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ABSTRACT

Specificity data for groups of transcription factors
(TFs) in a common regulatory network can be used to
computationally identify the location of cis-regula-
tory modules in a genome. The primary limitation for
this type of analysis is the paucity of specificity data
that is available for the majority of TFs. We describe
an omega-based bacterial one-hybrid system that
provides a rapid method for characterizing DNA-
binding specificities on a genome-wide scale. Using
this system, 35 members of the Drosophila melano-
gaster segmentation network have been character-
ized, including representative members of all of the
major classes of DNA-binding domains. A suite of
web-based tools was created that uses this binding
site dataset and phylogenetic comparisons to iden-
tify cis-regulatory modules throughout the fly
genome. These tools allow specificities for any
combination of factors to be used to perform rapid
local or genome-wide searches for cis-regulatory
modules. The utility of these factor specificities and
tools is demonstrated on the well-characterized
segmentation network. By incorporating specificity
data on an additional 66 factors that we have
characterized, our tools utilize »14%of the predicted
factors within the fly genome and provide an
important new community resource for the identifi-
cation of cis-regulatory modules.

INTRODUCTION

The identification of cis-regulatory sequences throughout
the genome and the complementary sequence-specific
trans-acting factors that bind within these modules is an

important step in deciphering the mechanism of spatial
and temporal gene regulation in metazoans. The majority
of sequence-specific transcription factors (TFs) in a
eukaryotic genome can be readily identified by sequence
homology to previously identified families of DNA-
binding domains, where complex organisms usually
contain a higher proportion of TFs (�5–10%) due
to the requirement for more elaborate transcriptional
regulatory networks (1). However, identifying cis-
regulatory modules (CRMs) within a genome is difficult
due to the more dynamic nature of these sequences relative
to coding sequences (2) and the fact that the vast majority
of DNA in higher eukaryotes is noncoding sequence (3).
Biochemical and computational methods for the identi-

fication of CRMs have been developed, yet limitations
remain. Biochemical methods based on ChIP–chip (4–6),
nuclease hypersensitive sites (7,8) and 5C (9,10) allow the
identification of functional elements throughout the
genome. However, these techniques are limited typically to
cell types that can be obtained in sufficient quantities for
each protocol. In addition, identification of genomic binding
sites by ChIP does not reveal whether those sites are
functional; binding sites that are occupied in vivo may not
contribute to organismal fitness, as long as they do not have
negative consequences (6,11). CRMs can be computation-
ally identified by searching for overrepresented clusters of
binding sites within the genome for groups of TFs that
function in a common transcriptional regulatory network
(12–16). The accuracy of these predictions can be improved
by incorporating phylogenetic comparisons between species
separated by moderate evolutionary distances (17,18).
In combination with ChIP experiments, computational
analysis of evolutionary conservation provides an approach
to identify functional TF-binding sites (19).
The prediction of CRMs and their cognate factors

via binding site cluster analysis has been most thoroughly
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studied in the context of the regulatory cascade driving
anterior–posterior (A–P) pattern formation during
embryogenesis in Drosophila melanogaster. A hierarchy
of genes responsible for the systematic subdivision of the
embryo into 14 segments has been defined through
exhaustive genetic studies (20–22). These genes are
expressed in four sequential steps—maternal, gap, pair-
rule and segment polarity—with genes in each tier of the
hierarchy cooperating with the previous group of factors
to coordinate expression of the next set of genes
(Figure 1). This cascade also activates the homeotic
genes in distinct zones that define the initial body plan.
The majority of genes within this regulatory network are
TFs that coordinate patterned expression of the next tier
of genes by binding to clusters of sites within their CRMs;
the unique expression patterns of the activators and
repressors that bind each CRM determine its spatial
activity (23,24). However, even within this carefully
studied network, the location and number of CRMs that
regulate many genes within this segmentation cascade are
unknown. One major obstacle is the limited specificity
data available even for some of the central factors
involved in this process (e.g. Gt and Kni) despite their
identification about 20 years ago (17,25,26). Position
weight matrices (PWMs) for subsets of these TFs have
been utilized to identify new CRMs (12,14,17,26), but a
more complete description of specificities would provide a
powerful tool to predict CRMs in this transcriptional
regulatory network.

The small proportion of TFs with well-characterized
DNA-binding specificities is not limited toD.melanogaster.
This incomplete state of knowledge is representative of the
majority of eukaryotic genomes and reflects the absence of
high-throughput studies of factor specificities. In vitro
methods for characterizing specificity include DNaseI
footprinting (27), SELEX (28–31) and protein-binding
microarrays (32–35). To date, these methods have not been
widely adopted for large-scale analysis of TF specificities.
TF specificities can also be identified as overrepresented
motifswithinDNAsequences identified in genome-wideTF
ChIP datasets (4–6,36). When applied to the comparatively
simple yeast genome, this approach successfully identified
high confidence motifs for 65 of 203 (32%) of its TFs (4).
The inability to determine specificities for the majority
of these factors may reflect the difficulty in identifying
motifs within the larger sequence segments defined by
ChIP experiments and the complications associated
with TFs that bind DNA in complexes with one or more
other TFs.We have previously described a bacterial one-
hybrid (B1H) system for the rapid characterization of
TFs (37,38). This technology has certain attributes
that make it suitable as a platform for the genome-wide
analysis of DNA-binding domain specificities. Selections
are performed in vivo, which precludes the need to purify
any given factor. Moreover, binding sites are isolated
based on their ability to activate a biological response in the
context of competition from a pool of potential sites in the
Escherichia coli genome, which simulates the functional
requirements in a eukaryotic genome. Binding sites for a
factor are isolated in a single round of selection using
standard molecular biology and sequencing technologies
making it accessible tomost laboratories. Here, we describe
substantial improvements to the B1H system that increase
its sensitivity and dynamic range, andmake it amenable for
the high-throughput analysis of sequence-specific TFs
(Figure 2). Using this system, we have determined
specificities for 35 factors that play prominent roles in
earlyA–P patterning. Our dataset dramatically expands the
set of defined specificities for these factors and these motifs
are good predictors of CRMs throughout the genome. To
facilitate utilization of these specificities, we have created a
GBrowse-based visualization tool (39) that allows an end-
user to examine the overrepresentation of binding sites for
any number of individual factors as well as combinations of
these factors throughout the D. melanogaster genome
(biotools.umassmed.edu/genomesurveyor). The genome
browser interface is coupled to a genome-wide search tool
to identify the most significant peaks of binding site
overrepresentation for any combination of factors. Using
the early segmentation network as a test case, we
demonstrate that our dataset and computational tools
can accurately identify known CRMs in this regulatory
network.

We have supplemented our specificity database with
the specificities of an additional 66 factors that were also
characterized using our B1H selection system (Noyes,
et al. manuscript in preparation). The combination of a
large database of factor specificities coupled with web-
based tools for the rapid analysis of any combination of
TFs provides the community with a readily accessible tool

Figure 1. Transcription factors involved in A–P patterning. TFs
involved in A–P patterning function in a hierarchical network to
subdivide the embryo into 14 segments. The early maternal factors are
expressed in broad gradients, with subsequent TF groups expressed in
patterns that are increasingly refined. TFs involved in early segmenta-
tion or expressed in early patterns that were characterized in this study
are grouped according to their initial stage of expression and they are
color-coded to indicate the type of DNA-binding domain [Cys2His2
zinc fingers=blue, homeodomains=green, bHLH=gray, bZip=red,
winged helix=pink, nuclear hormone receptor=orange, POU
motif= light blue, paired motif=yellow, and HMG=lavender.
Runt is black and was characterized as an alpha fusion (37)].
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to discover CRMs genome-wide. The combination of
computational analysis based on conservation of binding
sites for individual factors and experimental techniques
for identifying sites in a single organism (e.g. ChIP–chip)
should allow a comprehensive annotation of the CRMs
throughout the genome and the TFs that function through
these elements.

MATERIALS AND METHODS

Omega-based binding site selection system

The omega-based binding site selection system (Figure 2)
was derived from an alpha-based B1H selection system
(37,38). A detailed description of the construction of the
DrpoZ selection strain, the omega-fusion expression

vectors, the 28-bp and ZF10 randomized libraries and
the binding site selection procedure is presented in the
Supplementary Methods.

Factor information

The amino acid sequence for each factor used and all of
the sequences of the binding sites recovered in the
individual selections are provided in Supplementary
Table 1 with the exception of the majority of the
homeodomain sequences and selected binding sites,
which will be described seperately (Noyes et al. manu-
script in preparation). Sequence logos (40) for each factor
were created by WebLogo (41) using the aligned motifs
defined by MEME (42) identified within the B1H-selected

Figure 2. Overview of the omega-based B1H system. (A) Cartoon depicting recruitment of direct omega fusions (left) and omega–Zif12–HD fusions
(right) to the weak promoter driving the HIS3 and URA3 reporters used in this system. The 28-bp library is positioned 7 bases upstream of the –
35 box allowing the TF to bind to a recognition element up to three turns upstream of the promoter. The ZF10 library has the binding site for Zif12
(TGGGCGG) positioned 21 bases upstream of the promoter and the 10-bp randomized region is located immediately 50 to this site. (B) Overview of
Bait and Prey plasmids used in this system. Bait plasmids are constructed by cloning the TF of interest as a C-terminal fusion to omega (omega-TF
hybrid). Homeodomains are cloned into a modified bait plasmid (pB1H2o2-12) that results in their expression as an omega-ZF12-HD hybrid (Noyes,
et al. manuscript in preparation). (C) Binding site selection procedure. A bait plasmid and the appropriate prey plasmid are transformed into the
selection strain. Transformants are grown on minimal media lacking histidine and challenged with various concentrations of 3-AT. Surviving colonies
represent a complementary interaction between the bait plasmid (TF) and a single member of the prey library. The library region from �20–25
surviving colonies are amplified by colony PCR and sequenced. The resulting sequences are analyzed by MEME (42) to recover the TF’s recognition
motif.
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sequences. PWMs representing the specificities of these
factors are listed in Supplementary Table 2.

Omega-fusion activity assays

The constructs used in the omega-Zif268, omega-Gt, omega-
Prd and omega-Hb activity assays as well as the assay
conditions are described in the Supplementary Methods

Motifcount analysis

First, the ‘expression profile’ of a TF is determined from
available data on the in situ hybridization of the TF’s
mRNA (17,43), which is a real-valued measurement of the
TF’s expression level in each of 100 equally spaced
intervals (‘bins’) along the A–P axis of the Stage 4–6
(blastoderm) embryo. Then calculate the ‘discrete expres-
sion profile’ for a set of 48 CRMs that drive A–P gene
expression in a defined pattern in the blastoderm embryo
(17): for each CRM, determine whether it drives gene
expression in each of the 100 bins along the A–P axis by
imposing a fixed threshold on the real-valued expression
levels. For each CRM, ‘count’ the number of binding sites
for the TF, using its PWM and Stubb (44) as described in
ref. (45). Then for each of the 100 bins along the A–P axis,
collect the set of CRMs that are ‘expressed’ in that bin, and
compute the average of the binding site counts for these
CRMs. This average is the TF’s ‘MOTIFCOUNT’ for that
bin, which is plotted along with the TF’s expression profile
for each bin along the A–P axis.
P-values for this analysis were computed as follows:

(i) For a repressor, regions of influence were chosen
around the boundaries of its domain of expression,
and for each such region of influence the correlation
coefficient between the TF expression profile and
its MOTIFCOUNT was tested by calculating the
Pearson correlation coefficient (�). We tested the
null hypothesis of �=0 (with the alternative
hypothesis �< 0, which represents anticorrelation).

(ii) For an activator, CRMs were classified as either
‘positive’ or ‘negative’ depending on whether the
CRM’s region of expression overlapped predomi-
nantly with the TF’s expression domain, or not.
A two-sample t-test was performed on the
MOTIFCOUNT in these classes of CRMs to test
for a difference of means in these two classes.

Gbrowser-based web tool

Single motif tracks. For each PWM, scan the genome
with a sliding window of 500 bp shifted in 50-bp
increments, and count the number of occurrences of the
PWM in each window, using the Stubb program (44) to
generate the ‘DICT’ score. The resulting profile of DICT
scores is then plotted as a ‘track’ in GBrowse (39). These
tracks are shown for each PWM in D. melanogaster and
D. pseudoobscura in genomic coordinates of the former.
A ‘two-species’ track is also plotted, combining the DICT
scores of homologous windows from the two genomes.
For this, each species’ DICT score is first converted to a
‘z-score’, by subtracting the genome-wide mean and then

dividing by the genome-wide standard deviation, and the
z-scores of the homologous windows are averaged. For
D. melanogaster windows in which the syntenic region
could not be properly defined using the ‘liftover’ tool
(genome.ucsc.edu), the D. melanogaster z-score is halved
to obtain the two-species track.

Motif combination tracks. Any combination of two or
more PWMs can be used to create a ‘motif combination
track’ that is dynamically plotted as follows: For each
500-bp window, the z-score of each PWM’s DICT score is
computed as above, set to zero if it is negative, and an
average over the chosen combination of PWMs is
regarded as the score of this window. The resulting score
profile is plotted as a track. Such tracks may be created
for each of the two genomes separately. A ‘two-species’
motif combination track may also be created by averaging
the scores from homologous windows. The mean and
standard deviation of a combination track is computed
from 1Mbp sequence on either side of the region currently
displayed by the browser. The Genome-wide search tool is
described in the Supplementary Methods.

RESULTS

Development of the omega-based B1H system

Our original B1H system for characterizing DNA-binding
specificity utilized TF fusions to the alpha-subunit of
RNA polymerase (alpha–TF) (37,38). This system con-
tains three components: the alpha–TF expression vector,
a tandem HIS3-URA3 reporter cassette in a low copy
number plasmid (pH3U3) and the selection strain with the
bacterial homologs of the reporter genes inactivated
(DhisB, DpyrF). The HIS3-URA3 reporter cassette is
regulated by a weak promoter and consequently these
genes, which provide a direct method for auxotrophic
selection, are only weakly transcribed. However, when a
functional binding site for the alpha-linked TF is present
upstream of the weak promoter, RNA polymerase can
be actively recruited to stimulate transcription of the
reporter cassette (46). Thus, bacteria harboring a com-
plementary interaction between the TF and reporter
DNA can be selected under appropriate growth condi-
tions, allowing binding sites complementary to a TF to be
isolated from a randomized library introduced into the
reporter vector. Our alpha-based system, while suitable
for characterizing factors such as Cys2His2 zinc finger
proteins, proved ineffective with several additional factors,
including basic helix–loop–helix proteins (bHLH) and
homeodomains (data not shown). The origin of this limit-
ation was unclear, but one potential source was insuffi-
cient sensitivity: alpha is an essential gene, and as such,
alpha–TF fusions are in competition with endogenous
alpha for incorporation into RNA polymerase complexes.

Omega is the only conserved component of bacterial
RNA polymerase (a2bb0o) that is not required for viability
under laboratory growth conditions (47). Hochschild and
Dove (48) demonstrated that artificial interactions
between a sequence-specific TF and the omega-subunit
of RNA polymerase, like interactions with the alpha-
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subunit, could mediate activation of a nearby promoter.
Because Omega is not required for viability, Omega-
fusions have the potential advantage that selections might
be performed in an omega-knockout (DrpoZ) strain,
where omega-fusions could be uniformly incorporated
into RNA polymerase without competition. Under these
conditions, the selection system should be more sensitive
due to the higher cellular concentration of RNAP–TF
complexes, allowing weaker protein–DNA interactions to
be characterized.

To test this hypothesis we knocked-out the rpoZ gene
in our selection strain (Supplementary Figure 1) and
examined the activity of an omega–Zif268 fusion with a
reporter vector containing a Zif268-binding site. The
fusion was expressed using three promoter strengths: a
strong dual promoter (lppC-lacUV5) used for alpha-based
selections, a lacUV5 promoter and a mutant lacUV5
promoter (lacUV5m) (Supplementary Figure 2). Omega–
Zif268 expressed via the weakest (lacUV5m) promoter
displayed robust activity, allowing cells to survive at
higher 3-AT concentrations than was tolerated by the
alpha–Zif268 fusion under optimal expression conditions
(data not shown). Surprisingly, omega–Zif268 constructs
expressed with either the dual promoter or the lacUV5
promoter proved toxic. However, for other factors
(Paired, Hunchback and Giant) higher expression levels
obtained using the stronger promoters were required to
fully activate the reporter system (Supplementary
Figure 3). The difference in promoter strengths used to
drive expression of each factor was reflected in the relative
protein expression levels of each factor within the cell
(Supplementary Figure 4). Thus, the availability of three
different promoter strengths provides flexibility to char-
acterize a wide variety of TFs that may differ in affinity,
specificity and expression level. The omega-based B1H
system is sensitive to changes in the strength of the
interaction between a DNA-binding domain and its target
site. The activity of omega–Zif268 with its consensus
sequence was compared to three different variants of the
binding site that have 4- to 20-fold reduced affinity (49).
A clear correlation is observed between colony size and
number with the quality of the binding site: cells contain-
ing the consensus sequence within the reporter displayed
the highest rates of survival and the largest colonies
relative to the survival rates and colony sizes for other
sites with decreased affinity (Supplementary Figure 5).
Based on these results we expect that the distribution of
sequences that are recovered from a binding site selection
will be a function of the difference in affinity of the protein
for these sites. As a result the recognition motif con-
structed from the selected sites should accurately reflect
the specificity of the factor.

The optimal position of the Zif268-binding site was
determined by examining the activity of reporters harbor-
ing sites positioned in various registers relative to the
promoter (Supplementary Figure 6). Based on this
analysis, a new 28-bp randomized binding site library
was constructed that contains �2� 108 unique clones,
which should encode the majority of possible 12-bp sites
in each frame of the binding site window. The utility of
the 28-bp library in the omega-B1H system was assessed

by determining the DNA-binding specificity of three well-
characterized DNA-binding domains: Zif268, Mig1 and
Rap1. The recognition motif for each factor generated
from the selected sequences matches well with previously
described specificities for these factors (Supplementary
Figure 7). Thus, the omega-based B1H system and the
new 28-bp binding site library can be used to rapidly
determine the DNA-binding specificity of a TF. However,
homeodomains did not yield a recognition motif when
characterized in the standard omega-based B1H system
(data not shown). Consequently a modified version of the
selection system was created for domains that are limited
by either weak specificity or affinity (Figure 2): these
factors are characterized as fusions to fingers 1 and 2
of Zif268 (Zif12) (50) using a modified randomized
binding site library, ‘ZF10’, that is complementary to
the incorporated fingers which will be described separately
(Noyes et al. manuscript in preparation).

Large-scale analysis ofD. melanogaster TFs

To demonstrate that this technology is sufficiently rapid
and simple to perform a comprehensive characterization
of the TFs, we focused on characterizing the majority
of the factors in the early A–P patterning network in
D. melanogaster. This network contains representative
members of a wide variety of DNA-binding domain
families that are present in higher eukaryotes (17).
Included within this set of factors are members of the
five most highly represented DNA-binding domain
families (51): Cys2His2 zinc fingers, homeodomains,
bHLH, bZIP and winged helix as well as other less
well-represented domains (Figure 1). All told, �80% of
the sequence-specific TFs in the fly genome utilize one of
the DNA-binding domains represented in this group (52).
Some of these TFs, such as the gap gene Kruppel (Kr),
have very well-defined genetic roles and DNA-binding
specificities. Others, such as the gap genes Giant (Gt)
and Knirps (Kni) have well-defined genetic roles, but their
specificities are only roughly described by a handful of
binding sites mapped by DNaseI footprinting (27).
Therefore, this set of factors provides an opportunity
not only to supplement and improve the existing
specificity data for this network but also to assess the
ability of our technology to characterize a wide variety of
DNA-binding domain families.
We characterized the specificity of 35 different factors

involved in the A–P pathway, which represent nine
different DNA-binding domain families (Figure 3 and
Supplementary Table 1). The specificity determined for
these factors using the omega-based B1H system is in most
cases consistent with previously determined specificity
data, where available. For example the existing DNase-
based specificities of Bicoid (Bcd), Kr and Tailless (Tll),
which represent three different families of DNA-binding
domains, are quite similar to the specificities obtained
from the B1H system (Figure 4). Moreover, the stringency
of the selection can be varied to recover binding sites
with different ranges in affinity as demonstrated by motifs
generated for Bcd from sites collected at two different
selection stringencies (5 and 10mM 3-AT). Both of these
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motifs display the same core DNA-binding specificity
that is consistent with previously published data (27,53),
but the higher stringency selection yielded a more
constrained motif, due to a greater enrichment of the
highest affinity sites. Thus, where good specificity data
previously exists, there is excellent concordance between
the B1H data and other datasets for these factors.
A number of factors in the dataset lacked quality

recognition motifs. Some of these factors, such as Caudal
(Cad), Gt and Kni, were originally identified and
described �20 years ago, and play critical early roles in
segmentation (25), yet have poorly defined specificity
(Figure 4). For example, our recognition motif for Cad
is similar to, but much better defined than, the specificity
of Cad determined by Dearolf and colleagues (54)
(TTTATG) based on several sites in the ftz zebra stripe
element or than SELEX data available on the chicken
Cad homolog, CdxA (55). The existing DNaseI footprint-
ing data for Cad appears to misrepresent its specificity
in the 30 end of its recognition sequence (27).
Two other notable examples are Gt and Kni. The existing

DNaseI motifs for both of these factors contain only
limited information about their sequence preferences.
By comparison the B1H data for these factors provides
a detailed description of their recognition motifs.
Overall, we successfully determined the specificity of 35
D. melanogaster TFs. PMWs for these factors are listed in
Supplementary Table 2. Only a single factor (Croc)
attempted with this set of factors failed to produce a
recognition motif using the omega-B1H system, resulting
in a 97% success rate (35/36). This flexibility suggests
that the omega-based B1H selection system will be
suitable for the high-throughput characterization of
the majority of sequence-specific TFs present in the
D. melanogaster as well as other eukaryotic genomes.

Assessing the predictive value of the B1H-generated motifs

As an initial assessment of the utility of our binding site
motifs for identifying CRMs, we examined the correla-
tion between the expression profile of each TF and
the occurrence of its binding sites in 48 CRMs from

Figure 3. Specificities of the 35 TF in the A–P regulatory pathway characterized by the omega-B1H system. These TFs are grouped by DNA-binding
domain family and color-coded as described in Figure 1.
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Figure 4. Comparison of B1H-generated recognition motifs to previously published data. (Left panels) The B1H recognition motifs for Bcd, Kr and
Tll are very similar to the motifs generated from DNase footprinting data (FlyREG) (27). In the case of Bcd, the high stringency data (10mM 3-AT)
is most similar to the previously described SELEX data (53), whereas the lower stringency data is more similar to the FlyREG data. (Right panels)
The B1H recognition motifs for Cad, Gt and Kni differ significantly from the FlyREG data. For Cad, the B1H-generated data is similar to SELEX
data on the chicken homolog (55), but provides better definition of the overall sequence preference.
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D. melanogaster that drive patterned gene expression
in the early embryo, using a previously described
method (17). When a TF functions as an activator, one
would expect an overrepresentation of its binding sites in
CRMs that drive gene expression in the same spatial and
temporal domains. Conversely, when a TF functions as
a repressor that defines a spatial boundary for the
expression of a CRM, there should be an anticorrelation
between the expression profile of the TF and of CRMs
that contain its binding sites. We focused on a set of eight
TFs that play prominent roles in early patterning for
which we could compare our characterized recognition
motifs (‘B1H’) with existing motifs previously utilized
for CRM discovery (‘DnaseI’) (17). We used Stubb (44) to
calculate, for each CRM, a score that describes the
number of binding sites for any given TF and their quality
based on its PWM. The A–P axis of the embryo was
divided into 100 different regions and for each such region,
the average of the scores (of a TF) over all of the CRMs
contributing to gene expression in that region was
calculated. This average score, called Motifcount, was
then compared with the expression profile of each TF
(Figure 5). Because local features of each Motifcount plot
can be biased by the score of an individual CRM, which
may or may not be significant, correlations between these
plots were calculated over a sizeable fraction of the
embryo (>15% embryo length). In almost every compar-
ison significant correlations or anticorrelations are
observed between the Motifcount scores for each TF
and their expression profiles along the A–P axis. For some
TFs, such as Bcd and Kr, we find that there are very
similar Motifcount profiles for both the DNaseI and B1H
PWMs, which is consistent with the similarity between
their motifs (Figure 4). Bcd displays a strong correlation
between its Motifcount and expression profile, as would
be anticipated for an activator, whereas Kr displays a
strong anticorrelation between its Motifcount and expres-
sion profile, as would be anticipated for a repressor. For
the majority of these comparisons, the significance of the
observed correlation or anticorrelation is greater for
the B1H PWMs (indicated by the P-value; Figure 5).
The most striking difference is observed for Kni, where the
P-value improves from 0.2 to 10–14. Cad is the one
exception; although the B1H motif is more consistent with
the existing specificity data, the DNaseI recognition motif
displays a somewhat better correlation with the expression
data. The improved correlations observed for most of the
B1H motifs are particularly noteworthy given that the
majority of the DNaseI data is obtained from bindings
sites footprinted within these CRMs.
One additional feature of these plots is of particular

interest. For some of the repressors, e.g. Gt, Hb and Hkb,
there is a strong underrepresentation of binding sites
in CRMs that have overlapping expression profiles.
Selective pressure against the presence of these binding
sites may play an important role in shaping the sequence
composition of the CRM just as there is selective pressure
to maintain binding sites for factors that participate in
gene regulation (56). Overall, these results suggest that
our B1H-generated PWMs have favorable properties
for the prediction of CRMs and are superior to the

previously employed PWMs for CRM discovery (17,26).
A Motifcount analysis on syntenic regions to these CRMs
within the D. pseudoobscura and D. mojanvensis genomes
generates similar plots indicating that our PWMs should
have utility for the prediction of CRMs within related
species (Supplementary Figure 8).

Genome Surveyor: a new tool for identifying CRMs

We developed a new genome analysis tool, Genome
Surveyor, to rapidly search for putative CRMs based
on the presence of overrepresented binding sites for a
combination of TFs. A simple scoring function was
chosen based on its ability to readily identify known
CRMs amongst a large population of random intergenic
sequences (Supplementary Table 3): putative CRMs
are identified by computing the average of the over-
representation score (z-score) for a group of TFs over
500-bp windows tiled across the genome. Using our
PWMs, this scoring function distinguishes CRMs in
our test set with an accuracy that is similar to that of
Stubb (44). Importantly, this scoring function provides
an enormous advantage in speed over Stubb, as the
z-scores for each factor can be calculated once across
the genome and this stored information may then be
used in all combination searches that include a particular
TF. Our method differs from that of ecis-analyst (26)
in that we value each site according to its PWM score,
which allows both strong and weak sites to contribute
to the overall score for each 500-bp window. The
significance of the overall score in each window for each
TF is determined by calculating a z-score, which reflects
how the score in that window compares to the overall
genomic distribution. In contrast, ecis-analyst employs
a user-defined threshold (P-value) to determine if a site
will be scored as present, and if defined as present, all sites
contribute equally to the score.

We developed a flexible user interface that operates
through the GBrowse software package (39) to allow a
user to utilize our scoring function and library of PWMs
to search for CRMs in the D. melanogaster genome
(Figure 6). This interface allows gene-specific browsing
or genome-wide searching for CRMs. For gene-specific
browsing, tracks that indicate the scores for individual
factors, along with their significance values, can
be displayed across a genomic region of interest (up to
500 kb). Combination tracks can also be generated to
identify peaks of binding site overrepresentation for
any collection of factors. For example, in the genomic
region surrounding ‘eve’ the tracks for individual maternal
and gap factors (e.g. Bcd, Hkb, Hb, Kr and Tll) display
small peaks indicating overrepresentation of sites
at various positions, but when certain groups of these
factors are combined, strong peaks of binding site
overrepresentation are evident that correspond to known
‘eve’ pair-rule stripe CRMs (Figure 6). The accuracy of
these CRM predictions can be increased by cross-species
comparisons to identify peaks that are present in the
D. melanogaster genome and in a syntenic region of
the D. pseudoobscura genome (18,26). Using our scoring
function, the identification of CRMs in a population of
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Figure 5. Motifcount plots over 48 CRMs from D. melanogaster that drive early patterned expression. Comparison of the Motifcount plots based on
the DNaseI (17) and B1H PWMs for Bcd, Cad, Hb, Hkb, Gt, Kni, Kr and Tll. In each plot, the red line indicates the TF expression profile over the
embryo length (x-axis, 0=anterior pole; y-axis, arbitrary units). The average number of binding sites for each factor over the CRMs that drive
expression in each region (the Motifcount, see Materials and Methods for calculation) is indicated by a blue line plotted as a function of the z-score,
where 0 is the genome-wide mean (indicated by the magenta line). Solid bars at the top of each graph indicate the window regions over which
correlations between the factor expression profile and the Motifcount profile were calculated with the exception of Bcd and Cad, which were
calculated over the entire region. P-values for strongest correlation/anticorrelation between the TF expression profile and its Motifcount along the
A–P axis are listed to the right of the plots where the bold value indicates the most significant correlation.
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intergenic sequences is improved if scores from two
genomes are combined (Supplementary Table 3). These
comparisons are implemented in Genome Surveyor
by calculating z-scores for each TF within the
D. pseudoobscura genome and mapping the homologous
regions onto the D. melanogaster genome. The Gbrowse
window can be used to display individual and combina-
tion tracks for TFs in the D. pseudoobscura genome as
well as ‘two-species tracks’ that average the z-scores
of each factor or group of factors between the two
genomes (Figure 6). This cross-species analysis over
syntenic windows evaluates the total number of sites

in each window, not the conservation of individual
sites, as individual sites in a CRM may not be conserved
but the entire element should be under stabilizing
selection (56). These features allow a user to define
significant clusters of binding sites for a group of
factors in each genome independently, as well as within
both genomes.

We also created a Genome Search Tool within Genome
Surveyor that allows a user to perform genome-wide
searches for the highest scoring windows using any com-
bination of factors. This page can be accessed via a link
in the Gbrowse webpage wherein users can select the

Figure 6. Genome Surveyor display interface. A 20-kb region surrounding the ‘eve’ locus is displayed. Annotations for the D. melanogaster genome are
shown at the top of the browser window. The predicted transcripts and genes in the D. melanogaster genome are indicated within the genomic region.
Immediately below is a line indicating the regions where a high confidence alignment with the D. pseudoobsura genome has been assembled onto the
melanogaster scaffold. Annotations for identified CRMs [downloaded from REDfly (62)] can also be displayed within this region. The user-configurable
tracks for individual factors or groups of factors are displayed below the annotations. Multiple factor combination tracks can be displayed
simultaneously. These tracks represent the average of the z-scores for each factor plotted over this genomic region for the combination of TFs selected by
the user, where the factors included are indicated above each track (i.e. Kr, Bcd, Hkb, Tll and Hb, which were the anterior factor search set used to
generate the list of hits in Table 1). The numbers in the upper left-hand corner indicate the maximum value (z-scores) for each plot, the estimated
genome-wide mean and the mean+2 SD, respectively. The positions of the genome-wide mean and the mean+2 SD are also indicated on the plot by
horizontal lines of the same color that transect the plot. In this view the two combination tracks (red) for the anterior factor search set are shown across
D. melanogaster genome (mel) and the average over the D. melanogaster and D. pseudoobsura genomes (melpse). Both of these factor combinations
contain a strong peak within the ‘eve’ stripe 1 CRM. Two other Combination tracks for other groups of factors (a different gap set and a pair-rule set)
are also shown. These groups display significant peaks that overlap with other CRMs. Below the five Combination tracks are a number of tracks for
individual factors. These tracks provide a rapid assessment of the individual factors that are potentially contributing to each combination track. For
example, significant peaks for Bcd, Hkb, Kr and Tll all overlap with the stripe 1 CRM (blue box).
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combination of factors that they want to employ in their
search, the number of top hits that they want returned,
and the option to search in the D. melanogaster genome
alone, or in combination with the D. pseudoobscura
genome. To avoid recovering peaks that are primarily
the result of a strong peak for a single factor, an
additional filter can be enabled that requires the combina-
tion peak score to be composed of a certain number
of factors with individual scores above a desired sig-
nificance threshold. Each search returns a table of posi-
tions within the D. melanogaster genome with the highest
average z-scores listed in descending order (Table 1).
The z-scores for each hit are listed in the D. melanogaster
and D. pseudoobscura genomes as well as the combination
score across both genomes. The output also includes
a list of factors that are contributing significantly to the
score within each region, as well as the nearest neighbor-
ing genes and their distances from the center of the
binding site cluster. The location of each hit is linked back
to the Gbrowse tool to enable visualization of the
surrounding genomic region for more detailed inspection
of the contributing factors.

The effectiveness of these tools and database is
evident in the top hits that are returned from a combined
D. melanogaster and D. pseudoobscura genome search
using TFs that are involved in anterior patterning
(Bcd, Hb, Hkb, Kr and Tll; Table 1). This search produces
a remarkable number of strong hits that neighbor genes
with early anterior expression patterns: 13 of the 15 top
hits are in genes that display early anterior expression
and 8 of these 13 are in previously annotated CRMs. The
top hit from this search falls within ‘eve’ stripe 1
(Figure 6). Bcd, Hkb, Kr and Tll all contribute robustly
to the composite peak at this position as is evident from

their individual factor traces, which are all well in excess
of 2 SD above the genomic mean. The next four hits
within this search neighbor genes with gap or pair-rule
patterns of expression (h, odd, ftz and kni; Table 1).
The three hits neighboring the pair-rule genes are all in
known CRMs that control expression of ‘stripe 1’, as
might be anticipated for the anterior TFs set (Supplemen-
tary Figure 9). Performing the search using two genomes
significantly increased the number of top hits near genes
that are involved in early segmentation. A search with
the same set of factors using only the D. melanogaster
genome yielded a subset of the CRMs that were found in
the two-species search (8 of the top 15 hits neighbor genes
that display anterior expression, as opposed to 13 of 15
with the ‘two-species’ scores; Supplementary Table 4).
Thus the dual genome search has enriched the validated
positives recovered by the genomic search consistent with
previous studies that have utilized cross-species compar-
isons in CRM identification (18,26).

DISCUSSION

We have developed an omega-based B1H system
that allows the high-throughput determination of TF
DNA-binding specificities. This system has several advan-
tages over other techniques for characterizing DNA-
binding specificity. First, the use of E. coli as our platform
allows the isolation of TF-binding sites in vivo with a
single round of selection without protein purification.
Because of the extremely high transformation efficiency of
E. coli, randomized binding site libraries with complexity
greater than 108 members can be utilized. With omega–TF
hybrids, the absence of competition from endogenous
omega provides a more sensitive selection system with a
much greater dynamic range than previous systems

Table 1. Top 20 matches in a genome-wide search for sequences with overrepresented binding sites for TFs that regulate anterior gene expression

during early embryogenesis (Bcd, Hb, Hkb, Kr & Tll)

Rank Location Dmel Dpse DmelDpse Motifs Gene Known CRM Expression

1 2R 5498250 5.3 3.59 4.44 bcd, hkb, tll, kr eve eve_stripe1 stripe1
2 3L 8645450 5.65 1.6 3.62 bcd, hkb, tll, kr h h_stripe1 stripe1
3 2L 3611150 2.51 4.22 3.31 bcd, tll kr odd odd_-5 ant+post
4 3R 2694100 3.47 3.07 3.24 bcd, tll, kr ftz ftz_ftzDE Stripe1+5
5 3L 20630500 3.33 2.93 3.13 tll, kr kni kni_KD ant+post
6 X 20534450 3.28 2.98 3.11 hkb, tll, kr run stripes
7 X 9535750 3.35 2.73 3.04 bcd, tll, kr btd btd_Ss-Bg head
8 2L 12682100 3.29 2.66 2.91 hkb, kr, hb pdm2 stripes
9 3R 4527100 2.73 2.96 2.78 kr, hb hb hb_HZ526 post
10 3R 675650 1.81 3.47 2.64 bcd, tll, hb opa stripes
11 2L 12689800 2.85 2.43 2.61 hkb, kr, hb pdm2 stripes
12 2L 3834050 3.22 2.09 2.59 bcd, kr slp2 slp2_-3 ant
13 3R 15955950 2.32 2.99 2.58 bcd, tll
14 X 7500350 3.2 1.89 2.54 tll, kr, hb cut CNS
15 2R 20730400 2.19 3 2.52 bcd Kr Kr_CD1 ant+central
16 X 20462750 2.85 2.38 2.52 tll, kr
17 3L 14138800 2.65 2.33 2.49 bcd, hkb, kr D D_(+5) central
18 2R 20744500 1.99 2.89 2.44 kr, hb Kr stripes
19 2R 5490050 2.25 2.53 2.38 bcd, tll, kr eve eve_stripe2 stripe 2
20 3L 6090300 2.16 2.76 2.37 hkb, tll, kr, hb Ets65A CNS

Genomic sites were ranked based on dual genome z-scores (DmelDpse; where genome-wide mean+2 SD=0.74). TF motifs with significant
individual scores (>mean+2 SD) are shown for each segment. Flanking genes and overlapping CRMs with anterior-posterior specific expression are
shown. Because several of the factors are also expressed during CNS development, two flanking genes with CNS specific expression are also
indicated.
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(37,57). This sensitivity has allowed us to successfully
characterize TFs that failed to generate motifs in the
alpha-based B1H system and make it feasible to consider a
genome-wide analysis of TF specificities.
Using this system we have determined recognition

motifs for 35 factors in the fly segmentation network.
In addition, we have characterized the specificity of
another 66 factors not directly associated with this
network (Noyes et al. manuscript in preparation), which
have been incorporated into our database. Together, these
specificities represent �14% of the predicted D. melano-
gaster TFs (52). For comparison the FlyREG database
contains motifs for 53 TFs constructed from five or more
identified binding sites (27); thus our database nearly
doubles the number of specificities that are available, and
in cases where these databases overlap, our data is
typically of higher quality.
Our data is not a perfect representation of each factor’s

specificity. For example, using our Knirps motif a strong
region of binding site overrepresentation in ‘eve’ stripe
3+7 is identified, but only a weak peak is present in ‘eve’
stripe 4+6 (Figure 6). Both of these enhancers are
regulated by Knirps (58), but while ‘eve’ stripe 3+7 has
been previously demonstrated to have many high-quality
binding sites, the previously predicted binding sites for
Knirps in ‘eve’ stripe 4+6 are many fewer and much
poorer matches to the consensus sequence. In fact,
because the expression profile of ‘eve’ stripe 4+6 overlaps
with the core expression domain of Knirps there will be
selective pressure against high-affinity Knirps sites within
this element. It is likely that our difficulty in identifying the
weak binding sites within this region stems from the
inability of our motif to accurately rank biologically
relevant low-affinity sites. This limitation may result from
the fact that our motifs are generated from a small number
of selected binding sites (20 to 30 on average) and are
typically collected at a single stringency. By sequencing a
large number of selected sequences at multiple stringencies
we should be able to further improve the sensitivity of our
recognition motifs for low-affinity target sites (e.g. Bicoid,
Figure 4).
The rate of successful TF characterization within the

B1H system makes it amenable to perform comprehensive
surveys of TF specificity in complex organisms: once
cloned, 10 or more factors can be analyzed in parallel
in the B1H system in a manner of days. Our current
dataset is focused primarily on monomeric DNA-binding
domains, but also includes examples of homodimers
and heterodimers. This reductionist approach does not
address the potential for sets of factors to cooperatively
recognize motifs that are not a simple composite formed
from their individual motifs, such as the Exd–Hox
combinations (59–61). In cases where this may be a
concern, pairs of factors can be characterized in the B1H
system using expression vectors developed for evaluating
the specificity of heterodimers (37,38).
The Genome Surveyor tool provides a fast, flexible and

accessible platform to use the PWMs generated from
our B1H data to identify CRMs in the fly genome.
Other groups have previously used the D. melanogaster
maternal and gap TFs to demonstrate that known and

novel CRMs could be successfully identified within the
genome based on the presence of clusters of binding
sites for factors that function in a common regulatory
pathway (12,14,17,26). These studies demonstrated that
even relatively crude representations of the DNA-binding
specificity of a TF, typically constructed from DNaseI
footprinting on a limited number of sites (52), could
help identify CRMs and that these predictions could be
improved by using two related fly genomes (18,26). These
computational approaches, as well as an additional
method (16) share the common overall strategy with
Genome Surveyor of identifying clusters of overrepre-
sented binding sites.

A key distinguishing feature of Genome Surveyor
is that it precalculates the quality of each binding site
within each window to generate an overall score, which
is evaluated relative to the genome average to provide
a measure of its significance. The scores of any combina-
tion of factors can then be combined with sufficient speed
to allow genome-wide searches to be performed on a
webserver. Thus, Genome Surveyor, which is integrated
within the GBrowse software interface, provides a part-
icularly powerful platform for gene-specific or genome-
wide searches for CRMs regulated by a user-defined
combination of factors. Genome-wide searches can be
performed with any combination of 101 factors over the
D. melanogaster and D. pseudoobscura genomes and
individual peaks of interest within the genome can then
be examined using the GBrowse tools. Peaks that overlap
with previously identified CRMs can be easily identified
by uploading annotations for these elements from the
REDfly website (redfly.ccr.buffalo.edu) (62). The number
and quality of PWMs available for these searches will
increase with the adoption of new, high-depth sequencing
such as 454 (63,64) and SOLEXA-based sequencing
(65,66) for the analysis of the B1H-selected binding sites.

As the number of factors with high-quality PWMs
increases, it should be feasible to annotate most potential
CRMs using combinations of factors that function
in common regulatory networks. Cooperating TFs could
be identified based on common expression patterns,
phenotypes or physical interactions. Because Genome
Surveyor is built into the GBrowse webtool format (39),
it will also be possible to incorporate other corroborating
datasets into these tools, such as genome-wide ChIP
analysis of TF binding or chromatin structure. The
combination of these experimental and computation
approaches for the identification of CRMs should provide
the most robust method for the functional annotation
of these elements throughout eukaryotic genomes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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