of the cortex
and the outer stripe of the outer medulla. The degree of pimonidazole staining was estimated
at 400X magnification using more than 5 randomly selected fields for each animal by the
following criteria according to the intensity and the extent of positive cells: 0, no staining; 1,
slight, 2; moderate, 3; severe staining.

Analysis of renal microvasculature by FITC-labeled lectin perfusion
To identify vessels with intact blood flow, the renal vasculature was identified with a lectin
that binds uniformly to the luminal surface of endothelial cells [65-67]. 30μg of FITC-
Lycopersicon Esculentum lectin (Vector Laboratories, CA, USA) was injected via a tail vein
5 min before sacrifice. The vasculature was perfused with PBS via the left ventricle, and the
kidneys were harvested after intracardiac perfusion of PBS and fixed with 2%
paraformaldehyde for 1 hour followed by freezing in OCT compound. 5μm cryosections were
evaluated with a Leica DMRXE fluorescence microscope.

Statistical analysis
Differences between groups were examined for statistical significance by analysis of variance
(ANOVA) with a multiple comparison correction. Comparisons between survival curves were
made using a log-rank test (Prism 4.0, Graphpad Software, Inc., CA, USA). A P value < 0.05
was accepted as statistically significant.
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Figure 1. Effect of simvastatin on survival after CLP
Aged mice were subjected to CLP. Simvastatin (40mg/kg) or vehicle was administered for 3
days before CLP. Open circles indicate CLP group (N=19). Closed circles indicate Statin+CLP
group (N=19). (P < 0.05)
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Figure 2. Effect of simvastatin on renal function following surgery
Mice were treated as in Figure 1. Mice were sacrified at indicated times for measurement of
serum BUN (A) and creatinine by HPLC method (B). Closed circles indicate CLP group. Open
circles indicate Statin+CLP group. Closed squares indicate Sham group. Values are mean ±
SE (N= 6∼16 per group). #, P < 0.05 vs. CLP. ##, P < 0.05 vs. Sham.
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Figure 3. Effect of simvastatin on renal histology
Mice were treated as in Figure 1. Mice were sacrified at 24 hrs after surgery. Histology of
cortex in Sham group (A, D), CLP group (B, E), Statin+CLP group (C, F), Original
magnification: X200 (A, B, C), X400 (D, E, F). (G) The tubular damage score (see Methods
section) was measured in the cortex (left panel) and the outer stripe of the outer medulla
(OSOM) (right panel). Values are mean ± SE (N=6∼16 per group). #, P < 0.05 vs. CLP. ##, P
< 0.05 vs. Sham.
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Figure 4. Effect of simvastatin on renal vascular permeability
Mice were treated as in Figure 1. Mice were sacrified at 24 hrs after surgery. Evans blue dye
(EBD) leakage in kidney tissue (see Methods) was measured at 6 hrs and 24 hrs following
surgery. Values are mean ± SE (N = 4∼6 per group). #, P < 0.05 vs. CLP. ##, P < 0.05 vs.
Sham.
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Figure 5. Effect of simvastatin on pimonidazole incorporation following surgery
Mice were treated as in Figure 1. Mice were sacrified at 24 hrs after surgery. Histology of the
cortex and the OSOM in Sham group (A), CLP group (B), and Statin+CLP group (C). Original
magnification, X200. (D) The hypoxic score (see Methods) was measured in the cortex and
the OSOM. Values are mean ± SE (N=3∼7 per group). #, P < 0.05 vs. CLP. ##, P < 0.05 vs.
Sham.
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Figure 6. Effect of simvastatin on renal microvascular perfusion following surgery
Mice were treated as in Figure 1. Mice were sacrified at 24 hrs after surgery. Histology of
cortex (A, B, C) and OSOM (D, E, F) in Sham group (A, D), CLP group (B, E), Statin+CLP
group (C, F). Original magnification, X400.
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Figure 7. Effect of simvastatin on serum TNF-alpha
Mice were treated as in Figure 1. Mice were sacrified at 24 hrs after surgery. Values are mean
± SE (N= 9 per group). #P < 0.05 vs. CLP.
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Figure 8. Effect of TNF-alpha neutralizing antibody on renal function following CLP surgery
TNF-alpha neutralizing antibody or normal mouse IgG was administered at a dose of 800 ug/
kg BW immediately after CLP. Mice were sacrified at 24 hrs after CLP for measurement of
serum BUN (A) and creatinine by HPLC method (B). Values are mean ± SE (N=5∼16 per
group). #, P < 0.05 vs. sham.
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