
Cone and rod cells have different target preferences in vitro as
revealed by optical tweezers

Robert J. Clarke,1 Kormákur Högnason,2 Michael Brimacombe,3 Ellen Townes-Anderson1

1Department of Neurology and Neuroscience, New Jersey Medical School, University of Medicine and Dentistry of New Jersey,
Newark, NJ; 2Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of
New Jersey, Newark, NJ;; 3Department of Preventive Medicine and Community Health, New Jersey Medical School, University of
Medicine and Dentistry of New Jersey, Newark, NJ

Purpose: When neural circuits are damaged in adulthood, regenerating and sprouting processes must distinguish
appropriate targets to recreate the normal circuitry. We tested the ability of adult nerve cells to target specific cells in
culture using the retina as a model system.
Methods: Under sterile culture conditions, retinal cells, isolated from tiger salamander retina, were micromanipulated
with optical tweezers to create pairs of first-order photoreceptor cells with second- or third-order retinal neurons. The
development of cell contact and presynaptic varicosities, the direction and amount of neuritic growth, and nerve cell
polarity were assessed after seven days in vitro. Cultures were labeled for rod opsin to distinguish rod from cone cells and
for the alpha subunit of the trimeric G protein Go (Goα) to identify cone-dominated and mixed rod-cone ON bipolar cells.
Results: Quantitative analysis of growth demonstrated that target preferences were cell-specific: Cone cells preferred
second-order bipolar cells, whereas rod cells grew toward third-order neurons, which include amacrine and ganglion cells.
In addition, when rod cells grew toward bipolar cells, they chose an abnormally high number of Goα-positive bipolar
cells. These growth patterns were not affected by tweezers manipulation or the amount of growth. Cell orientation of the
photoreceptor also did not affect preferences: Cells oriented away from dendritic processes could reorient their axonal
pole toward the target cell.
Conclusions: Cone cells preferred normal partners, and rod cells preferred novel partners. These intrinsic preferences
indicate that adult nerve cells can have differing capacities for targeting even if they come from the same cell class. Further,
these differences may help explain the patterns of photoreceptor sprouting seen in retinal degeneration in which rod, but
not cone, cells invade the inner retinal layers where third-order neurons are located.

Subsequent to neuronal determination, the differentiating
nerve cell produces an axon that grows with relative accuracy
to its designated postsynaptic cell. Target selection, which
must occur before synaptogenesis, occurs in several steps,
including defasiculation (for projection neurons), branching
in the target region, finding the correct topographic location,
terminating in the appropriate layer, and connecting with the
appropriate cells within that layer [1]. These carefully
orchestrated activities result in cell-specific patterns of
connectivity.

In regeneration of the central nervous system (CNS),
additional activities by growing processes must occur. Axons
need to overcome mechanisms of inhibition, which are
established after the brain and spinal cord are developed [2,
3]. Once axonal outgrowth is achieved, there must be target
selection by the new processes for functional recovery. Both
regrowth of adult axons and correct targeting depend upon
environmental and intrinsic factors. Not only must external
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cues be present, but the cell must be able to respond to these
cues. Selective axonal targeting by fetal mammalian cells
transplanted into injured adult brain suggests that necessary
environmental cues are present [4]. However, even in the well
known retinotectal pathway of the goldfish, regenerating
axons make many errors in their initial target area selection
[5]. In the lizard, retinal ganglion cells grow to the tectum but
are unable to find correct topographic locations to terminate
[6]. Thus, in repair of injury to the CNS, targeting may not
proceed smoothly even when inhibition of growth has been
overcome.

Many areas of the CNS consist of multiple cell layers,
such as the cortical and cerebellar layers, layers of the spinal
dorsal horn and thalamic nuclei, and retinal layers. Progress
is being made in understanding how neurons target their axons
to specific layers in these structures during development (for
a review, see [7]). However, little is known about targeting to
specific cells and therefore layer-specific recreation of
connectivity in the adult after injury. Some of the lack of
information regarding injury repair in the adult CNS is due to
the absence of model systems where targeting can be
examined at the cellular level. We used a culture system of
adult amphibian retinal cells that can be maintained in defined
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medium and in which functional synapses form [8]. The aim
of the present study was to examine the ability of adult sensory
neurons, the cone and rod photoreceptors, to regenerate
appropriate circuitry by assessing the targeting of
photoreceptor axon outgrowth. The intact retina consists of
three cellular layers separated by two synaptic layers. Cone
and rod photoreceptors synapse with second-order horizontal
and bipolar cells in the outer synaptic layer. The bipolar cells,
in turn, interact with the third-order (amacrine and ganglion)
cells in the inner synaptic layer (Figure 1A, based on Lasansky
[9,10] and Wong-Riley [11]). This structure is consistent
across all vertebrate species. Thus, correct targeting of adult
photoreceptors would result in interactions with second-order
neurons, exclusively.

The issue of targeting in the adult retina takes on
additional significance due to reports of neuritic sprouting by
adult photoreceptors. This growth has been observed in a
variety of human retinal degenerations including retinitis
pigmentosa (RP), age-related macular degeneration, and
retinal detachment (reviewed in [12,13]). In particular, rod,
but not cone, cells grow neurites with presynaptic varicosities
filled with synaptic vesicles into the inner retina, where the
amacrine and ganglion cells are located. In an animal model
of one form of RP, cone cell neuritic growth has been observed
but much of this sprouting remained in the outer retina [14].
The cause of this sprouting and the functional consequences
to the diseased retina are unknown.

In a previous study [15], which examined randomly
plated retinal neurons after two weeks in culture, we
discovered a statistically significant preference for novel
third-order neurons as synaptic contacts of photoreceptor
cells. This study suggested that in the retina, at the level of
cell recognition, correct targeting by photoreceptors did not
occur. However, random platings of cells presented several
technical problems. To insure the formation of cell pairs and
groups, we plated the cultures at relatively high density,
allowing multiple cells to interact with an individual
photoreceptor. The cellular influences on these preferences,
therefore, were probably multivariate, making it difficult to
know which cells or secreted cell products influenced
targeting and contact formation. Additionally, it was not
possible to identify all second- and third-order neurons. This
led to significantly fewer groups with identifiable bipolar
cells. Finally, cone and rod photoreceptors were not analyzed
separately, in part because they were difficult to distinguish
morphologically after two weeks in culture.

We have overcome these issues with the use of optical
tweezers. Optical tweezers work by trapping a cell in a beam
of infrared laser light. We have previously shown that retinal
cells can be manipulated by laser light without toxicity [16].
In the present study, tweezers were used to create pairs of
cells, where both the photoreceptor cell type and the class of
the potential target cell, either a second-order bipolar cell or

a third-order multipolar cell, were identified from the outset
of culture. Micromanipulation by optical tweezers allowed the
maintenance of sterility: because the laser beam goes through
transparent surfaces of the culture dish, cell selection and
placement could be done in an enclosed, sterile environment.
Cultures could be low density because pairings depended on
micromanipulation, not chance association. Additionally,
distances between cells could be standardized because of the
micron-level control of tweezers micromanipulation.

By examining cultures at seven days, we were able to
focus on the question of targeting by regenerative neuritic
growth rather than synaptogenesis. This study confirms and
expands our prior work: cone cells are attracted to their normal
targets, but rod cells are attracted by novel targets, thereby

Figure 1. Movement and culture of cells grouped as pairs with optical
tweezers. A: Schematic organization of the salamander retina based
on Lasansky [9,10] and Wong-Riley [11]. Rod (RC) and cone cells
(CC) connect with second-order neurons, horizontal (HC) and
bipolar cells (BC), which in turn connect with third-order neurons,
amacrine (AC) and ganglion cells (GC). Normal interactions for
photoreceptors, therefore, are exclusively with second-order
neurons. B: Creating cell pairs with laser tweezers. A rod cell on the
poly-HEMA side of the culture dish (upper right, see Methods for
more details) is selected, trapped in the laser beam and transported
to the Sal-1 side where it is placed less than 10 µm away from a
bipolar cell (upper left) to form a pair (lower middle). The bipolar
cell was identified by the presence of a thick Landolt club (lc). The
photoreceptor was identified by the presence of an ellipsoid best seen
in part C (e). C: Analysis of growth. Growth was followed for one
week in culture. Photoreceptor identification, initially made by the
presence of an ellipsoid (e) and cell shape, was confirmed by
immunopositive staining for rod opsin (far right). This rod
photoreceptor is attracted to the bipolar cell. At day 1, a thick lamellar
process forms from the photoreceptor cell, growing toward neurites
emanating from the bipolar Landolt club. By day 7, long neuritic
processes with varicosities (arrows) were present; some processes
were contacting the dendrites of the target cell. Quantitative analysis
of growth in the quadrants toward and away from the target (far right)
verified that, in addition to multiple contacts, there were more
varicosities toward the target. Scale bar equals 20 µm.
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suggesting that the ability to appropriately target cells after
injury is cell-type dependent. In addition, the methodology
describes a unique culture system, where selected cell-cell
interactions can be reliably tested, bringing to fruition the
initial promise of optical tweezers in nerve cell manipulation
[16].

METHODS
Preparation of culture dishes for optical tweezers: Trapping
forces of optical tweezers are generated from the momentum
of light [17,18]. Although these forces easily trap cells in
suspension, they are not able to move cells that adhere to a
surface. In initial experiments to manipulate retinal neurons
with optical tweezers [16], we used a thin layer of Sylgard
(described in the following paragraph) to reduce cell adhesion
to the culture dish. For the current studies, we developed a
new technique to reduce cell adhesion using poly-2-
hydroxyethylmethacrylate (poly-HEMA), a nontoxic
compound with cell repellent properties previously employed
for adhesion studies on endothelial cells [19].

An acid-cleaned #1 glass coverglass (VWR Scientific
Inc., Media, PA) was prepared so that one half was coated first
with 20 mg/ml poly-HEMA (Sigma Chemical Co., St Louis,
MO) in 95% ethanol. Allowing a few drops of poly-HEMA
solution to flow down the surface of the coverglass held at a
steep incline ensured a thin, even coating. After drying in air
in a dust-free environment, the coverglass was glued with
Sylgard 184 (Dow Corning Co., Midland, MI) over a 1 cm
hole that had been drilled in the bottom of a 35 mm culture
dish. A line indicating the edge of the poly-HEMA coating
and two fiducial points to act as reference points for locating
cell position were scratched on the bottom of the dish. The
dishes were sterilized with ultraviolet light overnight. The
other half of the coverglass was made adhesive to salamander
retinal neurons by coating with 0.1 mg/ml sterile goat anti-
mouse IgG antibody (Boehringer Mannheim Corporation,
Indianapolis, IN) and then, after rinsing with sterile Ringer’s,
coating with Sal-1 supernatant containing mouse anti-
salamander antibody raised against retinal cell membranes
(generously provided by Dr. Peter MacLeish, Morehouse
School of Medicine, Atlanta, GA; see MacLeish et al. [20]).
Dishes were incubated at 10 °C overnight. They were then
rinsed with Ringer’s to remove Sal-1 before introduction of
2 ml serum-free salamander medium, which contained
108 mM NaCl, 2.5 mM KCl, 2 mM HEPES, 1 mM
NaHCO3, 0.5 mM NaH2PO4, 1 mM sodium pyruvate, 0.5 mM
MgCl2, 24 mM glucose, 1.8 mM CaCl2, 7% medium 199,
1 mM minimum essential medium (MEM) vitamin mix,
0.1 mM MEM essential amino acids, 0.1 mM MEM
nonessential amino acids, 2 mM glutamine, 2 µg/ml bovine
insulin, 1 µg/ml transferrin, 5 mM taurine, 0.8 µg/ml
thyroxine, 10 µg/ml gentamycin, and 1.0 mg/ml BSA [8,21].
Preparation of cell cultures: Retinal cell cultures were
obtained from light-adapted, adult, aquatic-phase tiger

salamanders (Ambystoma tigrinum), measuring 17–22 cm in
length (Charles Sullivan Inc., Nashville, TN). All protocols
were approved by the Institutional Animal Care and Use
Committee at the University of Medicine and Dentistry of
New Jersey and were in strict accordance with the guidelines
from the National Institutes of Health. The animals were
maintained at 5 °C on a 12 h:12 h light-dark cycle for at least
one week before experimentation. Cultures of retinal cells
were prepared according to procedures described by
Nachman-Clewner and Townes-Anderson [22]. Briefly, the
animals were decapitated and pithed, and the retinas removed
in room light. The retinas were subjected to enzymatic

Figure 2. Normal and novel interactions after laser tweezers
micromanipulation. The left column shows cells immediately after
tweezers placement; the middle column, 3 days in vitro; and the right
column, 7 days in vitro. A: An example of attraction between a rod
cell and a multipolar cell. At 3 days, long filopodial processes
emanating from the rod cell contacted processes of the multipolar
cell. The cells grew toward each other over 7 days in culture creating
a broad intercellular contact. Inset: The photoreceptor identification
as a rod cell was confirmed by immunolabeling with anti-rod opsin.
B: An example of attraction between a cone cell and a bipolar cell.
At 3 days, a neurite bearing a varicosity (arrow) contacted the bipolar
cell. A second varicosity developed by day 7. For cone cells,
quantitative analysis compared the two halves of the cell for growth
since cone cells grew fewer processes than rod cells. Greater numbers
of neurites and varicosities (arrows) on the side facing the bipolar
are indicative of attraction between the cells. C: An example of
repulsion between a cone cell and a multipolar cell. The larger
numbers of neurites and varicosities (arrows) on the opposite side of
the cone with respect to its paired multipolar cell indicate repulsion.
Scale bar equals 20 µm.
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digestion with 14 U/ml papain (Worthington, Freehold, NJ)
in salamander Ringer's solution (85 mM NaCl, 1.5 mM KCl,
25 mM NaHCO3, 0.5 mM CaCl2, 0.5 mM NaH2PO4, 24 mM
glucose, 0.03 mM phenol red, 1.0 mM sodium pyruvate)
containing 2.7 mM DL-cysteine for 45 min at room
temperature (20–22 °C). Retinas were rinsed with Ringer’s
solution and then gently triturated with a 3 mm bore pipette
to yield a cell suspension containing a mixture of
photoreceptors, second- and third-order neurons, as well as
Müller cells.

Laser tweezers manipulation of retinal cells: The optical
tweezers-microtool or laser tweezers used for manipulation
(Cell Robotics Inc., Albuquerque, NM) consisted of a 1 W,
continuous wave diode laser of 980 nm wavelength mounted
on an Axiovert 100 inverted light microscope (Carl Zeiss Inc.,
Thornwood, NY). Laser light was transmitted to the cells via
an objective lens and thus was focused at the same focal plane
as the microscope. A high numerical aperture (N.A. 1.3) 40x
oil immersion plan neofluor objective (Carl Zeiss Inc.) was
used with bright-field optics for optical trapping. Computer
software (Cell Robotics Inc.) controlled laser power and
movement of the motorized stage, stored microscope stage
coordinates, and created macros for cell movement. A culture
dish was placed on the microscope stage and cells were plated
onto both halves of the prepared coverglass and allowed to
settle for approximately 20 min, which is long enough for cells
on the adherent side of the dish to attach to the antibody
substrate.

Freshly isolated cells were identified predominately by
cell shape [15]. Third-order neurons, the multipolar amacrine
and ganglion cells, were identified by the presence of one or
more processes emanating from the cell body. Amacrine and
ganglion cells were not distinguished from each other in this
study; these neurons were classed as multipolar cells. Bipolar
cells in salamander retina have a large primary dendrite known
as a Landolt club from which secondary dendrites emerge.
This feature is characteristic of all bipolar neurons. Horizontal
cells, although identifiable, were not used in this study
because of their low abundance. Photoreceptors were
identified by the presence of the ellipsoid, an accumulation of
mitochondria, in the inner segment. Cone and rod cells were
distinguished from each other by overall shape, hourglass
versus rounded respectively, and for the rod cells, when
retained, the presence of an axonal fiber with synaptic
pedicle(s). For cone cells, there is no axon fiber and all cone
cells, therefore, were assumed to have their presynaptic
terminal, which lies at the nuclear pole.

Cell pairs were created by selecting an isolated second-
order bipolar, or third-order amacrine or ganglion cell on the
Sal-1 adherent side of the dish (Figure 1B). X and y stage
coordinates of a position approximately 10 µm from the
primary dendrites or Landolt club of the selected cell were
marked and saved in the computer. A photoreceptor was then

found on the nonadherent poly-HEMA side of the dish and
optically trapped in the laser tweezers. Only photoreceptors

Figure 3. Analysis of attraction and repulsion between
photoreceptors and their target cells. A: Cell pairs were classed as
either showing attraction, repulsion, or undetermined, which means
showing neither attraction nor repulsion. There were 89 pairs with
cone cells and 114 pairs with rod cells. Cone cells were significantly
more attracted than repulsed by bipolar cells. Rod cells were
significantly more attracted than repulsed by bipolar cells and, when
paired with multipolar cells, were also significantly more attracted
than repulsed by them. Significance (asterisk denotes p<0.05) was
tested with the exact binomial test. B: The net percent of attraction
or repulsion was computed by subtracting the percent of repulsed
pairs from the percent of attracted pairs. Although rods were attracted
to both multipolar and bipolar cells, they were significantly more
attracted to multipolar cells than bipolar cells. Cones, on the other
hand, were more attracted to bipolar than multipolar cells.
Significance (asterisk denotes p<0.05) was determined with the
Pearson χ2 test.
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without outer segments were selected for study. Although
trapping could be achieved over a broad range of power levels,
for our micromanipulations we routinely used the laser at
10%–20%, a setting low enough to avoid trapping debris but
sufficient to transport the cell through the medium. While
holding the photoreceptor cell, we lowered the stage so that
the cell was well above the surface of the culture dish and any
attached neurons. The stage was then moved under computer
control to bring the cell to the previously saved x and y
coordinates. Stage movement was set at 8–20 µm/s. Finally,
the stage was raised to bring the trapped photoreceptor to the
surface of the dish. The cell was placed within 2–10 µm of the
selected cell’s processes where it was allowed to adhere to the
Sal-1 substrate. Digitized images of both cells in the pair
before and after pair formation with the laser tweezers were
obtained with a black and white CCD camera (Sony
Corporation, Tokyo, Japan) mounted on the microscope. The
cell pairs were maintained in a humidified chamber at 10 °C
in the dark for seven days. Each newly formed pair was daily
monitored for growth. On the seventh day, cultures were fixed
for immunocytochemistry for further identification.
Immunocytochemistry: Rod and cone cell identification was
confirmed by the presence and absence, respectively, of rod
opsin immunostaining using the monoclonal antibody 4D2
[23] (a gift of Dr. Robert Molday, University of British
Columbia, Vancouver, Canada). This antibody recognizes the
opsin in red (M) rod cells, which comprise 98% of all
salamander rod cells [24]. A mouse monoclonal antibody
against the alpha subunit of the trimeric G protein Go (Goα;
MAB #3073, Chemicon International, Temecula, CA) was
used to stain ON bipolar cells [25]. Both antibodies have been
previously characterized in salamander retina [21,26]. Cells
were fixed with 4% paraformaldehyde in 0.125 M phosphate
buffer, pH 7.4, for 24 h at 4 °C. Procedures for
immunocytochemistry have been previously reported [21].
Briefly, cells were washed with PBS (450 mM NaCl, 20 mM
sodium phosphate buffer, pH 7.4), then incubated in goat
serum dilution buffer (GSDB; 16% normal goat serum,
450 mM NaCl, 0.1% Triton X-100, 20 mM phosphate buffer,
pH 7.4) to block nonspecific binding and permeabilize the
plasma membrane. The cells were then incubated with the
primary antibody (4D2 1:25, Goα 1:1000 dissolved in GSDB)
and maintained at 4 °C overnight. For negative controls, no
primary antibodies were added to the GSDB at this step. Cells
were rinsed with wash buffer (450 mM NaCl, 0.3% Triton
X-100, and 20 mM phosphate buffer) followed by a rinse with
PBS. Then the cells were incubated with Triton-free GSDB
for 1 h at room temperature followed by incubation with Alexa
594-conjugated goat anti-mouse IgG (1:35, Molecular Probes,
Eugene, OR) secondary antibody in Triton-free GSDB for 60
min at room temperature in the dark. Cells were washed with
PBS followed by a final rinse with 5 mM phosphate buffer,
pH 7.4, and mounted in antifade medium consisting of 90%

glycerol, 10% PBS, and 2.5% (w/v) 1,4-diazobicyclo-2,2,2-
octane.

Analysis of photoreceptor cell growth: Analysis was
performed on the digitized images of cone and rod cells taken
using conventional phase-contrast and fluorescence
microscopy, respectively. Because of the larger numbers and
finer processes of rods, it proved easier to carry out
measurements on the immunostained cells. Any outgrowth
extending >5 µm from the soma or from lamellipodial-like
processes extending from the soma was considered to be a
primary process. Formation of a varicosity along a primary
process demonstrated differentiation into a neuritic process.
These varicosities are known to be filled with synaptic
vesicles capable of recycling in response to depolarization
[21]. For quantification, a varicosity was defined as a swelling
along a neuritic process with a diameter >1µm [21]. Distance
between cells after plating and again after seven days in vitro
was examined along the axis connecting the nuclei.
Measurements were made double blind using Image-Pro Plus
v4.1 (Media Cybernetics, Silver Spring, MD).

To determine attraction and repulsion, we drew a straight
line, connecting the centers of both cells in a pair. Cell center
was determined by averaging the x and y axes. Cones were
then divided into halves by drawing a single line through the
cell’s center that intersected the first line at right angles.
Because rod cells have many more processes [27], they were
divided into equal-sized quadrants by superimposing a cross
consisting of two lines each subtending 45 degrees with
respect to the line joining the cells’ centers and intersecting at
the photoreceptor cell center (see Figure 1C). Measurements
of cell growth were made within the half (cones) or quadrant
(rods) facing toward the target cell and away from the target
cell and then compared. Whether a photoreceptor was
attracted or repelled by the target cell was determined by (a)
examining for cell contacts, (b) calculating the difference
between the number of presynaptic varicosities formed by the
photoreceptor in the direction toward and away from the target
neuron, (c) calculating the difference between the number of
primary neurites and the total neurite length toward or away
from the target, and (d) examining for reduction or expansion
of the distance between the photoreceptor and paired second-
or third-order cell bodies. The formation of contact and the
location of varicosities were of primary importance in
determining attraction; thus, growth that resulted in broad
contact between the photoreceptor and target cell somas was
considered attraction. If there was no contact or no
development of varicosities then process number and length
toward and away from the target cell and changes in the
distance between cells were the parameters used. Contacting
processes were not included in this measure to avoid
redundancy and because their growth potential was naturally
limited by the contact. A minimum of two of the four types of
measurements had to demonstrate differences to consider that
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attraction or inhibition had occurred. If quantification of
growth did not reveal clear attraction or inhibition, the
photoreceptor response to the target neuron was considered
undetermined.

Analysis of photoreceptor orientation: After placement,
micromanipulated photoreceptors were at different
orientations with respect to the target cell. Cell polarity for
photoreceptors was determined by the position of the nucleus
and the ellipsoid, the accumulation of mitochondria in the

Figure 4. Photoreceptors paired with bipolar cells, analyzed for ON and OFF subtype. A: Schematic diagram of the types of bipolar cells and
their inputs in salamander retina (based on [26,30,31]). ON bipolar cells with cone input stain positive for Goα (red). All cone cells contact
Goα-positive bipolar cells. In contrast, for rod cells, only 30% contact Goα-positive cells. Thus, some of the ON bipolars contacted by rod
cells are not Goα-positive. Both cone and rod cells also contact OFF bipolar cells. B-G: Detection of Goα-positive bipolar cells: B: A pair
consisting of a rod and a bipolar cell was classified as undetermined after 7 days in culture, i.e., the photoreceptor did not show more growth
either toward or away from the target bipolar cell. C: The rod cell stained immunopositive for rod opsin confirming its identification as a rod
cell. D: The same pair, after staining for Goα, showed that the bipolar cell stained immunopositive for Goα. Goα immunolabel is present along
the cytoplasmic surface of the plasma membrane in all parts of the cell as has been described for salamander bipolar cells [26]. E: A pair
consisting of a cone cell and a bipolar cell was classified as attractive after 7 days in culture. The attraction was evident due to more neuritic
growth toward than away from the target. F: After staining for rod opsin, the cone was immunonegative confirming its identification. G: After
Goα staining, the bipolar cell was immunopositive whereas the cone cell retained only background staining. Scale bar equals 20 µm. H:
Goα-positive and -negative bipolar cells were distinguished in pairs made with cones (n=49) and rods (n=64) for the attracted, repulsed and
undetermined categories (see I for the actual numbers in each group). Cone and rod cells were both attracted to and repulsed by Goα-positive
bipolar cells. However, for both cone and rod cells, Goα-positive bipolar cells were significantly more attractive than repulsive (p<0.03 and
p<0.02, respectively). I: In vivo about 30% of rod cells contact Goα-positive bipolar cells [26]. In cultured pairs, the number of rod cells that
were attracted to Goα-positive bipolar cells was significantly higher than expected: about 82% (14 of 17 cells) of Goα-positive cells were
attractive to rod cells (p=0.001, tested with the exact binomial test). Pairs classified as undetermined were not included in the analysis. The
proportion of Goα-positive bipolar cells of the total bipolar cell population is 41% in vivo. The proportion of Goα-positive to Goα-negative
cells presented to rod cells was similar, 38% (24/64) but for cone cells it was 63% (31/49). See text for discussion.

Molecular Vision 2008; 14:706-720 <http://www.molvis.org/molvis/v14/a84> © 2008 Molecular Vision

711

http://www.molvis.org/molvis/v14/a84


inner segment. Cell orientations were subdivided into three
groups: 0 degrees (photoreceptor faced the target with its
nuclear pole; the nuclear pole comprised the surface of the cell
within 45 degrees either side of the center of the nucleus); 180
degrees (photoreceptor faced the target with its ellipsoid pole,
defined as the surface of the cell 45 degrees either side of the
center of the ellipsoid); and 90 degrees (cell was sideways).
Changes in cell polarity were determined for each cell pair by
comparing the orientation at day 1 with that at day 7.
Statistical analysis: Graphs were created using SigmaPlot v.
5.0 (Systat Software Inc., Chicago, IL). For percentage
comparisons among groups exact binomial or χ2 analysis was
employed using SAS version 8.0 (SAS Institute Inc., Cary,
NC) software. Statistical comparisons of continuous measures
between two groups used the Student's t-test if normality and
equal variance tests were not rejected. Otherwise, the
nonparametric Mann–Whitney rank sum test was used with
SigmaStat v.2.0 (Systat Software Inc.). The data were
expressed as mean ± standard error of the mean.

RESULTS
Interaction between photoreceptors and second- or third-
order neurons: To examine the effect of cell type on
photoreceptor targeting, we created pairs of rod-bipolar
(second-order), rod-multipolar (third-order), cone-bipolar,
and cone-multipolar cells. Optical tweezing was done within

hours after retinal dissociation and cell plating and thus before
any modification in cell shape. Although the neurons
sustained some loss of cell processes during isolation, cell
types remained distinct. Only cells positively identified were
used to create cell pairs (see Methods). Cell identification was
augmented by immunocytochemistry: anti-rod opsin
immunolabeling distinguished rod from cone cells; anti-Goα
antibody labeled most ON bipolar cells.

In culture, photoreceptors initially create actin-filled
filopodia, which emanate from all points on the cell’s
circumference [21]. Lamellipodia appear as well, frequently
formed from existing synaptic pedicles [22]. Actin- and
tubulin-filled neuritic processes develop from filopodia or
regions of lamellipodia. Neurites subsequently develop
synaptic-filled varicosities at their tips or along their length;
varicosity-bearing processes can grow from any point along
the cell soma [15,21]. Although the processes extend and
retract, their growth is not controlled by typical growth cones,
as would appear on projection neurons. The neurites extend a
maximum of approximately 50 µm, which is two to three
times cell soma diameter. Thus placing the photoreceptors
within 2–10 µm of a target cell insured that the targets were
well within their growth range. Cell pairs were followed for a
week, a period of vigorous photoreceptor process growth but
before functional synaptic development [8]. During this time
photoreceptors grew neuritic processes, developed

Figure 5. Varicosity development
changes depending on cell pair
interactions. A: For cones (n=105) and
rods (n=133), the total number of
varicosities did not depend on whether
there was attraction or repulsion to the
paired cell. The trend toward more
varicosities in cells attracted to their
target was not significant. B: However,
the number of varicosities formed by
photoreceptors was increased if contact
with the target cell was present in one-
week cultures (asterisk denotes p<0.05,
tested with the Mann–Whitney test).
C: Looking at the cone and rod cells
separately, the average number of
varicosities made by cone cells was
significantly increased if contact was
made with the target cell (asterisk
denotes p<0.05, Mann–Whitney test;
the n’s are the same as above). D: For
rod cells, but not cones, the number of
varicosities was significantly increased
with contact when only those cells that
made varicosities were analyzed
(asterisk denotes p<0.05, Mann–
Whitney test). Sixty-two of 105 cone
cells had varicosities; 95 of 133 rod cells
had varicosities.
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presynaptic varicosities, and in some cases formed cell
contacts (Figure 1C), consistent with our previous studies
[15]. Control pairs, created without micromanipulation and
consisting of photoreceptors next to a second- or a third-order
neuron, were identified in the same cultures used for tweezers
micromanipulation.

Attraction or inhibition between cells can be initiated as
well as maintained by secreted factors. To reduce the effects
of extraneous soluble factors, we plated cultures at low density
(range 16.3–343 cells/mm2, mean 90.6 cells/mm2) so that pairs
were at least 100 µm away from other neurons. We discarded
any pair in which a third neuron came in contact with one of
the members. However, we made no attempt to limit diffusion
from the target cells over the seven-day period and thereby
enhance possible gradients of guidance factors [28,29]. Thus,
with a prolonged period for diffusion of potential guidance
factors, an all-or-nothing effect on the direction of
photoreceptor growth was not anticipated.

The photoreceptors were analyzed by examining for cell
contacts, and by quantifying changes in the number of
presynaptic varicosities that formed toward or away from the
partner, the number and total length of processes which grew
toward or away from the potential postsynaptic partner, and
the distance between cells over time. Although adult retinal
neurons do not migrate in culture, in some cases of attraction,
cells appeared to move together due to asymmetric expansion
of the cell soma so that there was broad contact between cell
bodies (Figure 2A). Based on these measures, a photoreceptor
cell was classified as attracted to (Figures 1C, Figure 2A,B)
or repulsed by (Figures 2C) its partner or undetermined. The
undetermined category contained (1) photoreceptor cells that
had neutral growth, i.e., equal amount of growth in all
directions; (2) cells that had equal growth both toward and
away from the target, i.e., cells that may have sensed multiple
attractive or inhibitory molecules or may have been paired
with a target cell which released weak or mixed signals; and
(3) cells that responded poorly, i.e., cells that had little growth,
making it difficult to assess growth patterns. We know from
experience that about 1%–5% of the photoreceptors will not
grow well in culture. We analyzed 203 pairs from 86 cultures
derived from 55 animals.

Observation of the pairs throughout the seven days in
vitro showed that retraction of neurites after process
outgrowth was rare, suggesting that intercellular effects were
relatively stable over time. Cone cells grew an average of
6.4±0.3 processes per cell and formed on average 1.4±0.1
presynaptic varicosities. From analysis of growth patterns,
cone cells were found to be attracted to and repulsed by both
bipolar and multipolar cells but in distinctly different
proportions (Figure 3A). In cone-bipolar cell pairs (n=55),
53% showed attraction and 27% showed repulsion with the
remaining pairs classed as undetermined; cones, therefore,
showed an overall attraction to appropriate second-order

targets. For pairs with third-order cells (n=43), 38% showed
attraction and 56% showed repulsion, with 11%
undetermined, suggesting a repulsion of cone cells to
inappropriate multipolar targets. Rod cells grew an average of
35.3±1.5 processes and formed 5.8±0.6 varicosities per cell.
For rod cells (Figure 3A), 52% were attracted and 28% were
repulsed by their bipolar partner (n=74); like cone cells, rod
cells showed an attraction to normal second-order targets.
However, 65% of rod cells were attracted but only 10% were
repulsed by multipolar partners (n=40), indicating an
additional attraction to novel third-order cells. Of the pairs
between rod and multipolar neurons showing attraction, 25%
had formed broad cell-to-cell contact compared to 13% of
attracted cone-multipolar cell pairs. This broad cell-cell
contact was not due to fortuitous close pairing of cells: there
was no statistical difference at day of plating in the
intercellular distance between cells that subsequently showed
attraction compared to those that subsequently showed
repulsion. Moreover, pairs with broad contact were observed
equally often in rod-bipolar and cone-bipolar cells (28% and
29% of attracted cell pairs, respectively), indicating that cone
cells had the ability to make broad cell contacts. Attraction to
multipolar cells by rod cells appeared to be strong both on the
basis of the number of pairs showing attraction and the number
of attracted pairs showing broad cell-cell contact. With chi-
square analysis, the attraction of rod cells to multipolar cells
was significantly greater than rod cells to bipolar cells
(p=0.027, Figure 3B). Thus, there was an obvious difference
in the effect of multipolar cells on growth and varicosity
formation of cone and rod cells. This comparison between
photoreceptor cell types is particularly striking when looking
at the net effects of partners (% attraction minus % repulsion;
see Figure 3B).

Interactions between photoreceptors and bipolar cell
subtypes: We speculated that although layer-specific markers
associated with specific cell classes may determine targeting,
cell subtypes may also influence the outcome of cell class
pairings. To investigate the effects of cell subtype, we chose
to examine photoreceptor-bipolar interactions because these
second-order neurons are divided into two basic categories:
ON and OFF cells. This division depends on the response to
light: ON cells are active in the light; OFF cells are active in
the dark. The functional differences are due in part to the
differential presence of metabotropic and ionotropic
glutamate receptors on ON and OFF cells respectively. In
adult tiger salamander, ON and OFF cells are approximately
equal in number [30]. Since, for both cone and rod cells, about
half the bipolar cells were attractive targets, it is possible that
either the ON or the OFF cells were the preferred target cell
subtype within the bipolar cell class.

The same cultures as described were reexamined for
bipolar subtype interaction by immunolabeling. In
salamander retina, ON bipolar cells have either predominantly
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cone input, more equally mixed rod and cone input, or
predominantly rod input [31] (Figure 4A). The presence of a
unique receptor-associated G protein, Go, allowed us to
positively distinguish most ON subtype cells. Staining for the
alpha subunit of Go protein (Goα) is present in cone-
dominated bipolars and mixed rod-cone bipolars, together
comprising about 41% of all bipolar cells [26] (Figure 4A).
The other 59% of bipolar cells, which are not immunoreactive
for Goα, consists of the rod-dominated ON bipolars and all
OFF cells. After fixation, cultures, which had been
immunostained for rod opsin to distinguish rod from cone
cells, were restained for Goα to distinguish ON and OFF
bipolar cells (Figure 4B-G). There were 113 photoreceptor-

Figure 6. Photoreceptors change orientation to their target depending
on whether there is attraction or repulsion. A: The axonal or nuclear
pole of the cell was designated to be 0 degrees. Here a rod
photoreceptor, repelled by its target cell, rotated over time so that the
nuclear pole faced away from the target cell by seven days in culture.
B: In this pair, a cone cell was plated at an orientation so that the
nuclear pole was approximately 135 degrees away from the target
cell. Over time, the cell rotated to bring the nuclear pole within about
45 degrees of the target cell. The cone was attracted to its target cell.
Scale bar equals 20 µm. C: The difference between the percent which
rotated toward and the percent which rotated away from their target
cells was calculated for attracted (n=77) and repulsed pairs (n=51)
to give the net percent of cells that rotated toward or away from their
target cell. There was a significant association between attraction and
repulsion and change in orientation of the cell (p=0.01) using χ2

analysis.

bipolar pairs. For each category, attraction, repulsion, and
undetermined, the number of Goα-positive and -negative cells
were counted. Both Goα-positive and -negative bipolar cells
were present in each category; however, Goα-positive cells
were more attractive than repulsive (Figure 4H). For cones,
58% of Goα-positive cells were attractive, 29% were
undetermined, and 13% were repulsive. For rod cells, 58% of
Goα-positive cells were attractive, 23% were undetermined,
and 19% were repulsive. χ2 analysis confirmed that cone and
rod cells were more attracted than repulsed by Goα-positive
cells (p<0.03 and p<0.02 respectively). In contrast, Goα-
negative cells were approximately equally attractive and
repulsive for both cone and rod cells (for cone cells, 44%
versus 39%; for rod cells, 45% versus 35%). The data suggest
a dependence upon bipolar cell subtype in neurite targeting,
with the ON bipolar subtype providing a significantly
attractive target for growth arising from both cone and rod
cells. Thus, cell subtypes were not equally involved in
targeting.

The number of Goα-positive cells present in the cone-
bipolar cell pairs was greater than in the rod-bipolar cell pairs
(Figure 4I). To ensure that the numbers of Goα-positive versus
Goα-negative bipolar cells used as target cells did not skew
the results, we examined the pool of bipolars presented to cone
and rod cells. Based on staining in the intact retina, the ratio
of Goα-positive:negative cells should be approximately 41%:
59%. Unexpectedly, the pool of bipolar cells paired with cone
cells contained 31 Goα-positive and 18 Goα-negative cells
(Figure 4I), indicating that the Goα-positive cells were
significantly more than 41% of the total pool (p<0.05). This
is in contrast to the pool of cells paired with rod cells. For pairs
between rod and bipolar cells there were 24 Goα-positive and
40 Goα-negative cells–close to the 41%:59% of Goα-
positive:negative cells present in the intact retina. It is possible
that cone cells caused Goα-negative cells to die; however,
there were not adequate numbers of dying bipolar cells in all
the created cone-bipolar cell pairs to account for the
disproportionately large number of Goα-positive cells.
Alternatively, cone cells may have stimulated or maintained
an upregulation of Goα in bipolar cells.

For rod cells, even though less than 40% of the bipolar
cell targets were Goα-positive, bipolar cells expressing Goα
were more attractive than repulsive. The attraction of rod cells
to Goα-positive cells is surprising when one considers the
connectivity in the outer plexiform layer of the salamander
retina. In salamander retina, all cone cells but only about 30%
of rod cells (range 25%–35%) contact Goα-containing cells
[26]. This circuitry would suggest that Goα-containing
bipolars would have limited attraction for rod cells. Instead,
rod cells in vitro were attracted to, instead of repulsed by,
Goα -containing cells by almost 5:1 (14 attracted: 3 repulsed
Goα-positive cells; Figure 4I). Thus, significantly more rod
cells than expected (p=0.001) were attracted to Goα-
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containing cells. Further, it suggests that some rods were
contacting novel cell subtypes.
Effects of cell target on photoreceptor growth: The
preferences demonstrated in culture may be influenced by
general stimulation or inhibition of photoreceptor growth by
potential postsynaptic partners. This would result in greater
growth from photoreceptor cells attracted to their partner and
possibly less growth with inhibition, which might make it
more difficult to detect repulsion. We compared, therefore,
the number of varicosities and the number and total length of
processes produced by attracted versus repulsed
photoreceptors. Surprisingly, repulsive cells did not reduce
total photoreceptor growth. Instead, the average number of
varicosities (Figure 5A), neurites, and total length of neuritic
growth (data not shown) did not differ regardless of whether
the cells were attracted to or repulsed by a partner cell.
Additionally, qualitative assessment of the amount and
direction of growth by target cells suggested that growth by
target cells did not determine photoreceptor targeting:
abundant growth by target cells toward the photoreceptor
could still result in repulsion of photoreceptor growth,
whereas no growth by a target cell could result in attraction
(compare Figures 2B and 2C).

Although there were no statistical differences in the total
amount of growth in attracted and repulsed pairs, there was a
trend toward more neuritic development in attracted pairs.
Previous work had shown an increase in the number of
varicosities after cell contact in two-week-old cultures [15].
Thus we examined the effect of contact on photoreceptor
growth parameters. In our one-week-old cultures, we found a
significant increase in varicosities present in photoreceptors
that contacted target cells (p<0.05; Figure 5B). About two-
thirds of all photoreceptors that made contacts produced
varicosities. When we examined the photoreceptors
separately, we observed a significant increase (91%) in
varicosities per cone cell with cell contact (Figure 5C) and per
rod cell by 54%, with contact, if we looked only at rod cells
that made varicosities (Figure 5D). The data suggest that
regeneration of synaptic interaction occurs in two steps: (1)
potential partners secrete a factor guiding neuritic growth but
not determining total amount of growth; and (2) if contact is
established, axonal differentiation in the form of presynaptic
development is stimulated.

Effects of cell target on photoreceptor polarity: Technical
issues related to optical tweezing may also affect partner
preferences. When cells are placed next to each other, the
nuclear side of the photoreceptor from which the axon
normally emerges does not always face the dendritic pole of
the second- or third-order neuron. Because photoreceptors can
grow processes from any point of the cell body [21],
orientation was not expected to influence the direction of cell
growth. However, to test for the effects of orientation, we
analyzed cone and rod cells for polarity (location of the

ellipsoid, an accumulation of mitochondria, with respect to
the nucleus determines the axis of the cell). On days 1 and 7,
where the nuclear pole faced, toward or away from the target
cell, was assessed. No effect of initial polarity on final
attraction or repulsion was seen. For example, less than a third
of cones paired with a bipolar partner were correctly oriented
one day after plating, whereas more than 40% of cone cells
paired with multipolar cells was correctly oriented. If polarity
determined preference, then cone cells should have preferred
multipolar over bipolar cells; the opposite was in fact
observed. By day 7, however, the polarity of some cell pairs
unexpectedly had changed (Figure 6A and B). Changes were
usually gradual, occurring over several days in culture. For
photoreceptors whose polarity changed, there was a
significant association between attraction and repulsion and
change toward or away from the target respectively (p=0.01;
Figure 6C).

Finally, pairs that were formed randomly in the culture
dish, without the use of optical tweezers, were examined as
internal controls for cell targeting (n=23). As previously
reported [16], the use of optical tweezers did not change the
morphology or amount of process outgrowth. The proportion
of attracted and repulsed cell pairs based on cell type was not
significantly different than for tweezers-manipulated pairs
(p>0.05). The majority of rod cells, for instance, were
attracted to multipolar cells.

DISCUSSION
Optical tweezers were used to pair identified cells under sterile
culture conditions and test for regenerative interactions. In

Figure 7. Attraction and repulsion of rod and cone neuritic growth to
novel partners may contribute to the remodeling of retinal circuits in
disease. In disease, as in vitro, rod cells are attracted to multipolar
cells that lie in the inner nuclear layer (INL), whereas cone cells tend
to form new growth near adjacent bipolar cells. Black arrows indicate
normal axonal processes of photoreceptor cells in the retina; green
arrows show new growth made in retinal disease. Other abbreviations
used: OPL, outer plexiform layer; ONL, outer nuclear layer.
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contrast to our previous study using randomly plated cells
[15], with the tweezers we were able to follow cone and rod
cells separately and create adequate numbers of pairs with
bipolar and multipolar cells. Examination of pairs that grew
for seven days demonstrated that cone and rod cells have
different target preferences. Cone cells preferred to grow
toward their normal partners, bipolar cells, when forming new
neuritic sprouts; among bipolar cells, they were more attracted
to ON than to OFF cells. In contrast, rod cells sought novel
interactions. Their preferred partner was a third-order neuron,
a novel target. Within the bipolar class, rod cells sought out
Goα-positive bipolars, a bipolar subtype that normally
interacts with only a fraction of the rod cells in vivo and,
therefore, would also be a novel target to most rod cells. Thus,
cell types considered to be closely related morphologically
and functionally, demonstrated different abilities to target
appropriately in culture.

This study also demonstrated the feasibility of using
optical tweezers to examine neuronal growth. In our cultures
nonmanipulated cell pairs had similar target preferences to
pairs made by micromanipulation. Further, initial cell
orientation, after placement of a cell by the tweezers, did not
determine target preference. Thus, tweezers manipulation
itself did not appear to influence cell-cell interactions. These
techniques, therefore, should be applicable to any type of
neuron and allow formation of groups of various sizes and
composition.

The formation of neural circuits proceeds along a series
of steps, which include axonal targeting to appropriate areas,
tissue layers and cells, development of synaptic
specializations, and activity-dependent refinement of synaptic
connectivity. The present experiments examined a period in
culture of robust growth preceding synapse formation and
thus focused on the first phase of circuit reformation. It is
possible that as synapses form between photoreceptors and
their targets, preferences change, perhaps reducing the
number of novel contacts between rod and multipolar cells.
However, in two-week cultures when numerous presynaptic
varicosities contact target cells and functional synapses are
thought to be present [8], photoreceptors also preferred novel
target cells [15]. Although this previous study did not
distinguish cone from rod cells, it indicates that novel
interactions are not lost as synapses form. Our results are
reminiscent of observations from adult invertebrate cultures
where some identified neurons are appropriately selective but
others are promiscuous during synaptogenesis [32-34]. For
rod cells, however, the promiscuity is not simply a
demonstration of polyspecificity in which there is contact with
both normal and novel targets, such as that seen in
regenerating retinal ganglion cells [35]. Rod cells
demonstrated a preference for novel targets.

During development, targeting preferences are
influenced by multiple soluble and membrane-bound

molecules produced by multiple cell types including glial
cells. In vertebrate retina, the Sidekick family of proteins has
been shown to be essential for development of some of the
sublayers in the inner plexiform or synaptic layer [36].
Molecules that may determine targeting in developing outer
synaptic layers of the neural retina include Sidekick-2 [36],
integrins [37], dystroglycan [38] and N-cadherin (see review
by Mumm et al. [39]). Whether any of these molecules plays
a role in targeting after injury is unknown. In our system, there
are few glia that survive the serum-free culture cultures; in
addition by using low-density cultures, we reduced the
number of sources of possible guidance compounds. Thus, the
preferences seen in our cultures were most likely not due to
glial-derived factors but to factors from the paired target cell.
Because preferential growth was seen early on, often before
cell contact, this suggests that some of the factors were
secreted. Moreover, because no difference was seen in the
total amount of growth with attractive versus repulsive targets
we suggest that mature retinal neurons produce factors that
act as guidance, or neurotropic, molecules, distinct from
neurotrophic factors. The observed increase in varicosities
after contact, however, may depend on neurotrophic effects.
A stimulatory effect of contact has also been reported in adult
nerve cell cultures from Aplysia [40]; in Aplysia, enhanced
varicosity development depends on the release of a
neurotrophic-like factor from the target cell [41]. Finally,
guidance factors influenced not only where on the plasma
membrane neuritic growth was initiated and whether or not
neurites developed presynaptic varicosities but the polarity of
the photoreceptor cell as well. Change in polarity occurred
over several days and therefore is probably downstream to
asymmetric neuritic outgrowth. In the future, using optical
tweezers to create groups of photoreceptors and higher order
neurons in conjunction with antibodies to molecular markers
of developing retinal layers, it will be possible to identify and
localize these laminar-specific molecules as well as other
candidates known to be involved in laminar specific
connections [7].

Cone and rod cells exhibited some similar and some
dissimilar behaviors in culture. Both cone and rod cells
changed their polarity in response to attractive or repulsive
targets and increased varicosity formation after contact.
However, there was a disparate effect of multipolar target cells
on the direction of cone and rod cell growth. Multipolar cells
attracted rod but repulsed cone cells. Targeting differences
between the closely related cone and rod photoreceptors may
be the result of different, but yet to be identified, presynaptic
or nonsynaptic receptors. However, in addition, there are
several known molecular differences in cone and rod synaptic
terminals. There are cone- and rod-specific molecular
mechanisms for vesicle exo- and endocytosis [42,43];
neurotransmission in cone and rod cells is linked to different
kinds of L-type calcium channels [44,45]; calcium
homeostasis is handled differently in the two cell types [46];
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and cones alone have c-GMP-gated calcium channels at their
terminal [47]. Intracellular calcium levels are involved in
growth cone guidance in embryonic CNS neurons (for a
review, see [48]). Differences in calcium homeostasis
therefore may change responses to guidance factors. Levels
of cyclic nucleotides also influence growth cone guidance. For
instance, increased cGMP turns a repulsive guidance cue into
an attractive one for Xenopus spinal neurons [49]; increased
cAMP can overcome repulsion in adult mammalian spinal
cord regeneration [50], whereas reduced protein kinase A
activity can prevent regeneration of normal retinotectal
topographic projections in fish [51]. Examination of cone- and
rod-dominant retinas has revealed that cone and rod cells
contain different levels of cyclic nucleotides; rod cells have
higher levels of intracellular cGMP [52]. We have shown that
neuritic sprouting by adult salamander cone cells in vitro is
stimulated by cGMP but that rod cell sprouting is inhibited by
cGMP [53]. The differing intracellular levels of cGMP and
opposing effects of cGMP on cone and rod cell growth suggest
that there are intrinsically different cGMP signaling pathways
in cone and rod cells, which may in turn affect targeting after
injury. We also have preliminary information that cAMP
stimulates rod, but not cone, cell growth [54]. Thus, in
addition to possible differences in cell surface receptors and
cell specific ways of controlling calcium, differential cGMP
and cAMP signaling may be underlying factors in the
mechanisms which determine the disparate targeting of cone
and rod cells.

Change in protein expression, a property of the injury
response, may also affect adult cell targeting. By examining
the common amino acid transmitters, we observed that the
relative abundance of the neurochemical classes of second-
and third-order salamander retinal neurons in culture was
stable and equivalent to their relative proportions in intact
retina [55]. In contrast, the expression of Goα appeared to
change since the total number of Goα-positive bipolar cells
paired with cone cells increased in culture. Subsequent studies
with salamander neurons have demonstrated an
approximately 60% increase in the number of Goα-expressing
cells after 24 h in culture [56]. In the rd1 mouse, a model of
human RP, the metabotropic glutamate receptors that
associate with Goα have been shown to decrease in rod bipolar
cells [57]. In this mouse model, the gene for the rod β subunit
of cGMP-phosphodiesterase is mutated and rod
photoreceptors degenerate. Thus, changes in bipolar receptor
expression are presumed to be a transynaptic effect of rod cell
degeneration. In retinal degenerations where some cone cells
remain, rod bipolar cells may upregulate expression of
ionotropic receptors [58]. In retinal detachment, a mechanical
injury that separates the photoreceptors from the supporting
retinal pigmented epithelium, a decrease in the expression of
cone-specific proteins such as cone opsin has been observed
[59]. In contrast, rod cell-specific protein expression is
maintained [60]. In isolated and cultured salamander

photoreceptors, as well, cone opsin expression is reduced (D.
Sherry, personal communication) but rod opsin expression is
maintained [61]. There is evidence, therefore, of changes in
gene and protein expression in both postsynaptic and
presynaptic retinal cells after injury, in vivo and in vitro.

Finally, in rod cells, the localization of protein changes
as the outer segments degenerate. This is exemplified by the
relocalization of rod opsin. Opsin, produced in the inner
segment of the rod cells and added to outer segment membrane
at the connecting cilium, is normally present in vesicles in the
inner segment, discs of the outer segment and in the plasma
membrane of the outer segment. In injury and disease and in
isolated rod cells in culture, opsin is also found along the
plasma membrane of the inner segment, cell body, and
synaptic terminal [62-66]. Mislocalization of rod membrane
protein may contribute to the propensity for novel interactions
by rod cells.

Although the controlled environment of cell culture
mimics intact tissue imperfectly, there is a striking parallel
between our in vitro findings and the in vivo growth of
photoreceptors in degenerating retina. In early stages of
degeneration, rod cells grow extensive processes with
varicosities out to the inner retina, where the dendrites of the
third-order neurons lie. Sprouting from rod cells toward the
inner retina is a robust phenomenon, seen in many forms of
the human hereditary retinal disease, RP, in human retinal
injury, in aging, and in human retinas with detachment and
reattachment (for a review, see [12]). This pathology has been
replicated in a cat model of retinal detachment/reattachment
[67] and in an amphibian model of the autosomal-dominant
form of RP [68]. Studies in human retinas and animal models
have demonstrated that the presence of the normal target cells,
bipolar and horizontal cells, does not deter rod cell neurites
from seeking out inner retinal neurons. In contrast, human
cone cells do not form extensive outgrowths into the inner
retina. Further, in mouse and porcine animal models of RP,
cone cells appear to form new synaptic connections with rod
bipolar cells, Goα-containing cells (in mammals, all rod
bipolars express Goα), in the outer plexiform layer [69]
whereas mouse rod cells contact cone bipolars [70]. Thus, the
preferences seen for growth in a controlled in vitro
environment mimic the pattern for new sprouts in vivo (Figure
7) and suggest that cell-intrinsic mechanisms contribute to
targeting observed in vivo.

Each type of cell pairing produced both positive and
negative as well as undetermined responses. We attribute this
to several possible factors. With retinal dissociation, retinal
neurons are injured to varying degrees, and this may make
them insensitive or less sensitive to guidance factors. Position
in the retina may play a role in targeting, and cells from
different locations, for instance nasal versus temporal retina,
may be less inclined to interact. Finally, there are many
subtypes of each cell class that show highly specific patterns
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of connectivity. Although we analyzed the red rod subtype
(green rods form only a small group of the rod photoreceptors
and do not stain for red rod opsin) and primarily looked at
large single cones (double cones and small single cones are
also present in salamander retina), the bipolar and multipolar
cell groups we used do contain many neurochemical subtypes.
Indeed, our previous study had shown that, in vitro,
photoreceptors preferred GABAergic amacrine cell targets
[15]. In human RP, a large proportion of sprouting rod neurites
was also associated with GABAergic processes [71]. In ferret
retina, during development, there are also sprouts from rod
cells, which grow into the developing inner retina [72]. In this
animal, the sprouts depend on the presence of cholinergic
amacrine cells [73]. Because acetylcholine frequently
colocalizes with GABA in retinal amacrine cells (e.g., see
[74]), it is possible that GABA plays a role in rod neuritic
growth during development as well. GABAergic amacrine
cells, about half the population of salamander amacrine cells
[75,76], may be more attractive to rod photoreceptors than
other subtypes. Analysis of Goα-positive versus Goα-
negative bipolar cells demonstrated that the Goα-positive ON
bipolar subtype is generally more attractive to cone and rod
cells. The effects of cell subtype may be more significant than
injury or position in determining targeting within a cell class.
Exactly what molecular constituent(s) associated with
GABAergic amacrine and Goα-positive bipolar subtypes
produces attraction remains to be determined. Effects of cell
subtype, positional origin of cell (temporal versus nasal), and
interaction among larger groups of cells are all future avenues
of research using the optical tweezers approach.

Mature projection neurons show varying degrees of
regenerative ability [77-80]. Even nerve cells in the CNS of
cold-blooded vertebrates, renowned for their ability to
regenerate, are not able to regenerate equally well [81,82] and
mistargeting occurs [5]. In contrast to these studies, we have
examined sensory neurons that regenerate local circuits via
short presynaptic neurites, distinct from projection neurons in
which axonal growth is guided by a growth cone.
Nevertheless, our results support the view that there are
intrinsic differences in the ability of neurons to reach normal
targets after injury. We suggest that for photoreceptors the
differences depend in part on injury-induced changes in
protein expression and localization and inherent cell-specific
differences in intracellular signaling mechanisms.
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