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Abstract
Background: Genetic regulatory networks (GRN) can be described by differential equations with
SUM logic which has been found in many natural systems. Identification of the network components
and transcriptional rates are critical to the output behavior of the system. Though transcriptional
rates cannot be measured in vivo, biologists have shown that they are alterable through artificial
factors in vitro.

Results: This study presents the theoretical research work on a novel nonlinear control and
stability analysis of genetic regulatory networks. The proposed control scheme can drive the
genetic regulatory network to desired levels by adjusting transcriptional rates. Asymptotic stability
proof is conducted with Lyapunov argument for both noise-free and additive noises cases.
Computer simulation results show the effectiveness of the control design and robustness of the
regulation scheme with additive noises.

Conclusions: With the knowledge of interaction between transcriptional factors and gene
products, the research results can be applied in the design of model-based experiments to regulate
gene expression profiles.

Background
Genetic networks regulate sophisticated biological func-
tions by interacting genes and proteins and support
homeostasis in metabolism and coordinate events during
the developmental program. Research on stability analy-
sis and regulation/control of these genetic networks are
particularly important. Pioneer experimental studies in
construction of genetic networks to manipulate protein
levels or even to construct gene circuits with repressor
functions have been carried out [1-9]. These experiments

have demonstrated interesting properties of GRNs of E.
coli in the presence of specified repressors. With different
repressors, these GRNs include single or multiple interac-
tions between genes and proteins. In a single gene regula-
tory network [1], the negative feedback that is integrated
in the system decreases cell-to-cell fluctuations in protein
concentration measurements. Distribution of the regu-
lated protein concentration is proportional to the degra-
dation rate of the gene network. In a two-gene regulation
network [3], bi-stability is shown by coupling two pro-
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teins with negative regulation in the synthesis of each
other. Stability analysis of this bi-gene regulation network
is also presented based on parameter bifurcations. The sig-
nificance of this experiment is that the transition between
two stable states of the GRN is much sharper with respect
to the intracellular stimuli, i.e., performance can be
adjusted by special input. In a tri-gene regulatory model
[2], three genes are regulated with cyclic repressibility. The
system exhibited self-sustained oscillations over the entire
growth phase of the host E. coli cells for certain biochem-
ical parameters. These biological experimental results
have shown that genetic networks can be regulated by a
scheme of local promotor control, i.e. the number, type
and placement of regulatory protein binding sites. How-
ever, quantitative analysis of the regulation function has
not been studied.

The objective of our current study is to develop a mathe-
matical model of the tri-gene regulation network and
extend the theoretical stability analysis to the case with
measurement noises. A novel control scheme is proposed
to change the state of a genetic regulatory network by
adjusting transcriptional rates. The proposed control
scheme can provide biologists useful design techniques in
model-based experiments to predict protein levels in
genetic regulatory networks by adjusting specific regula-
tory factors. We will use the biological scheme of adjust-
ing regulatory factors reported in research articles [9-14].
These regulatory factors will be adjusted based on errors
between the measured gene products, mRNA and protein,
concentration levels and their desired values to regulate
the gene expressions profiles. The proposed control is
based on the concentrations of mRNAs and proteins
which can be easily measured by current molecular biol-
ogy techniques. Therefore, it's useful when some of the
transcription rates are unmeasurable.

We will introduce the general model of GRNs to explain
the work, present the control design and the stability anal-
ysis , and then give a simulation example and conclusion.

Mathematical model of genetic regulatory 
networks
A gene regulatory network for a eukaryote is shown in fig-
ure 1. Potential inputs of the system include a variety of
developmental and environmental stimuli. System out-
puts are the synthesized proteins. Inputs activate a com-
plex chain of intracellular reactions that activate a
regulatory molecule, transcriptional factor, to translocate
from the cytoplasm into the nucleus. In the nucleus, active
transcription factors recognize a specific segment of DNA,
termed a promotor. The promotor informs RNA polymer-
ase, which binds closely to the promotor, where to start
transcribing genetic information on DNA to mRNA. The
mRNA molecules then leave the cell nucleus and enter the

cytoplasm where proteins are synthesized in the presence
of transfer RNAs. When the translated protein is capable
of interacting with its own or other gene's transcription
factor (denoted by the dashed arrow in figure 1, a regula-
tory or feedback loop is formed. Such transcriptional reg-
ulation is the typical method utilized by cells to control
gene expression [9,15]. Feedback can occur in either a
positive (activator) or a negative (repressor) direction. In
a gene regulatory network, natural regulatory molecules
are either activated transcription factors or proteins that
activate transcription factors. Gene expression is very sen-
sitive to changes in the composition of regulatory factors,
which limits attempts to control gene expression. If artifi-
cial regulatory factors [10-14] can be used to change the
activity of the transcription factors and the affinity of DNA
binding, we can affect the transcriptional rate in GRNs
and control the output behavior of the GRNs. Thus, in
order to derive novel agents that regulate gene expres-
sions, we must first understand GRN output behavior.

Two types of mathematical models have been developed
to understand the working scheme of genetic networks:
(1) Boolean networks and (2) sets of differential equa-
tions [9,16-19]. Boolean network model describes the
expression of each gene with two states: ON or OFF, and
the state of a gene is determined by a Boolean function of
the states of other related genes. The differential equation
model describes concentrations of mRNAs and proteins as
continuous functions, which can provide more accurate
and detailed dynamic information. Since genetic net-
works are high dimensional and nonlinear in nature, it is
logical to consider such genetic networks from a nonlin-
ear dynamic viewpoint, i.e., nonlinear differential equa-
tions. From a control point of view, main purpose of our
mathematical model is to predict and manipulate the
dynamic behaviors by analyzing available measurements.
Researches of control design for Boolean networks have
been carried out [20,21], while for continuous differential
model, there are comparatively few literature references
available [22].

In this section, the studied genetic network model is
described by nonlinear differential equations

where mi(t) and pj(t) are the concentrations of mRNAs and
proteins in a genetic regulatory network, i = 1, 2, … , n,
and j = 1, 2, … , m. Parameters kmi and kpj are degradation
rates of the mRNAs and proteins, kdji are assumed to be
constants describing the link between mRNAs and pro-
teins. If the jth protein regulates the ith gene as illustrated
by the dashed arrow in figure 1, there is a regulatory link
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A gene regulatory process.Figure 1
A gene regulatory process. A gene regulatory process includes input (chemical signals), output(proteins) and feedback (reg-
ulatory) factors.
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in the network. Such regulation effects of proteins to gene
expressions are described by wrapped nonlinear terms
bi(p1(t), p2(t), … , pm(t)), which are nonlinear functions of
p1(t), p2(t), … , pm(t), and can be described by SUM logic
(additive effect) of each protein to the specified gene.
Detailed description of the relationship between αis, bis
and transcriptional factors have been previously pub-
lished [9,17,18]. Adjustment of the regulatory factors will
change parameters αij in the mathematical depiction writ-
ten in equation (2).

where case 1 represents that transcription factor (protein)
j is an activator of gene i, and in case 2, transcription factor
j is a repressor of gene i. Parameters H in equation (2) is
the Hill coefficient, β is a positive constant, and αij is the
dimensionless transcription rate of transcription factor j
to gene i. Equation (1) can be rewritten as the following
form by applying (2)

where

 Vector  is determined by

within Ωij, which is a set of repressors for gene i. Matrix

 describes the interconnection of transcription

factors and genes in the network with element αij,

and

 Some special properties of the nonlinear function g(p(t))
should be pointed out:

• g(pj) > 0 always holds with pj > 0 and the equal sign
holds only when pj =0;

• g(pj) is a monotonic increasing function, i.e.

• g(pj) satisfies a sector condition, which can be obtained

from the mean-value theorem,

 and thus,

 where

 The vector case

of the above equation can be expressed as

where γ = max {γ1, γj …, γm}.

Combine the state m(t), p(t) together, the state space
model for control design and stability analysis is written
as follows:

where

Methods: adaptive control of genetic networks in 
a noise-free case
Nonlinear adaptive control has been applied to many sys-
tems to improve performance. The control objective here
is to drive the current state of genetic networks to desired
values m* and p*. In order to make the control design bio-
logically meaningful, the following assumptions are
introduced.

Assumption 1: Transcription rates of mRNAs in the studied
genetic network are adjustable.
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This assumption guarantees the possibility of adjusting
the transcription rates and drive the current states to the
desired values.

Assumption 2: State x*T = [m*T p*T] is the stable steady state
generated by the same genetic network in equation (3) with
desired transcription rates.

This assumption guarantees that m* and p* are achievable
and has biological meaning for a real genetic network. The
stability also guarantees that once the state is driven to x*,
it will stay there.

The control design proposed here includes two parts: i)
stability analysis of x* generated by the genetic network
with the desired degradation, transcription rate, the given
sector parameter γ; ii) control design to drive the current
states to the desired x*. Assume x* is generated by

where  is the desired transcription rates. Stability of the

genetic network means: (1) State x* is the equilibrium of

equation (7), i.e.  (2) Starting

at any initial states x0 close to x*, the trajectory will con-

verge to x* as time goes to infinity. If we define e* = x − x*,

the error e → 0 as t → ∞.

Lemma 1: The system (7) is globally exponentially stable if the

transfer function matrix G(s) = Cc(sI − AC)−1 is strictly pos-

itive real, i.e. with the controllable and observable

pair , there exist positive matrices P and Q, P =

PT, such that

Proof: With constant x*, the error dynamics can be
expressed as

Choosing the Lyapunov function  its

time derivative  is obtained by the following equa-

tions.

which is negative definite since (Cce)T {g[Cce + Ccx*)]—
g(Ccx*)} > 0 by applying equation (5). Thus, the error
dynamics will converge to zero exponentially by satisfying
the strict positive real condition given as equation (8) on
the system parameters.

Remark 1: Lemma 1 gives a sufficient condition on param-
eter settings for a stable genetic network. The stability is
determined by system parameters and the sector condi-
tion of the nonlinear feedback function.

Lemma 1 provides an easy way to check the stability of a
genetic network, since it is easy to get the transfer function
for linear time invariant system and check whether the
transfer function is strictly positive real or not.

Remark 2: While applying the small gain theorem, with

the consideration of the sector parameter γ, we can get the
sufficient and necessary condition:

 Since the necessary condition

is not involved in the following control design, we ignore
the proof here. Related information of it can be found in
[23-25].

Based on the above stability analysis, the following theo-
rem gives the control design that drives the current state to
the desired state by adjusting the transcription rates of the
system.

Theorem 1: Assume transcription rates of gene i in system
(7) can be adjusted by the control law

where i = 1, 2, … , n, j = 1, 2, … , m, ek is the kth element
in the error vector between the current state and the
desired state, i.e., e = x—x*, gj = g(pj(t)), Pij is the element
in the positive definite matrix P defined in equation (8).
The system (6) will converge to the desired state x* asymp-
totically as time goes to infinity.
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Proof: From equations (6, 7), the error dynamics is

Choose Lyapunov candidate

 where  are

defined as  Recall that the bot-

tom block with m × n dimension in both matrices are

zeroes,  is only related to the transcription rates in the

system. Thus, the time derivative of the Lyapunov func-
tion can be derived as follows.

with the adaption control chosen as

From the above Lyapunov argument, with a positive defi-

nite V and negative definite  all the errors decrease to
zero. This concludes the proof that the tracking error of
the genetic network from current state to the desired state
is globally asymptotically stable with the adaptive control
given in (11), i.e., the states are driven to desired levels. As
the tracking errors converge to zero, the adjustable tran-

scription rates αij will converge to constants.

Boundedness with additive noises
When signals are sensed, signal distortion, transmission
delay and noise are unavoidable. In this section an addi-
tive measurement noise will be considered, and the dis-
torted measurements of mRNA and protein concentration
levels will be used in the adaption law.

Considering the aforementioned system in equation (6)
with additive noises

where  are piece-

wise continuous in t, the systems can be viewed as the
nominal system

with perturbation term d(t, x). The variable u is a function
of x and is omitted here for simplicity.

Assume the nominal system has an equilibrium point at
the origin, if d(t, x) = 0 as x = 0, then the origin is still an
equilibrium point with the disturbance d(t, x). However,
in most cases, the disturbance does not satisfy this
assumption, i.e. d(t, 0) ≠ 0. In this case, the origin is not
an equilibrium point and no conclusion can be drawn
about stability of the origin. The following Theorem
shows that the best result we can expect is the uniform
boundedness of the disturbed system when the origin is
exponentially stable.

Theorem 2: Consider the system and adaptation laws given
by equations (6), and (11), the system is uniformly

bounded with disturbance  where δ is a posi-

tive constant. The upper bound bu and lower bound bl of

the system is determined by

where 0 < μ < 1, respectively. αis are positive constants
defined as follows.

proof From the proof of Theorem 1, the error dynamics of
the whole system is exponentially stable at the origin.

Thus, there exist a Lyapunov function 

satisfies the following condition:

With the additive noise disturbance (t, Φ) considered, the
time derivative of V2 is rewritten as

�e Acx Bcu l Ace Bc g Bc g

Ace g Bc

y y

Bc Bc y g y

= + + = − +

= − −

( ) ( )

−( ) ( ) ( )−

*

*

*

* gg y*( )⎡⎣ ⎤⎦

V e Pee ij
T

kij iji j
i n j m

, ,
, ,� �α α( ) =

= =∑= +1
2

1
2

2
1 �αijs

�α α αij Bc Bc ij ij= − = −* *.

�αij

� � � � ��V eT Pe eT Pe
kij

ij ij
i j

i n j m

eT Ac
T g y

= +

=

+( )
=

= =
∑

− ( )

1
2

1
2

1

1
α α

,

,

TT Bc Bc
T

g y g y T Bc
T

Ace Bc Bc

Pe

eT P

−( ) − ( )− ( )⎡⎣ ⎤⎦
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

− −+

* * *

1
2

** * *
,

,
( ) ( )− ( )− ( )⎡⎣ ⎤⎦{ } +

=

= =
∑

=

g y Bc g y g y
kij

iji j

i n j m

eT

1

1

1
2

� ��α α

PPAc Ac
T P g Cce Ccx g Ccx

Bc Bc

e eT PBc

eT P

+⎡
⎣⎢

⎤
⎦⎥ +⎡

⎣⎢
⎤
⎦⎥
− ( ){ }

−

−

−

* * *

*(( ) ( ) +
=

= =
∑

≤ − − +

g
kij

ij iji j

i n j m

eTQe ekPki ij g j k

y
1

21

1
2

1

� ��

�

α α

α

,

,

iij
ij iji j

i n j m

i j k

i n j m k n m

eTQe

� ��α α
,

,

, ,

, ,

=

= =
∑

=

= = = +
∑

≤ −

11

1
2

�� �α αij ij kij ekPkig ji j k
i n j m k n m= − = =
= = = +∑ , ,

, , .1

�V

�x f dt x t x= +( ) ( ), , ,

f n n d n n: , :ℜ+ × ℜ → ℜ ℜ+ × ℜ → ℜ

�x f t x= ( ), ,

d t x,( ) ≤ δ

bu bl= =
α δ

α μ

α

α

α δ

α μ

4

3

2

1

4

3
, ,and

V e ij
T( ), [ , ]Φ Φ= α

α α

α

α

1 2

3

2 2

2

4

Φ Φ

Φ
Φ

Φ
Φ

Φ

Φ

≤ ≤

∂
∂

+
∂
∂

≤−

∂
∂

≤

( )

( )

V

V
t

V
f

V

t

,

,

.

,

Page 6 of 9
(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 1):S21 http://www.biomedcentral.com/1471-2164/9/S1/S21
for any  This gives the lower bound as

 From BIBO Theorem from the reference [26],

the upper bound can be determined as 

From theorem 2, it can be shown that with bounded
noises, both the state estimation errors and adaptation
control are bounded. With disturbance bound δ → 0, dif-
ferences between the adaptation control and the desired
constant transcriptional rates shrink to zero also.

Simulation results and discussion
To show the effectiveness of the proposed control, an
example is simulated with Matlab. We consider the
dynamics of the tri-gene network described in [2].

where i sequence is lacl, tetR, cl and j sequence is cl, lacl,

tetR, kmi = 1, kpi = 1, n = 2 and α is the control parameter.

With parameters chosen as αi = 2.5, the genetic network

has a globally exponential equilibrium at

 which is the steady state. Evolution

trajectories of mRNA and protein concentration levels are
shown in figure 2.

The control objective is to alter the current state x = [3, 2,
1, 1, 3, 2]T to the desired states x* by adjusting transcrip-

tion rates αi. Assume there is no regulation at the initial

state, the control law is chosen to be  Evo-

lution trajectories of mi and pi with control design are

shown in figure 3. The control variables are shown in fig-
ure 4. It can be seen that the steady states converge to x*

and the transcription rates converge to the desired value
2.5 in the simulation. The simulation also shows that the
convergence rate of the state and the parameter with the
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Controlled state of mRNA and protein levels in a 
noise-free case. (A) Controlled state of mRNAs of lacl, 
tetR, cl in the tri-gene regulatory in a noise-free case. The ini-
tial states of computer simulation start from initial status as 
[3, 2, 1]. (B) Controlled proteins cl, lacl, tetR in the tri-gene 
regulatory in a noise-free case. All states in (A) and (B) con-
verge to 1.115 less than 20 second simulation time.
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Uncontrolled State of mRNA and protein levels. (A) 
Uncontrolled state of mRNAs of lacl, tetR, cl in the tri-gene 
regulatory in a noise-free case. The initial states of computer 
simulation start from initial status as [3, 2, 1]. (B) Uncon-
trolled proteins cl, lacl, tetR in the tri-gene regulatory in a 
noise-free case. All states converge to 1.115 with in 50 sec-
ond simulation time.
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proposed control is faster than the original genetic net-
work.

In order to show the robust of the control scheme, an
additive white noise is injected to the measurements of
the mRNA and protein concentration levels. Magnitude of
the noises are bounded by 0.5. All parameter settings are
the same as the ideal case illustrated above. Simulation
results of the regulated mRNA and protein concentration
levels are shown in figure 5 and the control of the tran-
scription rates are shown in figure 6.

Conclusions and future research
In the current study, a general regulatory network is pre-
sented and a new control scheme is proposed. This
scheme controls the current states of the genetic network
to desired values. We have obtained global convergence of
the tracking error by online adjustment of the transcrip-
tion rates. We have applied Lyapunov argument to the
convergence analysis of the states and boundedness of the
transcription rates. A tri-gene regulatory is simulated with
the proposed algorithm. Effectiveness of the proposed
controller design is verified by Matlab simulation for
noise-free measurement and bounded noises.

In this research, interaction between the proteins and
mRNAs are described by Hill functions with SUM logic.
More detailed studies need to be carried out to determine
the structure of a real GRN and extend the control scheme
to more general cases. In addition, the estimation algo-
rithms are developed with continuous measurers of the
state. In real biological systems, such measures will be col-

Control parameters with measurement noises.Figure 6
Control parameters with measurement noises. 
Online estimated control variables αi with measurement 
noises. Initial values of αi are all chosen as zeros without los-
ing generality. Control parameters approach to 2.5 with lim-
ited error.
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Control parameters in a noise-free case.Figure 4
Control parameters in a noise-free case. Online esti-
mated control variables αi. Initial values of αi are all chosen as 
zeros without losing generality. Control parameters con-
verge to 2.5 with in 20 second simulation time.
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Controlled state of mRNA and protein levels with 
measurement noises. (A) Controlled state of mRNAs of 
lacl, tetR, cl in the tri-gene regulatory with measurement 
noises. The initial states of computer simulation start from 
initial status as [3, 2, 1]. (B) Controlled proteins cl, lacl, tetR in 
the tri-gene regulatory with measurement noises. The initial 
states of computer simulation start from initial status as [1, 3, 
2]T. All states in (A) and (B) converge to 1.115 with limited 
error.
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lected at specific time points. Estimation error caused by
sampling effects should also be considered. Together, our
results demonstrated that GRN could be regulated by arti-
ficially changing the transcription rates, to approach the
desired gene expression levels.
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