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Abstract
Background: Since the high dimensionality of gene expression microarray data sets degrades the
generalization performance of classifiers, feature selection, which selects relevant features and
discards irrelevant and redundant features, has been widely used in the bioinformatics field. Multi-
task learning is a novel technique to improve prediction accuracy of tumor classification by using
information contained in such discarded redundant features, but which features should be
discarded or used as input or output remains an open issue.

Results: We demonstrate a framework for automatically selecting features to be input, output,
and discarded by using a genetic algorithm, and propose two algorithms: GA-MTL (Genetic
algorithm based multi-task learning) and e-GA-MTL (an enhanced version of GA-MTL).
Experimental results demonstrate that this framework is effective at selecting features for multi-
task learning, and that GA-MTL and e-GA-MTL perform better than other heuristic methods.

Conclusions: Genetic algorithms are a powerful technique to select features for multi-task
learning automatically; GA-MTL and e-GA-MTL are shown to to improve generalization
performance of classifiers on microarray data sets.

Background
Tumor classification is performed on microarray data col-
lected by DNA microarray experiments from tissue and
cell samples [1-3]. The wealth of such data for different
stages of the cell cycle aids in the exploration of gene inter-

actions and in the discovery of gene functions. Moreover,
genome-wide expression data from tumor tissues gives
insight into the variation of gene expression across tumor
types, thus providing clues for tumor classification of
individual samples. The output of a microarray experi-

from The 2007 International Conference on Bioinformatics & Computational Biology (BIOCOMP'07)
Las Vegas, NV, USA. 25-28 June 2007

Published: 20 March 2008

BMC Genomics 2008, 9(Suppl 1):S3 doi:10.1186/1471-2164-9-S1-S3

<supplement> <title> <p>The 2007 International Conference on Bioinformatics &amp; Computational Biology (BIOCOMP'07)</p> </title> <editor>Jack Y Jang, Mary Qu Yang, Mengxia (Michelle) Zhu, Youping Deng and Hamid R Arabnia</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2164/9/S1/S3

© 2008 Yang et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/9/S1/S3
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2008, 9(Suppl 1):S3 http://www.biomedcentral.com/1471-2164/9/S1/S3
ment is summarized as an p × n data matrix, where p is the
number of tissue or cell samples and n is the number of
genes. Here n is always much larger than p, which
degrades the generalization performance of most classifi-
cation methods. To overcome this problem, feature selec-
tion methods are applied to reduce the dimensionality
from n to k with k <<n.

Feature selection chooses a subset of the original features
(genes) according to the classification performance; the
optimal subset should contain relevant but non-redun-
dant features. Feature selection can help to improve the
generalization performance of classifiers, and to reduce
learning time and the time required to classify out-of-sam-
ple data. There has been a great deal of work in machine
learning and related areas to address this issue [4-7]. In
most practical cases, relevant features are selected and
kept as input, while irrelevant and redundant features are
removed.

Although the removed features are redundant and weakly
relevant, they contain useful information that can be used
to improve prediction accuracy. Multi-Task Learning
(MTL) is a method of using the redundant information by
selecting features from the discarded feature set to add to
the target [8,9]. Although MTL achieves only limited
improvement, it is nevertheless useful for real world cases
like medical problems [10] and multivariate calibration
problems [11].

Previous studies of search methods for multi-task learning
mainly used heuristic methods [9,11], where the number
of features selected for the input and/or target is some-
what arbitrary. When the search method is regarded as a
combinational optimization problem, random search
methods can be used. The genetic algorithm [12] is a sim-
ple and powerful method which has obtained satisfactory
results for feature selection [13]. Motivated by this, we
proposed the random method GA-MTL (Genetic Algo-
rithm based Multi-Task Learning) [14], but GA-MTL did
not consider irrelevant features in the data sets. Here we
propose an enhanced version of GA-MTL (e-GA-MTL)
which codes one feature with two binary bits. The e-GA-
MTL algorithm and others are applied to tumor classifica-
tion on microarray data sets; it is found that e-GA-MTL
outperforms all other algorithms considered.

Results and discussion
In order to demonstrate the benefits of multi-task learning
methods, we have performed the following series of
experiments using artificial neural networks (ANNs) as
classifiers.

1. ALL is a baseline method; without any selection, all the
genes are input to the ANN for classification.

2. GA-FS uses a genetic algorithm to select genes and input
selected genes to the ANN.

3. H-MTL uses a heuristic embedded feature selection
method to search features, where some of the selected fea-
tures serve as input to the ANN and some of the features
are added to the output.

4. GA-MTL uses a genetic algorithm to search features,
where some of the selected features are input into ANN
and some of the features are added to the output.

5. GA-MTL-IR uses an embedded algorithm to remove
irrelevant features and then uses a genetic algorithm to
search features, where some of the selected features serve
as input to the ANN and some of the features are added to
the output.

6. e-GA-MTL also uses a genetic algorithm to search fea-
tures, and employs two bits to represent one feature; some
features are considered as irrelevant and discarded, some
of the selected features serve as input to the ANN, and
some of the features are added to the output.

The most important parameter of an ANN is the number
of nodes in hidden layer, M. To reduce the effect of this
parameter we ran the experiments with both M = 2 and M
= 10.

While different data sets, including data sets with only the
selected features, need different optimal parameters for
different methods, we do not try to find the optimal
parameters, because:

(1) It is infeasible to find the optimal parameters, because
this is an NP-hard problem.

(2) We are not interested in obtaining the best perform-
ance of one special method on a given data set; instead,
we are interested in demonstrating the effect of our pro-
posed framework.

Prediction performance
The average BACC values are shown in Figures 1 and 2 for
different values of the ANN parameters, where ALL means
all the genes are used as input for classification without
any gene selection. From Figures 1 and 2, we conclude
that:

(1) On average and for all the data sets, the multi-task
learning algorithms H-MTL, GA-MTL, GA-MTL-IR, and e-
GA-MTL perform better than the feature selection algo-
rithms GA-FS and ALL.
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(2) On average and for almost all the data sets, the genetic
algorithm based multi-task learning algorithms GA-MTL,
GA-MTL-IR and e-GA-MTL perform better than H-MTL, a
heuristic algorithm. Only on the leukemia data set, for an
ANN with M = 10 hidden units, does H-MTL perform
slightly better than GA-MTL and GA-MTL-IR.

(3) On average, e-GA-MTL performs the best among all
the learning algorithms.

(4) Although GA-FS performs worse than the multi-task
learning algorithms, it performs better than those without
any gene selection.

Performance of multi-task learning algorithms for ANNs with M = 2 hidden unitsFigure 1
Performance of multi-task learning algorithms for ANNs with M = 2 hidden units. Both graphs show balanced 
accuracy (BACC) scores. Top: Results grouped by data set. Bottom: Results grouped by multi-task learning algorithm
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Detailed statistical values of BACC, correction, sensitivity,
specificity, and precision are also listed in Tables 1,2,3,4
and 5, from which we conclude that:

(1) Although the results for ANNs with M = 10 are better
than those for M = 2, we can draw similar conclusions for
both series of results in terms of how the different meth-
ods compare.

(2) For all the measures, on average, multi-task learning
algorithms including H-MTL, GA-MTL, GA-MTL-IR, and e-
GA-MTL perform better than GA-FS and ALL, and genetic
algorithm based multi-task learning algorithms like GA-
MTL, GA-MTL-IR, and e-GA-MTL perform better than H-
MTL.

Performance of multi-task learning algorithms for ANNs with M = 10 hidden unitsFigure 2
Performance of multi-task learning algorithms for ANNs with M = 10 hidden units. Both graphs show balanced 
accuracy (BACC) scores. Top: Results grouped by data set. Bottom: Results grouped by multi-task learning algorithm.
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(3) Both e-GA-MTL and GA-MTL-IR remove irrelevant
genes; both obtain better results than the others for the
specificity, precision and BACC measures, on average. But
GA-MTL-IR performs worse than GA-MTL for other meas-
ures like sensitivity and correction.

(4) e-GA-MTL performs the best among all the learning
algorithms on average, for all the measures. It greatly
improves results for the BACC, sensitivity and specificity
measures.

The number of selected features
We show the number of features selected by each algo-
rithm in Tables 6 and 7, which also lists the number of
discarded features, input features, and target features. For
GA-FS, the features are selected as input or are discarded.
For GA-MTL, the features are selected as input or are

added to the target; no features are discarded. For H-MTL,
GA-MTL-IR, and e-GA-MTL, the features are selected as
input, are added to the target, or are discarded.

From Tables 6 and 7, we can see that:

(1) For GA-FS, about one third of genes are removed and
two thirds are used for classification. Furthermore, the
ratio of the number of input features to the number of
output features for GA-MTL is similar to the ratio of the
number of input features to the number of discarded fea-
tures for GA-FS.

(2) H-MTL and GA-MTL-IR both use the same prediction
risk criterion to discard irrelevant features, so the features
discarded are the same and hence the number of dis-
carded features are the same. The number of input features

Table 2: Mean and standard deviation (in parentheses) of correction scores (%), calculated over 50 hold out runs.

DATASET ALL GA-FS H-MTL GA-MTL GA-MTL-IR e-GA-MTL

M = 2 for ANN

Breast 53.1(9.5) 56.3(8.4) 59.3(8.8) 71.9(8.9) 68.8(8.1) 71.9(8.6)
Colon 57.1(7.8) 61.9(7.3) 66.6(7.1) 80.9(6.3) 85.7(6.4) 80.9(6.4)
Leukemia 57.7(9.3) 53.8(9.0) 61.5(9.5) 76.9(8.4) 76.9(9.1) 80.7(8.9)
Ovarian 57.1(6.4) 67.9(7.4) 75.0(5.4) 78.6(5.9) 79.8(5.1) 82.1(5.8)
Average 56.3(8.3) 60.0(8.0) 65.6(7.7) 77.1(7.4) 77.8(7.2) 78.9(7.4)

M = 10 for ANN

Breast 64.3(8.5) 67.3(8.7) 65.7(8.3) 75.4(8.3) 71.8(7.5) 75.8(8.0)
Colon 62.0(7.5) 71.2(7.2) 75.2(6.5) 85.1(6.7) 82.9(6.1) 83.9(6.3)
Leukemia 65.3(8.8) 69.2(8.4) 76.3(8.8) 84.6(8.9) 83.1(8.1) 85.6(8.3)
Ovarian 61.9(7.5) 65.4(7.7) 78.6(6.4) 80.9(6.8) 82.1(6.4) 83.3(6.8)
Average 63.4(8.1) 68.3(8.0) 74.0(7.5) 81.5(7.7) 80.0(7.0) 82.2(7.4)

Table 1: Mean and standard deviation (in parentheses) of BACC scores (%), calculated over 50 hold out runs.

DATASET ALL GA-FS H-MTL GA-MTL GA-MTL-IR e-GA-MTL

M = 2 for ANN

Breast 53.2(9.3) 56.1(8.6) 59.8(8.5) 72.0(8.3) 69.0(8.4) 72.4(8.4)
Colon 50.0(8.8) 46.7(8.5) 58.1(7.9) 78.6(8.4) 85.7(8.1) 78.6(7.8)
Leukemia 59.1(7.8) 59.7(8.2) 65.2(7.9) 79.6(7.9) 76.4(7.7) 84.5(7.6)
Ovarian 57.8(6.8) 69.1(6.8) 75.6(3.8) 78.9(7.2) 79.9(7.1) 82.4(7.1)
Average 54.8(8.2) 58.1(8.0) 64.8(7.8) 77.1(7.9) 77.4(7.8) 79.5(7.7)

M = 10 for ANN

Breast 54.2(9.3) 59.3(8.9) 69.2(9.2) 74.9(8.8) 72.3(9.3) 76.2(8.7)
Colon 57.0(8.9) 64.4(8.6) 67.4(9.0) 82.2(8.6) 82.7(8.6) 82.5(8.8)
Leukemia 68.4(8.1) 76.2(7.7) 76.6(8.0) 76.8(7.5) 76.4(7.1) 91.4(7.2)
Ovarian 63.0(6.3) 68.5(6.6) 78.8(5.9) 80.3(6.0) 83.5(6.2) 83.6(6.3)
Average 60.4(8.2) 67.6(8.0) 73.2(8.0) 79.4(8.0) 79.5(7.8) 83.3(7.7)
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and output features are different, however. H-MTL has a
predetermined number of input and output features; one
quarter of the selected features are used for the input, and
the other three quarters are added to the output. In con-
trast, for GA-MTL-IR, the features are determined by a
genetic algorithm, but the ratio of the number of input
features to the number of output features is similar to that
of H-MTL.

(3) For e-GA-MTL, although the number of input, output
and discarded features are determined automatically by
the genetic algorithm, the ratios among these numbers are
similar to those for H-MTL and GA-MTL-IR.

Discussions
We have demonstrated that genetic algorithm based
multi-task learning (GA-MTL) methods perform better

than the heuristic methods and feature selection methods,
and that e-GA-MTL performs the best of all the methods
considered. Several questions come immediately to mind:

Why does multi-task learning succeed?
In a previous study, Caruana et al. gave an explanation
[8,9] of why multi-task learning succeeds. Here we com-
bine their results with the framework presented here. Yu
and Liu [15] proposed to categorize the features into four
classes, namely:

I: irrelevant features,

II: weakly relevant and redundant features,

III: weakly relevant but non-redundant features, and IV:
strongly relevant features;

Table 4: Mean and standard deviation (in parentheses) of specificity scores (%), calculated over 50 hold out runs.

DATASET ALL GA-FS H-MTL GA-MTL GA-MTL-IR e-GA-MTL

M = 2 for ANN

Breast 53.0(9.9) 58.8(8.6) 52.9(9.0) 70.7(8.7) 64.7(9.2) 64.8(9.2)
Colon 71.3(10.2) 64.7(9.5) 73.4(8.4) 85.7(9.8) 85.7(9.1) 85.7(8.4)
Leukemia 55.6(7.5) 44.4(8.3) 55.4(8.1) 71.7(7.8) 77.8(7.5) 83.3(7.4)
Ovarian 55.6(6.1) 64.9(6.2) 74.4(6.1) 77.7(7.6) 79.7(7.3) 81.5(7.0)
Average 58.5(8.4) 58.6(8.1) 64.3(8.0) 76.1(8.4) 76.3(8.2) 78.8(8.0)

M = 10 for ANN

Breast 48.1(8.8) 55.4(8.4) 65.1(8.0) 69.2(8.1) 63.9(9.6) 66.8(8.4)
Colon 71.3(10.0) 85.3(9.7) 83.5(10.5) 92.2(9.7) 93.1(10.0) 92.6(10.8)
Leukemia 65.4(8.5) 77.4(7.8) 75.6(8.1) 64.8(6.8) 78.4(6.2) 91.5(6.0)
Ovarian 61.3(5.1) 65.6(5.9) 77.0(4.3) 79.4(5.0) 87.0(5.4) 80.4(5.5)
Average 61.0(8.1) 71.8(8.1) 75.8(7.6) 78.1(7.9) 82.2(7.8) 82.6(7.6)

Table 3: Mean and standard deviation (in parentheses) of sensitivity scores (%), calculated over 50 hold out runs.

DATASET ALL GA-FS H-MTL GA-MTL GA-MTL-IR e-GA-MTL

M = 2 for ANN

Breast 53.3(8.7) 53.3(8.5) 66.7(8.0) 73.3(7.8) 73.3(7.5) 80.0(7.6)
Colon 28.6(7.4) 28.6(7.5) 42.8(7.4) 71.4(7.0) 85.7(7.1) 71.4(7.1)
Leukemia 62.5(8.1) 75.0(8.0) 75.0(7.7) 87.5(7.9) 75.0(7.8) 85.7(7.7)
Ovarian 60.0(7.5) 73.3(7.4) 76.7(7.4) 80.0(6.7) 80.0(6.9) 83.3(7.2)
Average 51.1(7.9) 57.6(7.9) 65.3(7.6) 78.1(7.4) 78.5(7.3) 80.1(7.4)

M = 10 for ANN

Breast 60.2(9.8) 63.2(9.4) 73.3(10.4) 80.5(9.5) 80.6(9.0) 85.6(9.0)
Colon 42.7(7.8) 43.4(7.5) 51.2(7.4) 72.1(7.5) 72.3(7.1) 72.3(6.8)
Leukemia 71.3(7.6) 75.0(7.5) 77.5(7.9) 88.7(8.1) 74.3(7.9) 91.2(8.3)
Ovarian 64.7(7.5) 71.4(7.3) 80.5(7.4) 81.2(7.0) 80.0(6.9) 86.7(7.1)
Average 59.7(8.2) 63.3(7.9) 70.6(8.3) 80.6(8.0) 76.8(7.7) 84.0(7.8)
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where III and IV comprise the optimal feature subset and
I and II should be removed using feature selection meth-
ods. We have found that II contains useful information.
These features should not be discarded, but rather should
be used in the learning process. Multi-task learning is a
method to use these redundant features to improve the
prediction accuracy of the base learning method, which
accounts for its improved performance.

Why do genetic algorithms perform better than the heuristic 
method?
Our results demonstrate that genetic algorithm based
multi-task learning methods outperform heuristic multi-
task learning methods. The chief reason why this is so is
that the heuristic method considered here uses the feature
ranking technique to select features for the input and the
target, which does not consider feature redundancy and/
or feature interaction. At the same time, is somewhat arbi-

trary to use a prespecified number of features for the input
and the target. This is another factor which reduces the
performance of the heuristic method. In contrast, when
the genetic algorithm selects features for the input and the
target, it simultaneously considers feature redundancy
and/or feature interaction. So it automatically determines
the number of features for the input and target. In fact,
Kudo and Sklansky proved that genetic algorithms have a
higher probability of finding better solutions to naive fea-
ture selection problems than other complete, heuristic
and random algorithms [16]. Among the genetic algo-
rithm based multi-task learning methods, e-GA-MTL per-
forms better than GA-MTL-IR. The number of features
removed by e-GA-MTL is determined automatically by the
genetic algorithm, while the number removed by GA-
MTL-IR is prespecified. This is further evidence that
genetic algorithm based approaches outperform heuristic
approaches.

Table 6: Mean and standard deviation (in parentheses) of the number of features, calculated over 50 hold out runs, where the base 
learners are ANNs with M = 2 units in the hidden layer.

Breast Colon Leukemia Ovarian Average

GA-FS input 15564.4(2.1) 897.3(4.3) 3245.3(2.5) 10037.4(3.4) 7436.1(3.1)
discarded 8916.6(1.5) 1103.6(3.2) 3883.6(2.7) 5116.6(3.8) 4755.1(2.8)
H-MTL input 12547.4(6.5) 1014.0(5.4) 4007.8(2.5) 8924.7(2.5) 6623.5(4.2)
output 4182.5(6.9) 338.0(3.2) 1335.9(3.4) 2974.9(3.4) 2207.8(4.2)
discarded 7751.1(5.3) 648.2(4.3) 1785.3(2.6) 3254.6(2.5) 3359.8(3.7)
GA-MTL input 15624.5(2.7) 993.3(3.3) 3324.7(2.0) 10154.2(4.4) 7524.2(3.1)
output 8856.5(2.9) 1007.6(3.5) 3804.3(3.7) 4999.8(2.8) 4667.1(3.2)
GA-MTL-IR input 12656.3(3.6) 877.4(4.5) 4231.6(2.9) 7895.4(3.5) 6415.2(3.6)
output 4073.6(4.3) 474.4(4.6) 1112.1(2.7) 4004.0(3.1) 2416.0(3.7)
discarded 7751.1(5.3) 648.2(4.3) 1785.3(2.6) 3254.6(2.5) 3359.8(3.7)
e-GA-MTL input 12743.3(4.1) 884.7(5.2) 4296.4(2.9) 10235.2(3.6) 7954.4(4.0)
output 4097.4(4.3) 486.4(4.4) 1175.6(2.1) 2354.4(4.5) 2028.5(3.8)
discarded 7765.2(5.4) 660.0(5.1) 1796.2(2.1) 2449.2(3.6) 3167.7(4.0)

Table 5: Mean and standard deviation (in parentheses) of precision scores (%), calculated over 50 hold out runs.

DATASET ALL GA-FS H-MTL GA-MTL GA-MTL-IR e-GA-MTL

M = 2 for ANN

Breast 50.0(8.8) 53.3(8.4) 55.5(8.4) 68.8(8.1) 64.7(7.9) 66.7(8.2)
Colon 33.3(8.7) 25.0(8.1) 42.9(7.4) 71.4(7.8) 75.0(7.7) 71.4(7.4)
Leukemia 38.5(7.7) 37.5(7.9) 42.8(7.5) 58.3(7.6) 60.0(7.4) 66.7(7.1)
Ovarian 42.9(6.4) 53.7(6.6) 62.6(6.1) 66.6(6.8) 68.6(7.1) 71.4(6.5)
Average 41.2(7.9) 42.4(7.8) 51.0(7.4) 66.3(7.6) 67.1(7.5) 69.1(7.3)

M = 10 for ANN

Breast 42.6(9.2) 60.0(9.0) 65.4(9.7) 82.4(8.4) 82.1(9.2) 82.6(9.1)
Colon 51.2(7.5) 56.2(7.4) 64.7(7.3) 70.6(8.1) 66.7(8.2) 68.4(7.3)
Leukemia 46.1(7.8) 63.1(7.4) 63.6(7.6) 57.0(7.4) 60.0(6.4) 67.1(6.8)
Ovarian 47.6(5.4) 53.6(5.7) 66.4(4.3) 68.4(5.1) 78.2(5.0) 72.1(5.5)
Average 46.9(7.5) 58.2(7.4) 65.0(7.2) 69.6(7.3) 71.8(7.2) 72.6(7.2)
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What effect do irrelevant features have on multi-task learning?
The effect of multi-task learning on irrelevant features can
be observed by comparing the results obtained by e-GA-
MTL, GA-MTL-IR, and GA-MTL; e-GA-MTL and GA-MTL-
IR remove irrelevant features, while GA-MTL does not.
Here we observed that e-GA-MTL and GA-MTL-IR outper-
formed GA-MTL, especially for the sensitivity and BACC
measures. This shows that irrelevant features will degrade
the generalization performance of multi-task learning
methods, and reduce the robustness of the methods; they
should therefore be removed before the learning process.

Conclusions
Random search methods of multi-task learning (MTL),
including GA-MTL (Genetic Algorithm based MTL), GA-
MTL-IR (GA-MTL with irrelevant features removed) and e-
GA-MTL (an enhanced version of GA-MTL) are shown to
improve the accuracy of multi-task learning and to make
multi-task learning more convenient to use. Experimental
results on microarray data sets for tumor classification
showed that genetic algorithm based multi-task learning
performed better than H-MTL, a heuristic multi-task
learning method, and GA-FS, a naive feature selection
method based on genetic algorithms. Furthermore, our
results showed that e-GA-MTL and GA-MTL-IR, which
remove irrelevant features, performed better than GA-
MTL, which does not. e-GA-MTL, which employs a genetic
algorithm with a two bit encoding to remove irrelevant
features and select features for the input and output, per-
formed best. Since analysis of microarray data sets is a
high dimensional problem, our results demonstrate that
multi-task learning techniques can be employed to
improve prediction performance of tumor classification
by using redundant genes. Furthermore, our results dem-
onstrate that genetic algorithms can be employed to
improve multi-task learning by discarding irrelevant fea-
tures and by selecting the input and target features auto-
matically; GA-MTL and e-GA-MTL are shown to to

improve generalization performance of classifiers on
microarray and other high-dimensional data sets.

Methods
Multi-task learning (MTL) [8,9] is a form of inductive
transfer. It is applicable to any learning method that can
share some of what is learned between multiple tasks. The
basic idea is to use the selected features as the input fea-
ture set and to combine the target values with some of the
discarded features to form the target output.

Previous studies
There exist several heuristic search methods for multi-task
learning [9,11]. Caruana and de Sa [9] used a filter feature
selection model of the cross-entropy criterion and/or an
embedded model of kernel regression to rank the features,
then employed the top n1 features as the input feature set,
and added the top n2 of the remaining features to the tar-
get, where n1 and n2 are predefined numbers. Li et al.[11]
employed clustering algorithms to select the features,
which are first clustered using Kohonen neural networks;
the features near the center of clusters are then selected as
the input feature subset, and when the other unselected
features are ranked according to the Euclidean distance to
the input, the first few features with the least distance to
the input are selected to add to the target to form the out-
put.

H-MTL
H-MTL (Heuristic Multi-Task Learning) is a heuristic
method with embedded feature selection that is based on
the work of Caruana and de Sa [9]. The embedded model
employs the prediction risk criteria [17,18], which evalu-
ates features by computing the change in training accuracy
when the features are replaced by their mean values:

Si =ATR ATR(x )i−

Table 7: Mean and standard deviation (in parentheses) of the number of features, calculated over 50 hold out runs, where the base 
learners are ANNs with M = 10 units in the hidden layer.

Breast Colon Leukemia Ovarian Average

GA-FS input 15042.4(3.5) 917.3(4.5) 3456.3(2.5) 9837.4(4.3) 7313.4(3.7)
discarded 9438.6(1.5) 1082.6(2.8) 3672.6(2.9) 5316.6(3.7) 4877.6(2.7)
H-MTL input 12620.2(5.6) 1042.3(4.5) 4082.1(3.6) 8847.3(2.1) 6648.0(4.0)
output 4206.7(5.9) 347.5(2.3) 1360.7(3.1) 2949.1(4.3) 2216.0(3.9)
discarded 7654.1(3.5) 610.2(2.7) 1686.3(5.2) 3357.6(2.1) 3327.1(3.4)
GA-MTL input 15153.3(2.5) 1041.1(4.1) 3435.4(4.3) 10034.5(3.3) 7416.1(3.6)
output 9327.7(2.7) 959.0(2.5) 3693.6(3.8) 5119.5(3.4) 4775.0(3.1)
GA-MTL-IR input 12541.5(3.6) 842.2(4.5) 4325.6(2.8) 7984.2(2.1) 6423.4(3.3)
output 4285.4(4.3) 547.6(4.6) 1117.1(2.0) 3812.2(3.8) 2440.6(3.7)
discarded 7654.1(3.5) 610.2(2.7) 1686.3(5.2) 3357.6(2.1) 3327.1(3.4)
e-GA-MTL input 12700.3(4.1) 854.7(4.1) 4147.1(2.9) 10453.2(3.5) 7038.8(3.7)
output 4154.4(4.5) 486.4(4.4) 1272.7(2.7) 2454.4(3.5) 2092.0(3.8)
discarded 7645.2(5.3) 660.0(5.7) 1846.2(2.4) 2489.2(3.7) 3160.2(4.3)
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where ATR is the training accuracy. ATR  is the test

accuracy on the training set defined by:

where n is the number of features, p is the number of

instances,  is the mean value of the ith feature, and 

is the prediction value of the jth example with the ith fea-
ture replaced by its mean value. The features with zero
value are removed, since these features are not useful for
learning.

After the features with zero value are removed, the predic-
tion risk criteria is used to rank the remaining features in
ascending order; the top quarter of these features are
added to the output, and the remaining three quarters are
used as the input. The overall algorithm is summarized in
Figure 3.

GA-FS
To show the effectiveness of multi-task learning methods,
we also implemented a naive feature selection method
named GA-FS (Genetic Algorithm based Feature Selec-
tion). In GA-FS, we use a binary chromosome with the
same length as the feature vector, which equals 1 if the
corresponding feature is selected for the input, and 0 if the
feature is discarded. The fitness function is defined as

where ATR is the training accuracy of the base learning
method, and ATV is the prediction accuracy on the valida-
tion data set.

The data set is divided into three parts: the training set Dr,
the validation set Dv, and the test set Ds, as described in the
Experimental Settings subsection below. The GA-FS
approach is summarized in Figure 4.

Genetic algorithm based multi-task learning
In this subsection, we describe multi-task learning meth-
ods based on genetic algorithms. We previously proposed
GA-MTL (Genetic Algorithm Based Multi-Task Learning),
which did not consider irrelevant features. Here we pro-
pose two additional algorithms: GA-MTL-IR (GA-MTL
with Irrelevant features Removed) and e-GA-MTL (an
enhanced version of GA-MTL). GA-MTL-IR removes irrel-
evant features using an embedded feature selection
method as in H-MTL, while e-GA-MTL removes irrelevant
features using a genetic algorithm.

GA-MTL
In existing search methods [9,11], the number of features
selected for the input and/or the target is decided some-
what arbitrarily. In order to improve feature selection, GA-
MTL (Genetic Algorithm based Multi-Task Learning)
[10,14], a random method, employs a genetic algorithm
[12] which simultaneously selects the features for both
the input and the target. The number of features for the
input and target is automatically determined by the
method itself. In both GA-MTL and GA-FS, the same
genetic algorithm is used for the feature selection task. The
only difference between GA-MTL and GA-FS is the value
of the binary chromosome; in GA-MTL, it equals 0 if the
feature is selected to add to the output, whereas in GA-FS,
it equals 0 if the feature is removed.

GA-MTL uses the fitness function defined by Equation (1).
The data set is divided into three parts: the training set Dr,

xi( )

ATR x i

p
y x j xi x j

n y j
j

p( ) = ( )==( )
=
∑

1 1

1
� … …, , , , ,

xi �y ( )

fitness ATR ATV= +1
3

2
3

Genetic algorithm based feature selection (GA-FS)Figure 4
Genetic algorithm based feature selection (GA-FS)

Heuristic multi-task learning (H-MTL)Figure 3
Heuristic multi-task learning (H-MTL)
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the validation set Dv, and the test set Ds, as described in the
Experimental Settings subsection below. The GA-MTL
algorithm is summarized in Figure 5.

GA-MTL-IR
In GA-MTL, the irrelevant features are still present. These
can be removed by many feature selection methods [6].
Here, we consider using the prediction risk criterion
[17,18] in an embedded method. As shown in Figure 6,
first the features with a prediction risk value of zero are
removed, then GA-MTL is performed on the data set with
the selected features. As this method removes the irrele-
vant features for GA-MTL, it is named GA-MTL-IR (GA-
MTL with Irrelevant features Removed).

e-GA-MTL
GA-MTL-IR removes irrelevant features using an embed-
ded method, but it searches features for MTL using a
genetic algorithm. Thus two search algorithms are used in
GA-MTL-IR; why not instead use only a genetic algorithm?
We propose an enhanced version of GA-MTL (e-GA-MTL),
which is summarized in Fig. 7. It difiers from GA-MTL in
its binary chromosome; instead of only one bit, two bits
are used to represent each feature, where 00 means the
corresponding feature is discarded, 10 means it is used as
input, 01 means it is added to the output, and 11 means
it is used as input and added to the output simultane-
ously.

The base learning method
Since artificial neural networks are a frequently used and
powerful learning method, improved multi-layer percep-
tion neural networks were used as the base learning
method. These are weight decay based neural networks in
a Bayesian framework, which adds a regularization term
to the objective function and are to some degree insensi-
tive to the parameter settings [19].

Experimental data sets
The eight microarray data sets used in our study are listed
in Table 8, and are briefy described below. Versions of the
data files formatted for C4.5 are available [20].

Breast Cancer: Van't Veer et al.[21] used DNA microarray
analysis on primary breast tumors and applied supervised
classification methods to identify significant genes for the
disease. The data contains 97 patient samples, 46 of which
are from patients who had developed distance metastases
within 5 years (labeled as “relapse”), the remaining 51
samples are from patients who remained free from the
disease after their initial diagnosis for an interval of at
least 5 years (labeled as “non-relapse”). The number of

Enhanced version of GA-MTL (e-GA-MTL)Figure 7
Enhanced version of GA-MTL (e-GA-MTL)

Genetic algorithm based multi-task learning (GA-MTL)Figure 5
Genetic algorithm based multi-task learning (GA-
MTL)

GA-MTL with irrelevant feature removed (GA-MTL-IR)Figure 6
GA-MTL with irrelevant feature removed (GA-MTL-
IR)
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genes is 24,481 and the missing values of “NaN” are
replaced with 100.

Colon: Alon et al.[22] used Affymetrix oligonucleotide
arrays to monitor expression levels of over 6,500 human
genes from 40 tumor and 22 normal colon tissue samples.
The 2,000 genes with the highest minimal intensity across
the 62 tissues were used in the analysis.

Leukemia: The acute leukemia data set, published by
Golub et al.[23], consists of 72 bone marrow samples with
47 ALL and 25 AML. The gene expression intensities are
obtained from Affymetrix high-density oligonucleotide
microarrays containing probes for 7,129 genes.

Ovarian: Petricoin et al. [24] identified proteomic pat-
terns in serum to distinguish ovarian cancer from non-
cancer. The proteomic spectral data includes 91 controls
(Normal) and 162 ovarian cancers; each sample contains
the relative amplitude of the intensity at 15,154 molecular
mass/charge (M/Z) identities.

Experimental settings
To evaluate the performance of the proposed approach,
we use the hold out validation procedure. Each data set is
used in its entirety, where split data sets are merged, and
then the entire data set is randomly split into a training set
and a testing set Ds; 2/3 of the data is used for training and
1/3 for testing. If a validation set is required, the training
set is further split so that 2/3 of the original training set is
retained for training (forming the set Dr) and 1/3 of the
original training set is used for validation (forming the set
Dv). classification results are reported for the test data sets
Ds. This process is repeated 50 times.

The parameters of the genetic algorithms were set by
default as in the MATLAB software, and we varied the
parameters of the artificial neural networks to see how the
settings of these parameters affected the results.

Measures
In order to precisely characterize the performance of dif-
ferent learning methods, we define several performance
measures below (see [25]). Here TP, TN, FP, and FN, stand
for the number of true positive, true negative, false posi-
tive, and false negative samples, respectively.

Sensitivity is defined as  and is also known as

Recall.

Specificity is defined as .

BACC (Balanced Accuracy) is defined as

, which defines the average of

sensitivity and specificity.

Precision is defined as 

Correction is defined as  and meas-

ures the overall percentage of samples correctly classified.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Jack Y. Yang conceived and guided the project; Guo-Zheng
Li proposed the idea; designed the algorithm and wrote
the paper; Hao-Hua Meng performed the experiments;
Youping Deng helped Guo-Zheng Li in writing the paper;
Mary Qu Yang provided advice and help in designing the
experiments.

Acknowledgements
This work was supported by the Nature Science Foundation of China under 
grant no. 20503015.

This article has been published as part of BMC Genomics Volume 9 Supple-
ment 1, 2008: The 2007 International Conference on Bioinformatics & 
Computational Biology (BIOCOMP'07). The full contents of the supple-
ment are available online at http://www.biomedcentral.com/1471-2164/
9?issue=S1.

References
1. Golub T, Slonim D, Tamayo P: Molecular classification of Can-

cer: Class Discovery and Class Prediction by Gene Expres-
sion.  Bioinformatics & Computational Biology 1999, 286:531-537.

2. Alon U: Broad Patterns of Gene Expression Revealed by Clus-
tering Analysis of Tumor and Normal Colon Tissues Probed
by Oligonucleotide Arrays.  Proceedings of the National Academy of
Sciences of the United States of America 1999:6745-6750.

3. Dudoit S, Fridlyand J, Speed T: Comparison of Discrimination
Methods for the classification of Tumors Using Gene Expres-
sion Data.  Journal of the American Statistical Association 2002,
457:77-87.

4. Guyon I, Weston J, Barnhill S, Vapnik V: Gene Selection for Can-
cer classification Using Support Vector Machines.  Machine
Learning 2002, 46:389-422.

5. Guyon I, Elisseeff A: An Introduction to Variable and Feature
Selection.  Journal of machine learning research 2003, 3:1157-1182.

TP
TP FN+

TN
TN FP+

1
2

TP
TP FN

TN
TN FP+

+
+

⎛
⎝⎜

⎞
⎠⎟

TP
TP FP+

.

TP TN
TP TN FP FN

+
+ + +

Table 8: Microarray data sets used for comparison

Data Sets Samples Class Ratio Features

Breast Cancer 97 46/51 24,481
Colon 62 22/40 2,000
Leukemia 72 25/47 7,129
Ovarian 253 91/162 15,154
Page 11 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/9?issue=S1
http://www.biomedcentral.com/1471-2164/9?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783


BMC Genomics 2008, 9(Suppl 1):S3 http://www.biomedcentral.com/1471-2164/9/S1/S3
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

6. Liu H, Yu L: Toward Integrating Feature Selection Algorithms
for classification and Clustering.  IEEE Transactions on Knowledge
and Data Engineering 2005, 17(3):1-12.

7. Yan J, Zhang B, Liu N, Yan S, Cheng Q, Fan W, Yang Q, Xi W, Chen
Z: Effective and Efficient Dimensionality Reduction for
Large-Scale and Streaming Data Preprocessing.  Knowledge
and Data Engineering, IEEE Transactions on 2006, 18:320-333.

8. Caruana R: Multitask Learning.  Machine Learning 1997, 28:41-75.
9. Caruana R, de Sa VR: Benefiting from the variables that varia-

ble selection discards.  Journal of machine learning research 2003,
3:1245-1264.

10. Yang JY, Li GZ, Liu LX, Yang MQ: classification of Brain Glioma
by Using Neural Networks Ensemble with Multi-Task Learn-
ing.  In Proceedings of The 2007 International Conference on Bioinformat-
ics and Computational Biology (BIOCOMP'07) Las Vegas: CSREA Press;
2007:433-442. 

11. Li GZ, Yang J, Lu J, Lu WC, Chen NY: On multivariate calibration
problems.  In ISNN 2004, Lecture Notes on Computer Science 3173
Springer; 2004:389-394. 

12. Goldberg DE: Genetic Algorithms in Search, Optimization,
and Machine Learning.  Boston: Addison Wesley; 1998. 

13. Yang J, Honavar V: Feature Subset Selection Using a Genetic
Algorithm.  IEEE Intelligent Systems 1998, 13:44-49 [http://cite
seer.ist.psu.edu/yang98feature.html].

14. Li GZ, Liu TY: Improving Generalization Ability of Neural
Networks Ensemble with Multi-Task Learning.  Journal of Com-
putational Information Systems 2006, 2(4):1235-1239.

15. Yu L, Liu H: Eficient Feature Selection Via Analysis of Rele-
vance and Redundancy.  Journal of Machine Learning Research 2004,
5(Oct):1205-1224.

16. Kudo M, Sklansky J: Comparison of Algorithms that Select Fea-
tures for Pattern classifiers.  Pattern Recognition 2000, 33:25-41.

17. Moody J, Utans J: Principled Architecture Selection for Neural
Networks: Application to Corporate Bond Rating Predic-
tion.  In Advances in Neural Information Processing Systems Edited by:
Edited by Moody JE, Hanson SJ, Lippmann RP. Morgan Kaufmann Publish-
ers, Inc.; 1992:683-690. 

18. Li GZ, Yang J, Liu GP, Xue L: Feature selection for multi-class
problems using support vector machines.  In Lecture Notes on
artificial Intelligence 3173 (PRICAI2004) Springer; 2004:292-300. 

19. Foresee FD, Hagan MT: Gauss-Newton Approximation to
Bayesian Regularization.  In Proceedings of the 1997 International
Joint Conference on Neural Networks 1997:1930-1935.

20. Li J, Liu H: Kent Ridge Bio-medical Data Set Repository.  2002
[http://sdmc.lit.org.sg/GEDatasets/Datasets.html].

21. Van't Veer LV, Dai H, Vijver MV, He Y, Hart A, Mao M, Peterse H,
Kooy K, Marton M, Witteveen A, Schreiber G, Kerkhoven R, Roberts
C, Linsley P, Bernards R, Friend S: Gene expression profiling pre-
dicts clinical outcome of breast cancer.  Nature 2002,
415(6871):530-536.

22. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine
AJ: Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligo-
nucleotide arrays.  Proceedings of the National Academy of Sciences of
the United States of America 1999:6745-6750.

23. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov
JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD,
Lander ES: Molecular classification of Cancer: Class Discovery
and Class Prediction by Gene Expression.  Bioinformatics&Com-
putational Biology 1999, 286(5439):531-537.

24. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg
SM, Mills GB, Simone C, Fishman D, Kohn EC, Liotta L: Use of pro-
teomic patterns in serum to identify ovarian cancer.  The Lan-
cet 2002, 359(9306):572-577.

25. Levner I: Feature Selection and Nearest Centroid classifica-
tion for Protein Mass Spectrometry.  BMC Bioinformatics 2005,
6:68.
Page 12 of 12
(page number not for citation purposes)

http://citeseer.ist.psu.edu/yang98feature.html
http://citeseer.ist.psu.edu/yang98feature.html
http://sdmc.lit.org.sg/GEDatasets/Datasets.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788095
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

