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Abstract
We applied a recently developed multilocus association testing method (localized haplotype
clustering) to Wellcome Trust Case Control Consortium data (14,000 cases of seven common
diseases and 3,000 shared controls genotyped on the Affymetrix 500K array). After rigorous data
quality filtering, we identified three disease-associated loci with strong statistical support from
localized haplotype cluster tests but with only marginal significance in single marker tests. These
loci are chromosomes 10p15.1 with type 1 diabetes (p = 5.1 × 10-9), 12q15 with type 2 diabetes (p
= 1.9 × 10-7) and 15q26.2 with hypertension (p = 2.8 × 10-8). We also detected the association of
chromosome 9p21.3 with type 2 diabetes (p = 2.8 × 10-8), although this locus did not pass our stringent
genotype quality filters. The association of 10p15.1 with type 1 diabetes and 9p21.3 with type 2
diabetes have both been replicated in other studies using independent data sets. Overall, localized
haplotype cluster analysis had better success detecting disease associated variants than a previous
single-marker analysis of imputed HapMap SNPs. We found that stringent application of quality
score thresholds to genotype data substantially reduced false-positive results arising from genotype
error. In addition, we demonstrate that it is possible to simultaneously phase 16,000 individuals
genotyped on genome-wide data (450K markers) using the Beagle software package.
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Introduction
Single marker and multilocus association-testing methods are to some extent complementary,
as single marker methods have good power to detect common disease-susceptibility variants
while multilocus methods can have markedly higher power than single marker methods to
detect low frequency disease-susceptibility variants (Schaid 2004). In previous work we
investigated localized haplotype clustering, a multilocus method that for each marker creates
a partition of the set of haplotypes based on local patterns of linkage disequilibrium (LD).
Using simulated data we showed that testing both single markers and localized haplotype
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clusters for association with a disease gives increased power to detect low frequency disease
susceptibility variants while maintaining power to detect high frequency disease susceptibility
variants (Browning and Browning 2007a).

In this work we confirm the utility of localized haplotype cluster analysis using data from the
Wellcome Trust Case Control Consortium (WTCCC) on 14,000 cases of 7 common diseases
and 3,000 shared controls (The Wellcome Trust Case Control Consortium 2007). The diseases
studied were bipolar disorder (BD), coronary artery disease (CAD), Crohn's disease (CD),
hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes
(T2D). The WTCCC study used a significance threshold of 5 × 10-7 and identified 25
susceptibility loci with a significant p-value on an allelic or genotypic single marker test: 1 for
BD, 1 for CAD, 9 for CD, 3 for RA, 7 for T1D, 3 for T2D, and 1 for RA + T1D (combined
analysis). Using localized haplotype cluster analysis, we are able to identify an additional four
loci that were not significantly associated in the WTCCC's primary analysis, but that have
strong statistical support for association from localized haplotype cluster analysis:
chromosome 10p15.1 with type 1 diabetes (p = 5.1 × 10-9), chromosome 15q26.2 with
hypertension (p = 2.8 × 10-8), chromosome 12q15 with type 2 diabetes (p = 1.9 × 10-7) and
chromosome 9p21.3 with type 2 diabetes (p = 2.8 × 10-8).

In our analysis we applied stringent quality control filters to remove most of the hundreds of
significant results that were artifacts of differential genotyping error in cases and controls.
While this was very successful in removing many artifacts, we expect it also removed a number
of true signals. As a case in point, we have included a locus in chromosome 9p21.3 in our
results that has been shown to be significantly associated with type 2 diabetes in several studies
(Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007). A localized haplotype cluster at this
locus (localizing to SNP rs10811661) is significantly associated with type 2 diabetes in the
WTCCC data (p = 2.8 × 10-8); however, this result did not pass our stringent quality control
filters because one of the key markers had too much missing data.

We show that localized haplotype cluster analysis can have better success detecting disease
associated variants than single-marker analysis of imputed SNPs, we demonstrate that the use
of rigorous genotype quality control filters can substantially reduce the number of false positive
associations due to genotyping artifacts, and we give a cautionary example demonstrating that
some genotyping artifacts cannot be detected by visual inspection of genotype cluster plots. In
addition we demonstrate that more than 16,000 individuals can be phased simultaneously on
genome-wide data (450K markers) using the localized haplotype clustering-based haplotype
inference method implemented in the Beagle software package.

Materials and Methods
Wellcome Trust Case Control Consortium study data (The Wellcome Trust Case Control
Consortium 2007) were accessed from the Wellcome Trust Case Control Consortium web site
in July 2007. There are 2000 individuals in each of the seven disease cohorts and 3000 common
controls. Half of the controls are from the 1958 UK Birth Control Cohort (58C) and half are
from the UK Blood Services (NBS).

The study participants were genotyped on the Affymetrix GeneChip® Human Mapping 500K
Array Set (Matsuzaki et al. 2004), and genotypes were called using the Chiamo genotype
calling algorithm (The Wellcome Trust Case Control Consortium 2007). Genotypes with less
than 0.90 posterior probability were not called (i.e. set to missing) as suggested by the WTCCC.
We excluded 815 individuals and 30,586 autosomal markers which failed to pass the WTCCC's
quality control filters (The Wellcome Trust Case Control Consortium 2007). After the
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WTCCC's quality control filtering, the data set consisted of 16,179 individuals genotyped on
459,446 autosomal markers.

Haplotypic Analysis
Inference of haplotype phase, imputation of missing data, combined single marker and
localized haplotype cluster association analysis, and permutation testing were performed using
Beagle version 2.1.2 (Browning and Browning 2007a; Browning and Browning 2007b). For
each chromosome, we inferred haplotype phase and imputed missing data for the entire set of
16,179 individuals simultaneously using Beagle, with 1 sample per individual and 10 (the
default) number of iterations (Browning and Browning 2007b). Haplotype phasing was
performed blind to trait and cohort status.

For each disease, we created a case-control data set using phased data for the disease cohort
and for the two control cohorts (58C and NBS), and constructed a localized haplotype cluster
model using Beagle with default parameters (Browning and Browning 2007a; Browning
2006). In a localized haplotype cluster model, each haplotype cluster is localized to a specific
marker. At the k-th marker locus, the model clusters haplotypes which have similar probability
distributions for their alleles at markers > k. For each cluster of haplotypes, cluster membership
defines a diallelic marker since each haplotype in the sample is either present or absent from
the cluster. Thus testing localized haplotype clusters for association with a trait status is
conceptually equivalent to testing SNPs since the cluster is represented by a diallelic marker
(Browning and Browning 2007a). Localized haplotype clusters can be tested using standard
allelic and genotypic tests.

The construction of the localized haplotype cluster model from the phased haplotypes was
performed blind to trait and cohort status. We tested the original markers and localized
haplotype clusters for case-control allele frequency differences using Fisher's exact test. The
total number of allelic tests performed for each disease was between 2.02 and 2.05 million of
which 459,446 were single marker tests and approximately 1.5 million were localized
haplotype cluster tests.

For each disease, we used 1000 permutations of the trait status to determine a multiple-testing
adjusted p-value for each single marker and haplotype cluster test (Browning and Browning
2007a). The multiple-testing adjustment was applied separately to each disease, rather than to
all tests over all diseases simultaneously, so it controls for multiple testing within each disease
only. We identified all regions which contained at least one localized haplotype cluster with a
multiple-testing adjusted p-value <0.2, but which contained no SNP whose allelic or genotypic
test was significant at the p = 5 × 10-7 threshold used by the WTCCC. The multiple-testing
adjusted p-value threshold of 0.2 corresponds to a slightly different nominal p-value for each
disease, ranging between p = 2.0 × 10-7 and p=2.4 × 10-7.

Quality Control Filtering
We then subjected the identified regions to a series of increasingly stringent quality control
filters. The filtering process is summarized by the flowchart in Figure 1.

Filter 1 used WTCCC genotype cluster summary data. The WTCCC had visually inspected
approximately 100 SNPs per disease with apparent associations, and identified 578 SNPs with
bad genotype clustering (of which 481 had p < 10-5 on a genotypic or allelic test for at least
one disease). We excluded any region in which a haplotype cluster with a multiple-testing
adjusted p-value < 0.2 localized to a marker which was within a radius of 10 markers from a
SNP with bad genotype clustering identified by the WTCCC.
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We applied Filter 2 to all regions which passed Filter 1. The WTCCC used the Chiamo program
to call genotypes and reported that the best indicator of data quality for a SNP is the proportion
of missing genotypes (The Wellcome Trust Case Control Consortium 2007). Previous work
had shown that the Beagle haplotype phasing software can impute missing alleles in the
WTCCC genotype data with >99.2% accuracy. So our second filter set all Chiamo genotypes
with < 99% posterior probability to missing and then excluded markers with more than 2%
missing data. The choice of a 2% missing threshold was motivated by the observation that
cluster plots with obvious clustering problems tended to be associated with SNPs which had
more than 2% missing data. To apply this filter we extracted the genotype data for the 251
markers which were in a 125 marker radius of the localized haplotype cluster giving the smallest
allelic test p-value in the region. We set all genotypes in the 251 marker set with less than 0.99
posterior probability to missing, and we then excluded markers with more than 2% missing
genotypes. We phased, imputed missing alleles, and tested extracted data for association with
the trait status using Beagle with default parameters. Any region with no localized haplotype
cluster allelic test p-value < 6 × 10-7 was discarded (a higher p-value threshold was used than
in our primary analysis because discarding markers with >2% missing reduced the information
content of the data). The analysis of these 251 marker sets differed from the primary analysis
in some particulars: we required called genotypes to have a 0.99 probability (instead of a 0.9
probability), we excluded markers with more than 2% missing genotypes in addition to the
markers excluded by the WTCCC, we phased only the disease cohort and the two control
cohorts (instead of all nine cohorts), and we used default Beagle phasing parameters (four
samples per individual instead of one sample per individual).

All regions which passed Filter 2 were then subjected to two additional quality control filters
which gave similar results. For Filter 3A, we used R (R Development Core Team 2006) and
the read.wtccc.signals() function in the snpMatrix R package (Clayton and Leung 2007) to
create genotype cluster plots for the 21 markers in a 10 marker radius of the localized haplotype
cluster in each region which gave the smallest allelic test p-value. We discarded any region
with a genotype cluster plot that exhibited poor genotype clustering. For Filter 3B, we repeated
Filter 2 with a lower missing genotype threshold. All markers in a 125 marker radius of the
localized haplotype cluster with the smallest p-value in each region were extracted, all
genotypes with less than 0.99 posterior probability (as reported by Chiamo) were set to missing,
and markers with more than 0.5% missing genotypes were excluded. The filtered data were
reanalyzed, and any region with no localized haplotype cluster allelic test p-value < 6 × 10-7

was discarded.

Results
The preliminary analysis identified 349 regions (18-89 regions/disease) which had an allelic
localized haplotype cluster test with a multiple-testing adjusted p-value < 0.2, but which
contained no single markers with an allelic or genotypic test p-value less than the WTCCC
significant threshold of p = 5 × 10-7. Our haplotype phasing and model building were performed
blind to trait status to avoid introducing artificial differences between cases and controls. Thus
these results reflect real case-control differences in genotype data, although most are in fact
due to differential genotyping bias between cases and controls (Clayton et al. 2005) rather than
to association with a disease-susceptibility locus. Nonetheless, this successful identification of
a large number of regions with genuine case-control differences confirms that localized
haplotype cluster analysis is capable of detecting case-control differences that are not
detectable with single-marker analysis.
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Quality Control Filtering
The quality control filtering process is described in detail in the Materials and Methods section
and the results of the filtering are summarized in Figure 1.

Filter 1 excluded 107 regions in which the localized haplotype cluster with smallest p-value
was near one of the 578 SNPs with bad genotype cluster which had been identified by the
WTCCC. In most instances the marker with bad genotype clustering is the same as the marker
corresponding to the location of the localized haplotype cluster with the smallest p-value. This
left 242 regions showing at least one haplotype cluster with multiple-testing adjusted p-value
< 0.2.

Filter 2 involved reanalysis of the data after setting Chiamo genotypes with < 99% probability
to missing and excluded markers with > 2% missing data. 219 regions that had markedly
increased p-values were excluded, leaving 23 regions. The mean number of markers per 251
marker data set with > 2% missing data was 34 (range 19-49).

Filter 3A involved visual inspection of genotype cluster plots. We observed that if there was
a bad cluster in a 10 marker radius of the signal, invariably the bad cluster was either the same
marker as the localized haplotype cluster giving the signal or the immediately preceding
marker. Five of the 23 regions had good clustering. In these five regions with good clustering
only two SNPs had a Hardy-Weinberg equilibrium p-value < 0.01 in the 10-marker radius of
the localized haplotype cluster with the smallest p-value, and both of these SNPs had more
than 2% missing data and had been excluded by our second filter.

We also investigated whether we could achieve similar results without visual inspection of
cluster plots by requiring more rigorous genotype quality filtering. Filter 3B resulted in an
average of 102 of 251 markers being removed from each region (range 89-115). The 17
excluded regions had markedly increased p-values (p > 1.5 × 10-4), and the remaining 6 regions
included the 5 regions with good genotype clustering that passed Filter 3A. So use of a stricter
genotype quality threshold could have been used to substantially reduce the number of
genotype cluster plots inspected, but stricter genotype quality filters would also be more likely
to filter out true disease susceptibility variants. However, it is still possible for markers to have
fewer than 0.5% genotypes with less than 99% probability and still exhibit bad clustering (see
Supplementary Figure 1).

Additional Genotyping Artifacts
After careful examination we ruled out two of the five regions. These two regions were found
on two different chromosomes for CAD and corresponded to a two and a three marker
haplotype with localized haplotype cluster p-values of 1.5 × 10-7 and 1.9 × 10-8. The significant
haplotype clusters contained 23 and 24 individuals, of whom 22 were cases in each cluster.
Seventeen individuals (all affected individuals) were common to both haplotype clusters, even
though the clusters were on different chromosomes. Consequently, these two regions almost
certainly represent either an artifact or a strong interaction since the probability of this degree
of overlap in independently selected subsets of individuals is miniscule. We think these two
regions are an artifact since the genotype cluster plots show that the affected individuals in the
significantly associated haplotype clusters appear to be over-represented on the extremities of
the genotype clusters, for one marker in each haplotype. These two cluster plots are shown in
Supplementary Figure 2. Interestingly, we also observed that 8 pairs of the 27 affected
individuals in the union of these two clusters had consecutive sample identifiers, and for 7 of
the 8 pairs, one or both individuals were from the North Midlands geographic region. Since
four of the eight pairs were split between separate plates and the 27 affected individuals were
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distributed across 15 plates for genotyping, it is unlikely that plate effects explain this apparent
artifact.

If we hadn't detected both of these CAD loci and noticed that the associated haplotype clusters
shared many of the same individuals, these artifacts would have gone undetected in our analysis
since the loci passed standard quality control filters based on proportion of missing data, HWE
p-value, and visual inspection of clustering on genotype signal plots. For both loci, there is less
than 0.5% missing data for the markers defining the haplotype, the markers are in HWE (p >
0.10), and the genotypes appear to cluster satisfactorily on the cluster plots.

Associated Regions
After discarding the two regions associated with CAD that appear to be artifacts, there are three
remaining regions that showed association following our rigorous quality control filters. We
will next examine these 3 associations along with a fourth region (9p21.3) associated with
T2D. This fourth region is included as an example of a well-replicated association that has a
highly significant p-value with Beagle, although failing to pass our stringent quality control
filters, and that is not detected by single marker tests in these data. Figure 2 shows p-values
for genotyped SNPs, imputed HapMap SNPs, and localized haplotype clusters in these 4
associated regions. P-values are calculated after excluding SNPs with > 2% of Chiamo
genotypes having < 99% posterior probability (except for the 9p21.3 region for T2D where
one of the key markers had 4% of genotypes with < 99% probability). All plots show 251
contiguous genotyped markers, except for chromosome 12q15 (T2D), for which one marker
in the region was identified by the WTCCC as having bad clustering and was discarded (the
marker with the bad genotype clustering was ∼100 markers away from the localized haplotype
cluster with the signal). Table 1 gives the genomic region, allelic test p-value, allelic odds ratio
and case and control frequency for the localized haplotype cluster showing strongest
association in each region. For three of the four regions, the localized haplotype clusters
showing the strongest association correspond to single haplotypes: the C-C haplotype for
rs2104286 - rs12722489 (10p15.1; T1D), the C-A-A haplotype for rs11632637 - rs7182413 -
rs11037474 (15q26.2; HT), and the G-A-T haplotype for rs2891169 - rs2383208 - rs10811661
(9p21.3; T2D). The localized haplotype cluster associated with T2D on chromosome 12q15 is
not easily characterized due to the extensive LD in the region.

The association of variants in the IL2RA gene region in chromosome 10p15.1 with type 1
diabetes has been well established (Lowe et al. 2007; Qu et al. 2007; Vella et al. 2005).
Although single marker allelic and genotypic tests of genotyped SNPs and imputed HapMap
SNPs only showed marginal significance for this loci (genotyped SNP minimum p = 7.3 ×
10-6; imputed SNP minimum p = 1.1 × 10-6), the localized haplotype cluster tests yielded strong
evidence of association (p = 5.1 × 10-9) with a p-value more than 2 orders of magnitude smaller
than the smallest single marker p-value in the region.

The second associated region (chromosome 15q26.2 with HT), contains only one gene,
NR2F2 (nuclear receptor subfamily 2, group F, member 2). A study using the Dahl salt-
sensitive rat has identified the homologous gene Nr2f2 as involved in control of blood pressure
in the rat (Joe et al. 2005). The most significant localized haplotype cluster had an allelic test
p-value of 2.2 × 10-7, and a p-value of 2.8 × 10-8 when heterozygotes and minor allele
homozygotes were grouped together. For comparison, the smallest single marker p-value from
a genotyped or imputed SNP in the region was a genotypic test p-value that was two orders of
magnitude larger (p = 5.3 × 10-6).

The third associated region (chromosome 12q15 with T2D) has been implicated in two linkage
scans of type 2 diabetes (Bektas et al. 2001; Ehm et al. 2000). Localized haplotype cluster
analysis provided improved evidence for association (p = 1.88 × 10-7) to 12q15 compared to
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single marker tests (genotyped SNP minimum p = 1.5 × 10-6; imputed SNP minimum p = 7.0
× 10-7). Initial replication studies of this region have not found association: data from two UK
cohorts for five SNPs (Zeggini et al. 2007) and from two Finnish cohorts for one SNP (Scott
et al. 2007) did not show significant association with type 2 diabetes at the 0.05 level.

The fourth associated region (chromosome 9p21.3 with T2D) has been convincingly replicated
in several independent data sets (Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007). For
the WTCCC data in this region, the smallest single marker p-values were non-significant in
the context of a genomewide study (genotyped SNP minimum p = 1.5 × 10-4; imputed SNP
minimum p = 2.4 × 10-5), but the minimum localized haplotype cluster p-value (p= 2.8 ×
10-8) was significantly associated after adjusting for all single marker tests of genotyped SNPs
and all localized haplotype cluster tests (multiple testing adjusted p < 0.05).

Discussion
Localized haplotype cluster analysis identified four regions with significant (p < 3 × 10-7) or
highly significant (p < 3 × 10-8) associations that were only marginally significant (p > 5 ×
10-7) using single marker tests of genotyped and imputed SNPs. Performing localized
haplotype cluster tests in addition to single marker tests of genotyped markers increased the
number of tests by a factor of 4.5, but decreased the minimum p-values in these four regions
by factors of 8, 200, 1400, and 5000.

Three of these associations passed our stringent quality control filters and are unlikely to be a
consequence of genotyping artifacts. The genotype cluster plots within a 10 marker radius of
the strongest signal were visually inspected and all three regions showed good clustering.
Furthermore, the signal was still present after requiring called genotypes to have 99% posterior
probability and removing markers with more than 0.5% missing genotypes. The WTCCC found
very little evidence of population stratification in their extensive analysis. So we believe that
these results are unlikely to be artifacts of population stratification. We also note that each of
these three regions has either been replicated or has additional evidence for association from
previous studies. The fourth association (9p21.3 with diabetes) did not pass our rigorous quality
control filters, but is unlikely to be a genotyping artifact because it has been well-replicated in
independent studies using a variety of genotyping platforms (Saxena et al. 2007; Scott et al.
2007; Zeggini et al. 2007).

In our analysis, we have used the most likely haplotype for each individual conditional on the
individual's genotype data and the haplotype model. The results from the current study
demonstrate that the most likely inferred haplotypes for this data set are sufficiently accurate
to detect associations without incorporating phase uncertainty into the analysis.

In this study we restricted our focus to regions which did not show significant association (p
< 5 × 10-7) in single marker tests. However, localized haplotype cluster analysis should be
viewed as a complement to single marker analysis, not a replacement for single marker analysis
(Browning and Browning 2007a). For example, some of the significant regions identified by
single marker analysis of the WTCCC data were not significantly associated with a localized
haplotype cluster at the 5 × 10-7 significance threshold.

Comparison with Analysis of Imputed HapMap SNPs
Recently, there has been interest in multilocus methods which impute data for ungenotyped
markers that have been genotyped on a reference panel, such as the HapMap SNPs. The imputed
data for the ungenotyped markers are then tested for association with a trait. The WTCCC
performed an imputation-based analysis (Marchini et al. 2007; The Wellcome Trust Case
Control Consortium 2007). Phased haplotypes obtained from phase 2 of the HapMap (The
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International HapMap Consortium 2007) were used to impute SNPs that were present in the
phased haplotypes, but not in the Affymetrix 500K array. The imputation approach had limited
success detecting disease associated variants when applied to the WTCCC data. It identified
two regions which had no single marker p-values less than their 5 × 10-7 threshold, but at least
one imputed marker p-value less than this threshold. The imputation gave a trivial decrease in
single marker p-values in one of these regions (from p = 5.0 × 10-7 to 4.5 × 10-7). In the other
region there was a larger change, from a genotyped marker p-value of 7.2 × 10-7 to an imputed
marker p-value of 5.1 × 10-8 (The Wellcome Trust Case Control Consortium 2007), but
replication studies of the imputed SNP in the second region have given inconsistent results
(Lowe et al. 2007). Interestingly, the number of single markers tested by the imputation
approach was 2.1M which is approximately the same as the total number of tests (single
markers and localized haplotype clusters) performed by Beagle, yet imputation was not able
to find significant association for four regions in this data set which were detected by localized
haplotype cluster analysis (see Figure 2). Two of these four regions have been convincingly
replicated: the IL2RA gene region in chromosome 10p15.1 associated with type 1 diabetes
(Lowe et al. 2007; Qu et al. 2007; Vella et al. 2005) and the chromosome 9p21.3 region
associated with type 2 diabetes (Saxena et al. 2007; Scott et al. 2007; Zeggini et al. 2007). Thus
the localized haplotype cluster analysis had greater success detecting disease-associated
variants than the analysis of non-genotyped, imputed HapMap SNPs: a greater number of truly
associated regions were identified and the localized haplotype clusters had a much more
marked decrease in p-values relative to single marker analysis.

Although imputation analysis and localized haplotype cluster analysis are both multilocus
analyses, they should be viewed as complementary analyses with important differences.
Imputation analysis tests for association with known variants, while localized haplotype cluster
analysis tests for association with haplotype clusters that are proxies for variants that can be
either known or unknown. Although knowledge of variation in the genome is improving
rapidly, it is still limited at present, and our analysis indicates there are benefits to employing
methods designed to detect “unknown” variants. For example, according to supplementary
information in Zeggini et al. (2007), the haplotype in chromosome 9p21.3 that is associated
with type 2 diabetes cannot be accounted for by any single SNP genotyped in the in the
Caucasian HapMap samples. The p-values from single marker tests of association with type 2
diabetes in 9p21.3 were unremarkable for both genotyped SNPs (p > 10-4) and imputed
HapMap SNPs (p > 10-5) in the context of a genome-wide study, whereas the localized
haplotype cluster test result was highly significant (p = 2.8 × 10-8, multiple testing adjusted p
< 0.05). The association detected between 9p21.3 and type 2 diabetes demonstrates that
localized haplotype cluster analysis can detect additional disease-associated variants that are
not detected by HapMap-based imputation analysis.

Another difference between HapMap-based imputation analysis and localized haplotype
cluster analysis is related to marker ascertainment. The SNPs genotyped in the HapMap are
enriched for high frequency variants (The International HapMap Consortium 2007), and so
multilocus imputation methods that impute SNPs genotyped in the HapMap may not yield
substantial power to detect low frequency susceptibility variants. Servin and Stephens
(2007) found that imputation was not powerful for detecting untyped low frequency (< 5%)
variants. In contrast, previous work has shown that localized haplotype cluster analysis is
particularly powerful to detect low frequency susceptibility variants, and consequently should
generally be combined with single marker analysis (Browning and Browning 2007a).

Of these differences, we believe the first one (limited knowledge of genotype variation) is the
most likely explanation for the greater success of localized haplotype clustering relative to
imputation seen in our results. The four significant localized haplotype clusters that were not
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detected through single marker tests of genotyped and imputed SNPs are not particularly rare
(Table 1).

This study demonstrates that localized haplotype cluster analysis can identify additional
associated regions that are not detected by single marker tests using whole genome association
study data. Our intention was to demonstrate the utility of localized haplotype cluster analysis.
Undoubtedly, additional associated variants could be found by using less stringent quality
control filters. We only considered loci with which were also associated after excluding
markers which had more than 2% of genotypes with posterior probability < 0.99. Use of
genotypic tests in addition to allelic tests and use of more liberal genotype quality filters would
result in fewer disease-associated variants escaping our net, but one would expect that a larger
number of genotyping artifacts would need to be identified by visual inspection of genotype
cluster plots or by genotyping using an alternative genotype assay.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flowchart summarizing the genotype quality filters applied to the data to screen out results
that may be false positive due to poor genotype quality. A detailed description of each filter is
given in the Materials and Methods section. The flowchart also shows the number of regions
containing highly significant localized haplotype clusters after each filtering step; full details
are given in the Results section.
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Figure 2.
Single genotyped marker (filled circle), single imputed marker (open circle) and localized
haplotype cluster (cross) p-values in 4 regions showing strong evidence of association between
trait and localized haplotype clusters Allelic and genotypic test p-values are shown for single
markers, and allelic test p-values are shown for localized haplotype clusters. All p-values were
calculated using Fisher's exact test. . The candidate region, delimited by the dashed vertical
lines, contains all markers that are in moderate to strong linkage disequilibrium with the signal
based on pairwise linkage disequilibrium data and recombination hotspot data from phase 2 of
the HapMap. Genes in each delimited candidate region are listed the upper right corner of the
plot. Positions are in NCBI Build 35 coordinates.
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