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Using filtered backprojection (FBP) and an analytic continuation approach, we prove that exact interior reconstruction is possible
and unique from truncated limited-angle projection data, if we assume a prior knowledge on a subregion or subvolume within an
object to be reconstructed. Our results show that (i) the interior region-of-interest (ROI) problem and interior volume-of-interest
(VOI) problem can be exactly reconstructed from a limited-angle scan of the ROI/VOI and a 180 degree PI-scan of the subregion
or subvolume and (ii) the whole object function can be exactly reconstructed from nontruncated projections from a limited-angle
scan. These results improve the classical theory of Hamaker et al. (1980).
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1. INTRODUCTION

The importance of performing exact image reconstruction
from the minimum amount of data has been recognized for a
long time. The first landmark achievement is the well-known
fan-beam half-scan formula [1]. A recent milestone is the
two-step Hilbert transform method developed by Noo et al.
[2] in 2004 In their framework, an object image on a PI-
line/chord can be exactly reconstructed if the intersection
between the chord and the object is completely covered by
a field of view (FOV). In 2006, Defrise et al. [3] proposed
an enhanced data completeness condition that the image on
a chord in the FOV can be exactly reconstructed if one end
of the chord in the object is covered by the FOV. Inspired
by the tremendous biomedical implications including local
cardiac CT at minimum dose, local dental CT with high
accuracy, CT guided procedures, and nano-CT using analytic
continuation we recently proved that the interior problem
can be exactly and stably solved if a subregion in an ROI/VOI
in the FOV is known [4–7] from fan-beam/cone-beam
projection datasets, while the conventional wisdom that the
interior problem does not have a unique solution [8] remains
correct.

Using the analytic continuation technique, here we
further extend our exact interior reconstruction results to the
case of a truncated limited-angle scan. The paper is organized
as follows. In the next section, we summarize the relevant
notations and key theorem. In the third section, we prove our
theorem in the filtering backprojection (FBP) framework.
In the fourth section, we will discuss relevant ideas and
conclude the paper.

2. NOTATIONS AND KEY THEOREM

The basic setting of our previous work is cone-beam
scanning along a general smooth trajectory

Γ = { ρ(s) | s ∈ R}. (1)

As shown in Figure 1, a generalized PI-line of r ∈ R3

is defined as the line through r and across the scanning
trajectory at two points ρ(sb) and ρ(st) on Γ with sb < st,
where sb = sb(r) and st = st(r) are the parameter values
corresponding to these two points. At the same time, the
generalized PI-segment (also referred to as a chord) L is
defined as the segment of the PI-line between ρ(sb) and ρ(st),
the PI-arc the part of the trajectory between ρ(sb) and ρ(st),
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Figure 1: Basic setting for exact 3D interior reconstruction from
truncated limited-angle datasets.

and the PI-interval [sb, st]. Suppose that an object function
f (r) is constrained in a compact support Ω ⊂ R3. For any
unit vector β, let us define a cone-beam projection of f (r)
from a source point ρ(s) on the trajectory Γ by

Df
(
ρ(s),β

)
:=
∫∞

0
f
(
ρ(s) + tβ

)
dt. (2)

Then we define a unit vector β(s, r) as the one pointing to
r ∈ L from ρ(s) on the trajectory:

β(r, s) := r− ρ(s)
∣
∣r− ρ(s)

∣
∣ . (3)

We also need a unit vector along the chord:

eπ := ρ
(
st
)− ρ(sb

)

∣∣ρ
(
st
)− ρ(sb

)∣∣ . (4)

Note that the unit vector eπ is the same for all r ∈ L. Our
main finding can be summarized as the following theorem.

Theorem 1. Assume that there are three points a, b, c on
the chord L with b situating between a and c. Suppose
that (i) projection data Df (ρ(s),β(r, s)) are known and
Df (ρ(s),−β(r, s)) ≡ 0, both for any s ∈ [sb, st] and for any
r on the line-segment ab and a small neighborhood; (ii) projec-
tion dataDf (ρ(s),β(r, s)) are known andDf (ρ(s),−β(r, s)) ≡
0, both for any s ∈ [s1, s2] with sb < s1 < s2 < st and for any
r on the line-segment bc and a small neighborhood; and (iii)
f (r) is known on the line-segment ab. Then the function f (r)
can be exactly reconstructed on the line-segment bc.

Let us remark on the conditions for Theorem 1 Our
conditions (i) and (ii) imply that the cone-beam projection
data are both longitudinally and transversely truncated but
the derivative (∂/∂q)Df (ρ(q),β(r, s))|q=s is available for any

s ∈ [sb, st] and any r on line-segment ab, which we
define as data from a PI-scan, and for any s ∈ [s1, s2]
and any r on line-segment bc. Because the amount of data
(∂/∂q)Df (ρ(q),β(r, s))|q=s is less than a PI-scan for r on

line-segment bc, we have the limited-angle problem. Our
condition (iii) demands a priori information for the exact
interior reconstruction. We may also assume that the known
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Figure 2: Variable change from γ to γ̃.

data are on subintervals of the line-segment ab. In practice,
the function f (r) can be often known inside a subregion of
the VOI, such as air around a tooth, water in a chamber, or
calibrated metal in a semiconductor.

3. PROOF OF THEOREM 1

Based on Katsevich’s work [9, 10], early 2005 Ye and Wang
proved a generalized FBP method that performs filtering
along a generalized PI-line direction [11]. They also derived a
generalized filtering condition for exact FBP reconstruction
[11], which is special case of Katsevich’s general weighting
condition [10]. For an arbitrary smooth scanning curve ρ(s)
on the generalized PI-interval [sb, st] and any point r on the
chord L from ρ(sb) to ρ(st), the exact FBP reconstruction
formula can be expressed as [11] follows:

f (r) = − 1
2π2

∫ st

sb

ds
∣∣r− ρ(s)

∣∣

× PV
∫ 2π

0

∂

∂q
Df
(
ρ(q),Θ(s, r, γ)

)
∣∣
∣
∣
q=s

dγ

sin γ

(5)

where “PV” represents a principal value integral, and
Θ(s, r, γ) the filtering direction which is taken in the PI-
segment direction and defined as cosγβ + sin γe with the
unit directions β = β(r, s) and e = (eπ − (eπ·β)β)/(|eπ −
(eπ·β)β|), that is, Θ(s, r, γ) supposes a clockwise rotation in
the plane determined by L and β(r, s), centered at ρ(s) with
Θ(s, r, 0) = β(r, s) (see Figure 1).

For a fixed point ρ(s), the filtering plane remains
unchanged for all r ∈ L. Following the same steps as in our
previous work [6], we can change the variable γ to γ̃ so that
the direction for γ̃ = 0 now points to the direction eπ , and the
filtering direction is still specified clockwise (see Figure 2).
Let θ(r, s) denote the angle from eπ (γ̃ = 0) to β(r, s). Then
(5) can be rewritten as

f (r) = − 1
2π2

∫ st

sb

ds
∣
∣r− ρ(s)

∣
∣PV

∫ π

−π

∂

∂q

×Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣∣
∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

) .

(6)

Note that Θ(s, r, γ) now is changed to Θ(s, γ̃) which is
independent of r ∈ L, and the value of θ(r, s) is negative.
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From (6) with PI-line filtering, we have

f (r) = − 1
2π2

∫ s2

s1

ds
∣
∣r− ρ(s)

∣
∣PV

∫ θ(c,s)

θ(a,s)

∂

∂q

×Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣
∣∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

)

(7)

− 1
2π2

∫ st

sb

ds
∣
∣r− ρ(s)

∣
∣PV

(∫ θ(a,s)

−π
+
∫ π

θ(c,s)

)

× ∂

∂q
Df
(
ρ(q),Θ(s, γ̃)

)
∣∣
∣
∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

)

(8)

− 1
2π2

(∫ s1

sb
+
∫ st

s2

)
ds

∣∣r− ρ(s)
∣∣PV

∫ θ(b,s)

θ(a,s)

∂

∂q

×Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣∣
∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

)

(9)

− 1
2π2

(∫ s1

sb
+
∫ st

s2

)
ds

∣
∣r− ρ(s)

∣
∣PV

∫ θ(c,s)

θ(b,s)

∂

∂q

×Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣
∣∣
q=s

dγ̃

sin
(
γ̃ − θ(r, s)

) .

(10)

Here (7) and (9) are known for the given truncated
projection data from our conditions (i) and (ii). As in [6],
we can rewritten (8) as

− 1
2π2

∫ st

sb
dsPV

(∫ θ(a,s)

−π
+
∫ π

θ(c,s)

)
∂

∂q
Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣
∣∣
q=s

× dγ̃

sin γ̃
(
r − rp(s)

)
+ cosγ̃

∣
∣rp(s)− ρ(s)

∣
∣ .

(11)

Here rp(s) is the point on L such that rp(s) − ρ(s) is
perpendicular to L. We set up a complex plane C with its
origin at ρ(sb) and real axis from ρ(sb) to ρ(st) (see Figure 3).
Using this complex plane, we rename ρ(sb) as O, a as a, r
as r, rp(s) as rp(s), and so on, on the real axis. We note that
when r ∈ (a, c), the PV integrals in (11) are actually ordinary
integrals and hence integrals of Cauchy’s type. By the Cauchy
integral theorem, (11) and (8) represent an analytic function
on the complex planeCwith cuts (−∞, a] and [c, +∞) on the
real axis.

Now we return to (10) and rewrite it as

f11(r) = − 1
2π2

(∫ s1

sb
+
∫ st

s2

)
ds

× PV
∫ θ(c,s)

θ(b,s)

∂

∂q
Df
(
ρ(q),Θ(s, γ̃ )

)
∣
∣∣
∣
q=s

× dγ̃

sin γ̃
(
r − rp(s)

)
+ cosγ̃

∣
∣rp(s)− ρ(s)

∣
∣ .

(12)
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Figure 3: Complex coordinate system for the analytic continuity.

Equation (12) defines an analytic function f11(r) in the
complex plane with a cut [b,∞) along the real axis, because
for r /∈[b, c], the inner integral in (12) is an ordinary integral
and an integral of Cauchy type. If r ∈ (b, c), f11(r) is
not analytic. The values of f11 on (b, c), however, can still
be determined uniquely by the analytic function f11(r) on
C \ [b, c]. Indeed, for r ∈ (b, c),

f11(r) = 1
2

lim
z→r

Im z>0

f11(z) +
1
2

lim
z→r

Im z<0

f11(z). (13)

Back to (6), now we have

f (r) = f (r) = (8) + (9) + (10) + (13). (14)

Recall that (7) and (9) are known for any r from our
projection data, (8) is an analytic function on the complex
plane with cuts (−∞, a] and [c, +∞), and (12) is a single-
valued analytic function on the complex plane C with
cuts [b, c] along the real axis. Therefore, (8) + (12) is an
analytic function on C/(−∞, a]∪[b,∞). Since f (r) is known
on (a, b), (8) + (12) is known on (a, b). This uniquely
determines the analytic function (8) + (12). Denote this
analytic function as by h(z) for z ∈ C/(−∞, a] ∪ [b,∞).
In order to reconstruct f (r) for r ∈ (b, c), however, we
need to know h(r) for r ∈ (b, c). This can be done using
(13). Equation (13) obviously holds for (8) too, because it is
analytic on (b, c). Consequently,

h(r) = 1
2

lim
z→r

Im z>0

h(z) +
1
2

lim
z→r

Im z<0

h(z) (15)

Using (15) to compute the value of (8) + (12) at r ∈ (b, c),
and using the known values of (7) and (9) at r ∈ (b, c), we
finally can reconstruct f (r) on (b, c) exactly.

4. DISCUSSIONS AND CONCLUSION

Because the exact interior reconstruction is unique from
truncated limited-angle data according to Theorem 1, there
are many interesting applications we should work on for
exact reconstruction, including but not limited to traditional
limited-angle tomography, circular cone-beam tomography,
and reconstruction of a flat or plate-like object from data
collected along a planer curve below or above the flat
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Figure 4: (a) Illustration of the subregion/volume half-scan ROI
problem; (b) the 1D coordinate system along the X-ray path
indicated in (a).

object [12]. Clearly, for practical applications we may sta-
bilize the exact reconstruction process using various means
such as penalty measures and knowledge-based constraints.
We emphasize that other types of knowledge may also
be incorporated in our exact interior reconstruction; for
example, a digital atlas of the family of object under study
As long as we use sufficient constraints, the theoretically
exact reconstruction nature will surely be enhanced by
numerical stability. We also acknowledge that the resolution
or image quality with the truncated limited-angle scan could
be affected by the scanning angle, sampling rate, detector
resolution, and so on. Major efforts on research analysis,
numerical simulation, and physical experiment are needed
along this more promising direction.

As an inspiring case, let us consider the 2D ROI-
focused scan illustrated in Figure 4(a) Assume that there is
a subregion Ω0 (white region) inside the compact support
Ω that is half-scanned; namely, Ω0 satisfies the half-scan
reconstruction condition if f (r) ≡ 0 for r ∈ (Ω − Ω0) in
the gray region. Although the projection data is generally
truncated in this setting, it can still be scanned by a limited-
angle for any r ∈ (Ω − Ω0). Our theorem implies that we
can exactly reconstruct the object function f (r) on the whole
support Ω if we have known the object function f (r) in Ω0.
Based on our previous results [4–6], the prior information
can be reduced to a measurable subregion in Ω0. This result
can also be proved in the backprojection filtration (BPF)
framework. Let us consider an X-ray path from any source
ρ(s) on the scanning trajectory and going through both Ω
and Ω0. We can set up a 1D coordinate system along this X-
ray path (see Figure 4(b)). Denote the 1D coordinate of ρ(s)
as c1, the coordinates of the intersections with Ω as c2 and c5,
the coordinates of the intersections with Ω0 as c3 and c4, and
c1 < c2 < c3 < c4 < c5. In this 1D case, f (x) is supported
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x
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Figure 5: (a) Illustration of nontruncated limited-angle scanning
problem; (b) the 1D coordinate system along the X-ray path
indicated in (a).

on [c2, c5] and f (x) is known on (c3, c4). According to the
results of Pack et al. [13], the 1D Hilbert transform g(x) of
f (x) can be exactly obtained on the interval [c3, c4]. Based
on the inverse Hilbert Transform [2, 14], we have
√

(c5 − x)(x − c2) f (x)

=
∫ c4

c3

√
(c5 − x̃ )(x̃ − c2)g(x̃)

π(x̃ − x)
dx̃ +

1
π

∫ c5

c2

f (x̃ )dx̃

(16)

+
(∫ c3

c2

+
∫ c5

c4

)dx̃
√

(c5 − x̃ )(x̃ − c2)g(x̃ )

π(x̃ − x)
. (17)

Note that (16) is known for any x ∈ (c2, c5), (17) is an
analytic function with cuts on (−∞, c3] and [c4,∞). Because
f (x) is known on (c3, c4), (17) is also known on (c3, c4). By
the same argument as for (13), we can extend the values
of (17) from (c3, c4) to [c2, c5]. Hence f (x) can be exactly
reconstructed on the whole interval [c2, c5].

Furthermore, let us revisit the so-called nontruncated
limited-angle scanning problem. For clarity, we only consider
the 2D case as illustrated in Figure 5(a). We assume that
it can form a measurable region Ω0 by connecting two
endpoints of the limited-angle scanning trajectory. Again,
let us consider an X-ray path from any source ρ(s) on the
scanning trajectory and through the compact support Ω. We
can set up a 1D coordinate system along this X-ray path.
Denote the 1D coordinate of ρ(s) as c1, the coordinates of
the other intersection with Ω0 as c2, the coordinates of the
intersections with Ω as c3 and c4, with c1 < c2 < c3 < c4. In
this 1D case, f (x) is supported on [c3, c4] and f (x) = 0 for
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x ∈ (c1, c2). According to the results of Pack et al. [13], the
1D Hilbert transform g(x) of f (x) can be exactly obtained on
the interval [c1, c2]. Based on the inverse Hilbert Transform
[2, 14], we have

√
(c4 − x)(x − c1) f (x)

=
∫ c2

c1

√
(c4 − x̃)(x̃ − c1)g(x̃)

π(x̃ − x)
dx̃ +

1
π

∫ c4

c3

f (x̃)dx̃

(18)

+
∫ c4

c2

dx̃
√

(c4 − x̃)(x̃ − c1)g(x̃)

π(x̃ − x)
. (19)

While (18) is known for x ∈ [c1, c4], (19) is an analytic
function with a cut on [c2, c4]. Because f (x) is known on
(c1, c2), (19) is also known on (c1, c2). Following the same
argument as for (13), we can extend the values of (19) from
(c1, c2) to [c2, c4]. Thus, f (x) can be exactly reconstructed
on [c3, c4]. This result is consistent with Theorem 5.1 by
Hamaker et al. in [15].

Although our work has been done within the X-ray
CT framework, our results can be directly applied to
other tomographic modalities that share similar imaging
models such as MRI, ultrasound imaging, PET, and SPECT.
By similarity between imaging models, we underline that
the exponential Radon transform is a particular attractive
area since a generalized Hilbert transform theory has
been reported for exact reconstruction from transversely
truncated data [16, 17]. Clearly, extensions into higher
dimensions and time-varying cases are theoretically possible
as well. In all these cases, iterative algorithms can always
be adapted or developed to produce optimal results, which
can be stabilized or regularized subject to various constraints
[18–23].

In conclusion, we have proved that the exact interior
reconstruction is theoretically solvable. Theorem 1 and key
techniques in its proof have numerous practical implica-
tions. Hopefully, our results have opened a new direction
to advance the local reconstruction area. We are actively
working on exciting possibilities discussed above.
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