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Summary

During 25 years of research since HIV-1 was first identified in Paris, there have
been great advances in our understanding of the virus and of the immune
system. Practical advances include the early development of diagnostic tests of
infection that made blood donation safe, and since 1996, combination anti-
retroviral therapy that has great reduced incidence of AIDS in HIV-infected
people who have access to the drugs. HIV prevention through behavioural
change has been successful, and we do not yet have any safe and efficacious
microbicides or vaccines.
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Introduction

It is fitting, on the 25th anniversary of the discovery of HIV-1
[1], to look back on past achievements and to look forward
to the daunting challenges we still face in order to overcome
the AIDS pandemic. In this perspective, I shall not be so
foolhardy as to attempt to provide a comprehensive review
of HIV and AIDS; for that I recommend Jay Levy’s book [2].
Rather, I provide a personal view of salient discoveries and
remaining gaps in our knowledge. There have, of course,
been magnificent advances in diagnosis and therapy, and in
gaining insight into the immunopathogenesis of AIDS.
However, despite sustained efforts by many talented investi-
gators, we still appear to be near the starting block for con-
trolling HIV through prevention.

The appearance of a novel type of immune deficiency was
presaged in the summer of 1981 when a handful of young
homosexual men in New York, San Francisco and Los Angeles
were diagnosed with Pneumocystis carinii pneumonia and
Kaposi’s sarcoma (KS) [3]. Epidemiologists at the Center for
Disease Control and Prevention in Atlanta detected this
unusual clustering of patients and set out to investigate its
provenance. It was soon recognized that the underlying
immune deficiency of ‘gay compromise syndrome’ was asso-
ciated with a selective depletion of CD4+ T helper cells [4,5].
In 1982 it became apparent that there must be an infectious
agent inducing the disease when it was also found in injecting
drug users and in recipients of blood transfusions, and thus
the disease acquired the name ‘acquired immune deficiency
syndrome’ [6]. With the manifestation of AIDS in patients
with haemophilia [7], the speculations were on some kind of
virus as the cause because other microbes were unlikely to
taint pooled clotting factors. In fact, the epidemiologists had

elucidated the risk groups and modes of transmission accu-
rately before the discovery of HIV itself.

In the early days, AIDS was a disease about which the
patients often knew more than their doctors [8]. Because
AIDS affected gay men disproportionately, there was an
articulate, well-educated and assertive body of people with
strong networks who could ask awkward questions and chal-
lenge any whiff of patronizing attitudes among physicians.
They established advocacy groups to lobby on social and
medical issues affecting HIV and AIDS. It was gay men at risk
of AIDS who pioneered the electronic exchange of medical
knowledge, which is now a commonplace source of informa-
tion for any disease. It is a curious coincidence that the
burgeoning of the HIV pandemic has been paralleled by the
exponential expansion of the internet. The downside is that
the worldwide web is also a superb medium through which to
perpetuate myths of HIV denial (or blame and conspiracy
theories) concerning AIDS. It is a tragedy that these siren
voices of the so-called AIDS dissidents won the sympathy of
the leader of a nation with more HIV-infected people than
any other, despite our efforts to correct the situation [9–11].

Discovery of HIV-1

On 23 May 1983 Françoise Barré-Sinoussi and colleagues in
Paris, led by Luc Montagnier at the Institut Pasteur, pub-
lished a description of a previously unknown virus isolated
from a patient with lymphadenopathy call ‘Bru’ [1]. Because
virus replication was associated with reverse transcriptase
(RT) activity, it was assumed to be a retrovirus (Fig. 1). This
virus was cytopathic and it could be propagated serially –
with tender loving care and to low titre – only by adding
medium harvested from dying cultues to fresh cultures of
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activated peripheral blood mononuclear cells (PBMC). We
would now call Bru a primary ‘R5’ isolate because it has a
tropism for primary T cells and macrophages that express
CCR5, and it will not grow in T cell lines that express
CXCR4.

In retrospect, insufficient note was initially taken of Barré-
Sinoussi’s paper because it was but one of many candidate
infectious agents. Indeed, an accompanying paper in the
same issue of Science from Bob Gallo’s and Max Essex’s
groups suggested another type of retrovirus, human T cell
leukaemia virus (HTLV-1), as a possible cause of AIDS
[12,13]. The detection of HTLV-1 was genuine enough, but
in hindsight it turned out to be a ‘passenger’ virus in about
10% of patients with immunodeficiency. By April 1984,
Montagnier’s group had published on further HIV isolates

[14], including one from an AIDS patient ‘Lai’ that grew to
much higher titre and which we now call an ‘X4’ isolate
because it can grow in T cell leukaemic cell lines expressing
CXCR4. In addition, Montagnier’s electron microscopic
study [15] indicated that HIV resembled animal lentiviruses
rather than deltaviruses such as HTLV-1. This interpretation
was vindicated firmly in 1985, when Simon Wain-Hobson
and colleagues sequenced and interpreted correctly the open
reading frames of the genomes of both HIV and the proto-
type lentivirus, Maedi-Visna virus (MVV), of sheep [16,17].

Shortly after Montagnier’s second publication, on HIV Lai
[14], Gallo and Popovic at the National Institutes of Health
(NIH) [18], and then Levy in San Francisco [19] published
on their isolates of HIV. Each group gave their virus a differ-
ent name. Eventually DNA cloning and genome sequencing
(which were still labourious processes) confirmed that all
these viruses belonged to a single species, but revealed that
genuinely different isolates were surprisingly variable in
sequence. This genome diversity later allowed Wain-Hobson
to perform a neat forensic DNA analysis on how the Lai
isolate had become an opportunistic contaminating agent in
several laboratories, including mine [20]. The AIDS virus
was variously called LAV [1], IDAV [14], HTLV-III [18] and
ARV [19]. The term HIV was not coined until 1986, when an
international committee chaired by Harold Varmus sought
to rationalize the confusing terminology [21].

Oddly enough, it was a consortium of investigators in
London that first demonstrated that Gallo and Montagnier
were studying the same type of virus. Rachanee Cheingsong-
Popov brought Lai from Paris to my laboratory in February
1984 and I obtained IIIB from NIH 3 months later. We found
that both viruses grew to high titre in the CEM T cell line,
and with Richard Tedder we established a competition radio-
immune assay [22] employing HIV antigens from CEM cells
to detect serum antibodies in British patients with AIDS and
subjects in AIDS risk groups collected by Brian Gazzard,
Tony Pinching, Jonathan Weber and Ian Weller. The same
samples reacted positively to both viruses, just as Levy [19]
had found for LAV and ARV, so we performed a simple,
old-fashioned experiment using immunofluorescence: when
antibodies were absorbed onto excess cells infected with
HTLV-III, all reactivity to Lai was also removed from the
serum sample [22].

Our serological test helped to establish that AIDS was not
just a western disease, but was spreading rapidly in Africa. In
1984, patients with symptoms similar to HIV had been noted
in both sexes in Congo [23] and Rwanda [24], and Montag-
nier’s group had isolated HIV from one of them [25]. In
Uganda, people realized that a novel affliction had first
appeared among them in 1982 in the wake of Milton Obote’s
army, which liberated the country from Idi Amin’s grip and
opened up the truck routes for traders. They called it ‘Slim’
disease because the wasting syndrome and diarrhoea were its
most notable symptoms. Although KS had always been a
relatively frequent tumour in Africa, a new aggressive form
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Fig. 1. (a) Simplified replication cycle of HIV. (b) Scanning electronic

micrograph of a lymphocyte releasing progeny HIV.
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in young adults had sprung up. Together with Anne Bayley in
Lusaka and David Serwadda and Nelson Sewankambo in
Kampala, we showed by serology that both aggressive KS
[26] and Slim disease [27] were associated with HIV
infection. At first we thought that our antibody test was not
sufficiently specific because 10% of the control sera taken
from healthy hospital staff yielded positive results [27]. It was
an awesome moment when the penny dropped and we real-
ized that they really were infected.

The disastrous spread of HIV in southern Africa, with
even higher prevalence rates, occurred later, in the 1990s.
The most recent UNAIDS estimate [28] is that some 36
million people worldwide are living with HIV infection, not
counting the 25 million who have already died as AIDS was
recognized. Although the overall estimate of global HIV
prevalence has fallen in recent years owing to more refined
monitoring methods, HIV mortality has overtaken that of
malaria and it is superseded only by tobacco.

Compared with the identification of the SARS coronavirus
by three independent groups in 2003, the path to discovery of
HIV 20 years earlier appears tentative and erratic. However,
molecular techniques such as reverse transcription–
polymerase chain reaction (RT–PCR) were not yet available,
virus isolation needed fastidious culture in CD4-positive
lymphocytes, and it was less easy to apply the classical evi-
dence of Koch’s postulates to an illness with a long incubation
period. Nevertheless, by 1984, some 3 years after the recogni-
tion of AIDS as a new disease in western countries, and 1 year
after the pioneering first description of HIV-1 by Barré-
Sinoussi et al. [1], there was sufficient incriminating evidence
to satisfy a jury of epidemiologists, virologists and immu-
nologists (but not everyone else) that this virus was guilty
beyond reasonable doubt of causing AIDS.

HIV-2, simian immunodeficiency viruses and
HIV diversity

The use of animal models for human disease is well recog-
nized for the insight that may be gained into pathogenesis,
and for the investigation of candidate drugs and vaccines.
However, it was found that HIV-1, like hepatitis B virus, was
able to infect only chimpanzees, and even these close rela-
tives to humans did not succumb to AIDS. As a Convention
on International Trade in Endangered Species of Wild Flora
and Fauna endangered species, experimental infection of the
great apes was soon embargoed. Therefore, simian immuno-
deficiency viruses (SIV) of macaques became one of the few
experimental models of HIV, and more recently recombi-
nant hybrid HIV/SIV viruses known as SHIV have been
developed for challenge tests of vaccines. It is worth recalling
that SIVmac was not discovered until 1985 [29], that is,
2 years after HIV-1, and feline immunodeficiency virus at
around the same time. One can state without too much irony
that HIV has been a great model for veterinary lentivirus
infections.

Natural infection of chimpanzees by SIVcpz was not dis-
covered until the 1990s. The genome organization and
sequence similarity to HIV-1 revealed SIVcpz to be the
natural precursor of HIV-1. Recent investigations indicate
which chimpanzee subspecies in which location (Gabon) is
likely to have been the origin of HIV-1 Group M, the pan-
demic strain [30], whereas Group O-related SIV is present
both in chimpanzees and gorillas [31]. Like SIVcpz becom-
ing HIV-1 [32], SIVsm has only recently crossed species from
the sooty mangabey to rhesus and cynomolgus macaques
(SIVmac) and to humans (HIV-2). The emergence of
SIVmac occurred in captivity, presumably when African and
Asian species were housed together in primate centres in the
United States. Again, like HIV-1, SIVmac is pathogenic in its
new host, whereas SIVsm causes little harm to mangabeys.

The elucidation of the provenance of SIVmac played a role
in the discovery of HIV-2. Max Essex and Suleyman M’Boup
found that serum samples from Senegalese patients with
AIDS-like symptoms reacted more strongly with SIV than
with HIV-1 [33]. Then in 1986 Montagnier’s group isolated
HIV-2 successfully from patients in the Cap Verde islands
and Senegal [34]. It appears that SIVsm has transferred from
mangabeys to humans in West Africa on at least six
occasions. HIV-2 is said to be less pathogenic than HIV-1 in
humans, with a much slower progression to AIDS. This is, in
a sense, true and HIV-2 tends to have a lower viral load, is
less transmissible and mother-to-child transmission has not
been demonstrated. However, the development of AIDS is
bimodal: the majority of HIV-2 infected people in West
Africa do not become ill (they are genuine long-term non-
progressors), whereas a minority progress to AIDS at much
the same rate as untreated HIV-1-infected individuals [35].
Whether the virus or the host are determinants of the differ-
ent courses of infection is not yet understood, and in my
opinion HIV-2 research merits further attention.

The genetic diversity of HIV has become legendary [36].
HIV-1 group M has radiated into subtypes A–K, and numer-
ous circulating recombinant forms (Fig. 2), and the qua-
sispecies of HIV-1 genomes in a single individual 6 years
after infection is as large as the global variation in H3N2
influenza virus.

Translating discovery into intervention

The most rapid practical health outcome following the dis-
covery of HIV was the development of blood tests to deter-
mine who is infected. By late 1985, several diagnostic kits
were marketed to detect specific antibodies to HIV. With no
treatment for infection, the benefit of any of these to the
individual of knowing their HIV status was debatable. For
screening blood donors, however, there was an immediate
public health benefit. Antibody detection still left a period
between infection and seroconversion during which an indi-
vidual became infectious to others. This window was first
filled by testing for p24 antigen in plasma, and subsequently
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with the development of RT–PCR detection for viral
genomes. Quantitative RT–PCR and related techniques led
to the measurement of plasma viral load, which proved to be
a useful prognostic marker and guide to clinical manage-
ment after effective anti-retroviral drugs combinations were
introduced. Later, genotypic markers of drug resistance also
proved their worth. Thus molecular techniques for detec-
tion, quantification and characterization of viral genomes
have played an important role in screening and in treatment.

Pharmacological treatment has also been a resounding
success for those with access to it. The first anti-retroviral
drug to go into clinical trial was azidothymidine (Zidovu-
dine), which is a chain terminator for nascent DNA during
reverse transcription. A phase I/II trial on HIV-infected
patients in the United States in 1986 apeared so promising
that the placebo arm was stopped prematurely. However, the
Anglo–French Concorde trial showed that the drop in viral
load and benefit to the patient was short-lived owing to the
rapid emergence of Zidovudine-resistant HIV mutants in
vivo [37]. Further RT inhibitors and protease inhibitors were
introduced, and recently cell-entry inhibitors and integrase
inhibitors have been licensed. Thus the understanding of
molecular events in the virus replication cycle led to the
rational design of anti-retroviral drugs (Fig. 1).

The development of new anti-retroviral drugs which did
not show cross-resistance with Zidovudine took several
years, but a number of RT inhibitors and protease inhibitors
were developed. When these were combined as three or more
drugs taken together, the era of highly active anti-retroviral
therapy (HAART) was born in 1996 and the effect was
dramatic. As shown in Fig. 3a, mortality fell by almost 70%,
the infectious disease wards in hospitals emptied and HIV
infection became a treatable condition in sexually transmit-
ted infections (STI) departments and physicians’ offices.
There was even some over-optimistic speculation that
HAART might eradicate HIV from the infected person’s

body whereas, in fact, a resurgence of viral replication occurs
as soon as patients take a ‘drug holiday’.

Two big challenges remain. First, will HIV in patients on
HAART eventually acquire multiple resistance to the avail-
able drugs? So far, there is little evidence of multiple resis-
tance occurring, yet increasingly drug-resistant HIV strains
are being transmitted in susceptible populations. Therefore,
novel drugs and drug targets are likely to be required.
There continues to be debate as to when to start anti-
retroviral therapy. Treatment during primary infection
might improve the initial clearance of infection and
immune responses to HIV [38]. Postponing initiation of
treatment until the late stages of infection may delay the
emergence of resistance.

The second, larger challenge is whether HAART should be
rolled out to those in greatest need of treatment, often in the
poorest of countries and settings. Figure 3b shows that
HAART has not yet dented the estimates of AIDS mortality
in sub-Saharan Africa and Asia. The logistics of delivering
HAART in developing countries is more complex than pro-
viding packets of pills. A diagnosis has to be made, and the
viral load and CD4 T cell measurements that help to inform
treatment regimens in countries with well-developed health
systems are expensive in terms of resources and trained
personnel.
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Behavioural and epidemiological interventions

In the absence of a safe and efficacious prophylactic vaccine
against HIV, a number of proxy methods to reduce or
prevent in the spread of HIV have been promoted, with
mixed results. The ABC nostrum of the US Aid agency
(abstinence, be faithful, and if you can’t, use condoms) is a
most worthy aspiration, but adherence can be difficult, espe-
cially if the partner refuses to comply. My favourite safe-sex
slogan is from the Harcon AIDS Campaign in Mumbai. Its
Kamasutra prescription for HIV prevention states:

Many postures with one
Better than one with many.

Safe sex advice to gay men also helped during the period
when to acquire HIV infection was to be placed on death row
for an indefinite period but with no hope of release. One of
the downsides to HAART has been to diminish the perceived
threat of HIV because it is a treatable condition.

Clean needle and syringe supply in exchange for old ones
have helped reduce the risk of parenteral transmission
among injecting drug users. This pragmatic approach also
offended moralists, who viewed needle exchange as condon-
ing or even encouraging illicit drug habits, so it was intro-
duced in western Europe years before the United States.

One of the more imaginative interventions to be trialled
was to target co-factors that exacerbate risk of HIV trans-
mission. STI such Neisseria gonorrhea or Haemophilus
ducreyi cause local inflammation or ulceration, and there-
fore STI are associated with increased HIV transmission.
Different trials on the prophylatic use of inexpensive anti-
biotics and of acyclovir to control genital herpes have
yielded mixed results for reducing HIV incidence [39]. A
potential problem with prophylaxis against non-HIV STI is
that the selection of resistant strains of HSV-2 and bacterial
STI may eventually emerge.

Male circumcision is associated with a lower rate of HIV
transmission to men [40]. The mucosal surface of the
foreskin is relatively rich in HIV target cells such as
CD4+ T lymphocytes and Langerhans cells [41]. In addi-
tion, lack of circumcision may be associated with more fre-
quent or longer-lasting inflammation because of STI and
adventitious infections, again heightening the risk of HIV
acquisition. It has been remarkable to see in recent years
how these observational epidemiological findings have
been translated into intervention trials, and that young
men have been willing to be assigned into randomized (if
not blinded) groups for circumcision or no intervention.
The results show a significant protective effective of cir-
cumcision [42].

There is much interest in vaginal microbicides which
could be applied discreetly by women and prevent transmis-
sion in either direction [43]. Unfortunately, the first to be
tested, the spermicide nonoxynol 9, actually increased the
risk of infection in women because it had a slight inflamma-

tory effect. Other microbicides such as polyaniomic macro-
molecules have not yet shown efficacy, but the notion of
chemically blocking HIV at the transmission point is a good
one that should not be abandoned [43].

Immunopathogenesis of AIDS

Cellular tropism and receptors

When AIDS was first recognized in 1981 immunologists
had recently distinguished T helper cells from T killer or
effector cells and used the T4 (CD4) and T8 (CD8) surface
antigens to discriminate between them. Thus it was soon
found that AIDS was associated with a disappearance of
CD4 cells in the peripheral blood [4,5]. Following the dis-
covery of HIV, David Klatzmann in Paris showed that, in
vitro, HIV replicated selectively and caused a cytopathic
effect in CD4 cells but not in CD8 cells [44]. This allowed
his group [45] and ours [46] to demonstrate that CD4
antigen itself is the binding receptor for HIV. This sequence
of findings seems logical in retrospect, but actually we had
no reason to think that HIV would use exactly the same
marker as that chosen by clinical immunologists for its
receptor. Our study [46] benefited from a fruitful collabo-
ration between such as Peter Beverley and Mel Greaves, and
immunologists virologists such as Dorothy Crawford and
myself. We used all the lymphocyte cell surface markers
available at the time - some 160 monoclonal antibodies
(mAbs) to CD and other antigens [including 14 anti-CD4
mAbs] - to pinpoint CD4.

After the cDNA for CD4 had been cloned, we were able to
confirm our immunological findings with transfection
studies. This revealed that while CD4 was needed for HIV
infection and was sufficient for HIV binding to the cell
surface, some other component was required for virus pen-
etration [47]. It took a further 10 years to identify the HIV
co-receptors or entry factors as chemokine receptors.
The first clue came from Gallo’s laboratory which found that
CC chemokines regulated uopn activation normal T cell
expressed and secreted (CCL5) and macrophage inflamma-
tory protein (MIP)-aP (CCL3) inhibited HIV infection [48].
Then Ed Berger at NIH discovered, through expression
cloning, that CXCR4 is the co-receptor on T cell lines [49],
followed quickly by the identification of CCR5 as the
co-receptor on PBMC and macrophages [50]. Identifying
CCR5 as the co-receptor for the majority of transmissible
strains of HIV led to the development of entry inhibitors and
to discerning CCR5 polymorphisms as resistance factors,
discussed later.

Macrophages were first shown to be infected by HIV by
Susan Gartner in Gallo’s laboratory [51]. The dogma at the
time was that retroviruses could replicate only in proliferat-
ing cells, because the pre-integration complex could not
cross the nuclear membrane, and required mitosis to access
chromosomes. However, that proved to be true for onco-
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genic retroviruses but not for lentiviruses, where Vpu and
other core proteins have nuclear location signals [52].

In fact, it was known that the prototype lentivirus, MVV,
of sheep infects macrophages but not T helper lymphocytes
[53]. It is my opinion that this observation in comparative
virology provides some insight into HIV pathogenesis. MVV
causes severe wasting diseases, neurodegeneration and pul-
monary dysfunction, but not T cell immunodeficiency. I
would postulate, therefore, that the wasting syndrome as well
as AIDS dementia is essentially a disease of macrophages in
human AIDS. However, sheep susceptible to MVV suffer a
remorselessly progressive disease leading to death. If this
represents the underlying pathogenesis common to most, if
not all, lentiviral infections, then protecting CD4 T cell
numbers and function without protecting macrophages will
not ultimately save the patient.

The targeting of dendritic cells (DC) by HIV was more
debatable than infection of macrophages. In England, Stella
Knight had claimed since the 1980s that HIV infects DC [54]
but was disbelieved by Ralph Steinman, although he is now a
convert [55]. This controversy has been resolved largely by
discerning a differential sensitivity of two types of DC, plas-
macytoid (pDC) and meyloid (mDC), just as the distinction
between CD4 and CD8 T lymphocytes two decades earlier
helped to pinpoint which was susceptible to HIV infection
[44]. In London, Steve Patterson showed that mDC express
CD4 and CCR5 and hence support HIV entry and replica-
tion, whereas pDC allow binding of HIV to DC-SIGN
without viral replication [56], except possibly by X4 strains
during maturation. Nevertheless, the attachment HIV to
DC-SIGN allows pDC to deliver HIV to susceptible CD4 T
cells upon migration to the lymph nodes. The immunologi-
cal synapse between pDC and CD4+ cells not only activates
the T helper lymphocyte (making it more permissive to HIV
replication) but also delivers the HIV particles across the
synapse [57].

The course of HIV infection

A ‘typical’ course of HIV is shown in Fig. 4. Primary infec-
tion via the mucosal or parenteral route results in high
viraemia, accompanied sometimes by symptoms such as
fever, diarrhoea and lymphadenopathy [58]. This state of
active replication and high virus load then resolves to a lower
set point, and the level of this point is predictive of the rate of
progression to AIDS in untreated individuals: the higher
level the worse the prognosis [59].

The picture in the blood is, however, but a faint image
indicative of much higher activity in lymphoid tissue [60], as
shown first by Tenner-Racz in 1988 [61]. Experimental
vaginal or cervical infection of macaques by SIVmac shows
that there is local replication of HIV in dermal macrophages
[62]. From there, DCs migrating to lymph nodes will deliver
virus to T helper cells, as already discussed. Recent findings
show that the most active site of HIV replication early in

infection is the largest ‘lymphoid organ’ of all, the mucosal
associated lymphoid tissue (MALT) of the gut [63].

The partial clearance of virus following seroconversion is
ascribed most often to cell-mediated immunity because spe-
cific cytotoxic T cells first appear at this time, as well as specific
CD4-helper cells. Indeed, the patients with the lowest set
points and longest survival, the so-called ‘elite controllers’ of
infection, show the strongest specific CD4 cell help against
HIV [64]. There are, however, other features that may con-
tribute to fall in viral load. The role of humoral immunity
tends to be ignored because neutralizing antibodies appear
only some months after seroconversion; but we forget that
neutralization assays represent an artificial, in vitro measure
of ‘protective’ antibodies. In vivo, antibodies circulate in a
pool of complement (C′). My colleagues Marlen Aasa-
Chapman et al. [65] have shown that C′-mediated HIV inac-
tivation (lysis of the viral envelope) by specific anti-gp41 and
anti-gp120 antibodies occurs concomitantly with the appear-
ance of cytotoxic lymphocytes and the fall in viral load. These
findings have been corroborated by Alexandra Trkola’s group
[66]. Similar non-neutralizing antibodies may also destroy
HIV-infected cells through anti-dependent cellular cytotox-
icity. Thus a humoral component in the clearance of primary
infection merits serious consideration.

Another contributor to the fall in viral load may not be a
result of specific immunity at all. The infection of CD4 cells
in the MALT is so severe that depletion of cells susceptible to
HIV infection might account for the apparent clearance of
infection [67]. Conversely, one could argue that the abun-
dance of susceptible cells permits the high virus load at peak
viraemia, which never reappears. It will therefore be inter-
esting to investigate what proportion of CD4 cells in MALT
are CCR5-positive and in an activated state to support HIV
replication.

The long clinically asymptomatic period that follows sero-
conversion is deceptive, because HIV infection is not latent
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at all. The introduction of HAART in 1996 provided an
opportunity to analyse the dynamics of virus replication and
CD4+ T cell turnover [68,69]. It became apparent that the
‘steady state’ in CD4 cell counts actually represented
a balance between rapid cell destruction and powerful
restoration within the immune system [70] (somewhat like
watching a duck glide across a pond without seeing the activ-
ity of its webbed feet). Eventually, the capacity for immune
regeneration becomes exhausted, and the level of CD4+ cells
drops below a threshold of about 200 cells/ml when oppor-
tunistic infections can overwhelm the patient.

There are many aspects of HIV pathogenesis that remain
to be investigated. For example, why do X4 variants arise late
in infection, and why are they seen more frequently in
western patients infected with Clade B strains of HIV? It is
thought that X4 viruses are more pathogenic than R5 strains
and are therefore harbingers of AIDS; but this is a chicken-
and-egg dilemma. I would argue that X4 strains are ‘oppor-
tunistic’ infections that emerge because immune control
diminishes. Such viruses appear to be relatively unfit for
person-to-person transmission and they are more sensitive
to immune control, particularly to humoral immunity. Once
they do emerge, however, they may well exacerbate immune
deficiency, analogous to other persistent virus infections. As
my colleague Paul Griffiths has shown, cytomegalovirus is
both an opportunist and a driver of AIDS [71].

Another puzzle is why simians naturally infected with SIV,
e.g. chimpanzees and mangabeys, can sustain viral replica-
tion without becoming ill. One difference is that HIV in
humans and SIVmac in macaques induce a chronic immune
activation, and these ‘danger signals’ lead eventually to
immune exhaustion [2]. An intriguing model for the differ-
ence is possible mimicry of the HIV envelope gp120 C5
region with human major histocompatibility complex mol-
ecules [72].

Host susceptibility to HIV and AIDS

There are a number of different host proteins that affect
susceptibility to infections by HIV or to progression to AIDS.
Some of these, such as the class I and class II major histo-
compatibility antigens, are polymorphic in human popula-
tions and some alleles predispose to disease while others
reduce the risk of infection, or progression [73]. On the
other hand, the restriction factor Trim5a discovered in
macaques [74], while polymorphic in humans, acts more to
restrict zoonoses; that is, the risk of SIV transferring to
humans [75]. Despite a report on human single nucleotide
polymorphisms (SNPs) for Trim5a [76] they do not appear
to have a marked affect on HIV or AIDS [77]. Similarly,
human variation in gene for the restriction factor
APOBECG3 has not revealed major changes in susceptibility,
as the Vif protein of all HIV-1 strains seems able to abrogate
its restrictive effects [78]. Recently, whole genome scanning
has revealed additional polymorphisms associated with HIV

susceptibility [79], although care will need to be taken to
distinguish them from linkage to known risk genes.

In contrast to these uncertainties, the genetic poly-
morphisms of human suppressive chemokines and their
receptors do have major effects on susceptibility to HIV
infection, and on rates of progression to AIDS [80]. The
most dramatic illustration of receptor polymorphism came
rapidly after the discovery that CCR5 was the major
co-receptor for HIV. It was found that several long-term
exposed, uninfected people in unprotected sexual relation-
ships with HIV+ partners were homozygous for a 32 base-
pair deletion in the CCR5 gene. The CCR5D32 homozygotes
lived in good health without a functional CCR5 protein, but
were genetically resistant to infection by HIV [81]. The few
homozygous individuals who became HIV-positive carried
X4 variants of the virus. Individuals who are heterozygous
CCR5D32 are susceptible to infection (although probably at
a lower risk) but have a significantly slower rate of disease
progression. The CCR5D32 mutation is found only in Cau-
casians of European descent. There has been speculation as
to whether a previous pandemic pathogen such as smallpox
or plague might have selected for the mutation’s high fre-
quency in Europeans, but there is no strong evidence to
implicate a particular pathogen.

As mentioned earlier, CC chemokines can compete with
HIV for interaction with the CCR5 receptor. Therefore
the higher the plasma levels of chemokines, and the lower the
density of CCR5 on the target cell surface, the greater the
effect of the ligand-receptor module on HIV. In particular,
CCL3L1 (MIP-1aS) varies in gene copy number across
human populations, whereas an SNP in the CCR5 promoter
affect levels of co-receptor expression. Sunil Ahuja’s group in
Texas has shown [82] a synergistic effect of high CCL3L1 and
low CCR5 to delay disease progression (Fig. 5).

Prospect for HIV vaccine

The biggest disappointment in the field of HIV research has
been the failure to date to develop an efficaceous vaccine to
prevent infection. Neither envelope-based vaccines designed
to elicit neutralizing antibodies nor DNA and vector-based
vaccines designed to prime and boost cell-mediated immu-
nity have shown efficacy in field trials [83,84]. In fact, strong
immune responses to an adenovirus 5 vector carrying HIV
immunogenic genes may exacerbate the risk of HIV infection.

There have, however, been instances of protection in
macaques. Passive transfusion of antibody can protect
against challenge with the homologous SIV strain [85]. A
xenogeneic or allogeneic cell-based vaccine can effect
broader protection [86]. Live, attenuated SIV strains, e.g.
with deletion in nef, can protect adult macaques against chal-
lenge with a virulent strain [87], although the mechanism of
protection has yet to be elucidated satisfactorily. The anec-
dotal evidence that a small proportion of sex workers in
African cities acquired protective immunity attracted a lot of
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attention [88], but the protection appeared to be short-lived
if they went off the game.

The sheer variability of the millions of HIV-1 variants in
the 36 million currently infected people (Fig. 2) means that
vaccine-induced immunity will need to be broadly reactive,
at least within a clade [89]. There are some common features
among these myriad strains, e.g. the CD4 binding site on
gp120, but even here the epitope varies. For example, Denis
Burton’s b12 recognizes the CD4 binding site [90]; it is the
most broadly cross-neutralizing human mAb described to
date, but it neutralizes few clade C isolates, and none from
clades A, D or circulating recombinant form A/G.

There is growing interest in ‘therapeutic’ vaccines,
although I prefer the term ‘immunotherapy’. Given that
progression to AIDS can be controlled to a significant degree
by anti-retroviral drugs, the idea is to improve the immune
response to act synergistically with the anti-retroviral
therapy. One idea was that this might be achieved by encour-
aging natural immune mechanisms, such as allowing a drug
‘holiday’ with a temporary resurgence of viraemia to act as a
boost, but it has not yielded promising results. Another is to
immunize infected people with modified HIV antigens made
to appear more foreign, an idea akin to immunotherapy in
cancer. It is too early to say whether such an approach will be
beneficial.

Conclusions

Scientifically, the study of HIV and AIDS over the past
25 years has been fascinating (Fig. 5). It has led to prevention

through blood screening and to highly successful anti-
retroviral therapy for the majority of infected people who
have access to treatment. It has led us to a better understand-
ing of the complexities of the human immune system; but it
has not led to a cure for infection, and we do not yet have any
really promising leads for microbicides or for vaccines.

During the 1990s there was debate, especially among AIDS
‘activists’, on whether sufficient research funds were being
spent on therapeutics (in order to treat currently infected
people) as opposed to prophylactic vaccines (in order to
protect future generations). Happily, the cumulative funds
from governments, charitable foundations and pharmaceu-
tical companies available for AIDS research and develop-
ment is not a stumbling block today. What we need is a little
humility in the face of this insidious foe, HIV, further inten-
sive and extensive investigations and a startling, perhaps
serendipitous breakthrough.
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