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I
n December 2003, Giot et al. (1)
published a systematic investiga-
tion of the protein interaction
network—the interactome—of Dro-

sophila melanogaster. Giot et al. pro-
duced a draft map of 7,048 proteins and
20,405 interactions, which they then re-
fined to ‘‘a higher confidence map of
4,679 proteins and 4,780 interactions.’’
The magnitude of the undertaking led
to the study being lauded as the ‘‘dawn
of systems biology’’ in a number of com-
mentaries and news releases. Giot et
al.’s study was preceded and followed by
a number of investigations of the inter-
actomes of other species, ranging from
bacteria to humans (2–5). However,
none of these studies was able to pro-
vide an estimate of the actual size of the
interactome being sampled. In a system-
atic statistical study published in this
issue of PNAS, Stumpf et al. (6) provide
convincing estimates of the interactome
size of four organisms, including
humans.

Stumpf et al. (6) estimate that the hu-
man interactome comprises �25,000
proteins and on the order of 650,000
interactions. These numbers provide a
sobering view of where we stand in our
cataloging of the human interactome. At
present, we have identified �0.3% of all
estimated interactions among human
proteins. We are indeed at the dawn of
systems biology.

The sparse sampling of the human
interactome should make researchers
distrustful of the numerous studies re-
porting global analysis of human protein
interaction networks. As Stumpf et al.
(6) stress, the actual size of the interac-
tome may be one of the only global
characteristics that can be estimated in
an unbiased manner from small, biased
samples. This is particularly true of the
human interactome: Although the li-
brary of probes in most studies is likely
to be unbiased, the set of targets is
likely selected on the basis of expecta-
tions of importance for development,
regulation, or disease. The consequences
of this sampling scheme are clearly visi-
ble in the multistar structure of protein
interactions networks, as demonstrated
by Guimerà et al. (7), and they should
make one suspicious of broad claims.

Stumpf et al.’s (6) analysis also reveals
that the human interactome is nearly 10
times larger than that of D. melanogaster
and 3 times larger than that of Caeno-
rhabditis elegans. As the authors state,
‘‘interactome sizes are consistent with

biological intuition about complexity of
eukaryotic organisms’’ (6). Although
this is surely reassuring to those needing
supporting evidence for the greater
complexity of Homo sapiens, it may be
placing emphasis on the wrong concern.
It takes no more than common sense to
realize that humans are more complex
organisms than fruit f lies or yeasts. The
fact that a coarse measure of complex-
ity, such as gross number of base pairs/
genes/proteins, does not capture the
clear qualitative difference in complex-

ity between humans and those organ-
isms merely reveals that there are still a
large number of open questions about
how biological complexity emerged and
how it is implemented. Indeed, the big,
fundamental question driving systems
biology must be thus: Which molecular
components and organizational motifs
among those components enable the
emergence of different levels of biologi-
cal complexity?

To answer the question above, we will
need to address another question of
equal importance: How do we make
sense of the ‘‘seas’’ of biological data we
are gathering by high-throughput meth-
ods? (8). The complexity of the data we
are now able to gather makes it not at
all surprising that our understanding of
biomedical systems has fallen behind
our ability to gather new data. Our
brains likely evolved the capacity to pro-
cess, in a meaningful manner, only a
handful of components, not the tens of
thousands we find in biological systems.
However, it is now clear that reduction-
ist approaches alone will not enable us
to solve many of today’s most important
biomedical questions. Understanding the
folding of a single protein is not going
to bring deep insights into the origins
or progression of cancer, just as unveil-
ing the working of a single neuron can-
not provide an understanding of
consciousness.

A saving grace may be the fact that
biological complexity has a hierarchical
organization: organism 3 organ 3 tissue
3 cell 3 pathway 3 motif 3 molecule.

This hierarchical structure is analogous
to the structure of geopolitical entities:
continents 3 countries 3 states 3
regions 3 counties 3 localities 3 neigh-
borhoods 3 buildings. Like any organi-
zational scheme, the way geopolitical
entities are classified is not always
straightforward or free of information
loss. However, the classification is ex-
traordinarily powerful in enabling users
of the information to easily locate even
the components relevant only at the low-
est scale. The reason for this ease-of-use is
the fact the hierarchical representations
are scalable: The representation is able to
extract the information that is most rele-
vant at the scale of interest (Fig. 1).

These facts prompt the need to de-
velop a cartography for complex biologi-
cal networks (9). Such a cartography
would aim to do what geopolitical car-
tography did for the representation of
geopolitical information. The carto-
graphic approach is based on two core
assumptions (9, 10). The first assump-
tion is that the nodes in a network can
be grouped into modules, thus enabling
a simplified description of the network.
It is important to note that despite
much work on clustering and the wide-
spread use of hierarchical clustering
methods, there was, until recently, no
procedure that enabled one to simulta-
neously assess whether a network is or-
ganized in a hierarchical fashion and to
identify the different levels in the hier-
archy in an unsupervised manner.
Indeed, many methods, such as hierar-
chical clustering, yield a hierarchical
tree even for networks with no internal
structure (11). Work by numerous re-
searchers on the detection of modular
structure of complex networks (12), has
recently culminated in a new method
that is able to determine the hierarchi-
cal structure of complex networks of
arbitrary type (11).

The second core assumption of the
cartographic approach is that one can
classify the nodes comprising a network
into a small number of system-indepen-
dent ‘‘universal roles.’’ Guimerà and
Amaral (9) proposed a classification
scheme that rests on the expectation
that the nodes in a network are con-

L.A.N.A. wrote the paper.

The author declares no conflict of interest.

See companion article on page 6959.

*E-mail: amaral@northwestern.edu

© 2008 by The National Academy of Sciences of the USA

The set of targets
is selected on the

basis of expectations.

www.pnas.org�cgi�doi�10.1073�pnas.0802459105 PNAS � May 13, 2008 � vol. 105 � no. 19 � 6795–6796

C
O

M
M

E
N

T
A

R
Y



nected according to the specific purpose
they fulfill. Specifically, the role of a
node is defined according to (i) how
many connections it has and (ii) to what
degree the node is a connector of differ-
ent modules. Guimerà and Amaral (9)
defined four main types of roles: hub
connectors, which have many connec-
tions to both other nodes in their
module and nodes in other modules;
provincial hubs, which have many con-
nections but only to nodes inside their
module; satellite connectors, which have
few connections but act as bridges be-
tween modules; and peripheral nodes,
which have few connections, mostly to
nodes inside their module.

To demonstrate the power of this car-
tographic perspective, Guimerà and
Amaral (9) studied the overall organiza-
tion of the cellular metabolisms of
twelve organisms (13, 14, 15). They
found that �90% of the metabolites in
these organisms are classified as periph-
eral nodes, suggesting a very weak
signal-to-noise ratio. The important
metabolites are a small fraction of all
metabolites, thus limiting information
loss when coarse-graining.

The graphical representations of the
protein networks in the literature make
very clear the problem of information
overload we are already experiencing.
Stumpf et al. (6) reveal to us, in no un-

certain terms, that those images capture
no more than a tiny fraction of the sys-
tem. This should convince all parties
involved of the need to develop coarse-
grained representations of biological
systems. The reward of such an under-
taking is clear: With these maps at their
fingertips, researchers, physicians, and
educators will be able to navigate the
seas of biological data to easily locate,
and ultimately manipulate, biological
systems of interest (16).
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10. Guimerà R, Amaral LAN (2005) Cartography of complex
networks: Modules and universal roles. J Stat Mech
Theor Exp, article no. P02001.

11. Sales-Pardo M, Guimerà R, Moreira AA, Amaral LAN
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Fig. 1. Mapping the metabolism of Escherichia coli. (Left) Map of a metabolic network of E. coli, which comprises 507 metabolites and 718 connections (11).
The area of the circles is proportional to the number of metabolites in the corresponding module. The hexagons indicate connector hub metabolites, and the
triangles indicate satellite connector metabolites. (Right) Map of the module containing pyruvate. The smaller symbols and fonts indicate roles at the second
level in the hierarchy. 4ppan, D-4�-phosphopantothenate; amn, ammonia; L-glu, L-glutamate; L-asp, L-aspartate; ppi, diphosphate; glucys, �-L-glutamyl-L-
cysteine; L-cys, L-cysteine; L-ser, L-serine; dtmp, dTMP; dhf, 7,8-dihydrofolate; prpp, 5-phospho-�-D-ribose 1-diphosphate; pyr, pyruvate; akg, 2-oxoglutarate; succ,
succinate; succoa, succinyl-CoA; hkntd, 2-hydroxy-6-ketononatrienedioate; 6pgc, 6-phospho-D-gluconate; pep, phosphoenolpyruvate; 2h3oppan, 2-hydroxy-3-
oxopropanoate; accoa, acetoacetyl-CoA; coa, CoA. Figure courtesy of R. Guimerà and M. Sales-Pardo (both at Northwestern University).
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