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    Introduction 
 It is widely assumed that RNA polymerases diffuse to their tar-

get promoters, wherever those promoters might be in the nuclei, 

before initiating. However, recent evidence suggests that poly-

merases active on different genes cluster into  “ factories. ”  Clus-

tering ensures high local concentrations and, thus, effi cient 

interaction, and a promoter would then have to diffuse to a fac-

tory before it could be transcribed ( Cook, 1999 ). Nucleolar fac-

tories containing polymerase I provide the prototypic example; 

only ribosomal DNA associated with a nucleolus is transcribed, 

and newly made ribosomal RNA is surrounded by all the ma-

chinery required for assembly into a ribosome. Active forms of 

polymerases II and III are also concentrated in factories ( Pombo 

et al., 1999 ), and the application of new techniques show that 

their templates tend to cluster when transcribed. For example, 

the mouse  Hbb-b1  ( � -globin) gene lies 40 – 60 kbp from its  locus 

control region (LCR) on the genetic map and  � 25 Mbp from 

 Eraf . But in 3D nuclear space, chromosome conformation cap-

ture (3C) and FISH reveal that  Hbb1  lies close to the LCR and 

 Eraf , as well as many other parts of the genome, but only when 

contacting regions are transcribed ( Osborne et al., 2004 ;   Simonis 

et al., 2006 ). The LCR seems to nucleate a  “ hub ”  or factory that 

ties the locus in loops and facilitates expression of globin-

related genes ( Chakalova et al., 2005 ;  de Laat, 2007 ;  Ohlsson 

and Gondor, 2007 ). Other evidence points to factories special-

izing in the transcription of specifi c gene subsets ( Pombo et al., 

1998 ;  Frey et al., 1999 ;  Thompson et al., 2003 ;  Bartlett et al., 

2006 ;  Osborne et al., 2007 ). 

 We used replicating minichromosomes as probes to exam-

ine whether transcription occurs in factories. Using FISH and 

3C, we found that although a cell may contain thousands of 

minichromosomes, essentially all nascent minichromosomal 

RNA is concentrated in a few foci: the factories. These factories 

specialize in producing particular types of transcripts depend-

ing on the promoter type and whether or not the gene contains 

an intron. 

 Results 
 Strategy 
 Our strategy ( Fig. 1 A ) was to cotransfect plasmids encoding 

the SV40 origin of replication ( ori ) and different transcription 

units into a monkey line that expresses the SV40 T antigen 

( Mellon et al., 1981 ). Previous work has shown that the plasmid 

DNA is assembled into nucleosomes, and the resulting mini-

chromosomes are replicated and transcribed by the cellular 

machinery ( Mellon et al., 1981 ;  Jackson and Cook, 1993 ;  Dean, 

1997 ). We then examined if transcribing minichromosomes 

are spread throughout nuclei or concentrated in the same or 

 H
ow transcription affects the way specifi c genes are 

arranged within the nucleus remains to be fully 

understood. We examine here whether transcrip-

tion occurs in discrete sites (factories) containing the 

 required machinery and whether these sites specialize in 

transcribing different genes. We cotransfected plasmids 

encoding a common origin of replication but different 

transcription units into cells, where they are assembled into 

minichromosomes that the cellular machinery replicates and 

transcribes. In cells containing thousands of minichromo-

somes, we found (using fl uorescence in situ hybridization) 

active templates concentrated in only a few factories that 

transcribe particular units depending on the promoter type 

and the presence of an intron. Close proximity between 

similar transcription units, whether on two different mini-

chromosomes or on host chromosomes and minichromo-

somes, is confi rmed using chromosome conformation 

capture. We conclude that factories specialize in produc-

ing a particular type of transcript depending on promoter 

type and whether or not the gene contains an intron.
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Therefore, something must confi ne the  � 8,000 minichromosomes 

seen at 24 h to a few foci. As most are not diffusely spread, we 

can eliminate possibility 1 in  Fig. 1 A . 

 We next examined whether minichromosomes are tran-

scribed in factories. We transfect II CMV , DsRed ,pA, which en-

codes both a CMV promoter (driving  DsRed ) and an SV40 early 

promoter, on the common backbone (driving  Neo r  ;  Fig. 1 B ); 

the latter is down-regulated under these conditions ( Myers 

et al., 1981 ;  Dynan and Tjian, 1985 ). RNA FISH shows that both 

 DsRed  and  Neo r   transcripts are found mainly in the cytoplasm, 

but some are concentrated in nuclear foci against a general 

nuclear background ( Fig. 3 A , i – iv; foci can only be seen clearly 

in the insets). Many studies have shown that such nuclear foci 

mark the high concentration of RNA at transcription sites, 

whereas the general background represents completed tran-

scripts on their way to the cytoplasm ( Dirks et al., 1993 ;  Levsky 

et al., 2002 ). Immuno-FISH confi rms that such foci colocalize 

with high concentrations of the active form of RNA polymerase II, 

which is detected using an antibody directed against phospho-

Ser2 in the heptad repeats in the C-terminal domain of the largest 

different factories. Plasmids are named by promoter type, coding 

sequence, and whether or not they contain an intron and a 3 �  end 

( Fig. 1 B ). For example, plasmid II CMV , EGFP  V ,pA possesses the 

polymerase II cytomegalovirus (CMV) promoter driving  EGFP  

with an intron ( V ) and polyadenylation (pA) signal, whereas 

0, EGFP ,pA lacks a promoter and intron. 

 Minichromosomes and their transcripts are 
concentrated in foci 
 Quantitative  “ blotting ”  and PCR show that the minichromosomal 

copy number increases progressively from the level seen at 8 h 

(when some naked input DNA remains), and by 24 h, at least 

8,000 new copies are generated ( Fig. 2 A ). All plasmids replicate 

similarly ( Fig. 2 A ). Transcript copy numbers also increase, but 

promoters and introns affect levels ( Fig. 2 B ). DNA FISH reveals 

that most minichromosomes are concentrated in  � 20 bright 

nuclear foci that increase in intensity ( Fig. 2, C and D ;  Dean, 1997 ). 

Intensities are normalized relative to plastic beads ( Fig. 2 C,  

inset), so results from different experiments can be compared. 

Fewer than 5% of the minichromosomes were concatenated and/

or replicating (unpublished data;  Jackson and Cook, 1993 ) and 

therefore bound either to one another or to replication factories. 

 Figure 1.    Approach.  (A) Plasmids were cotransfected into cells, where 
they replicate, and we asked: Are the resulting minichromosomes spread 
throughout nuclei, or targeted to the same or different factories? (B) Different 
promoters, coding regions, introns, and 3 �  ends (gray regions) are inserted 
into a common backbone (with SV40  ori  + early promoter driving  Neo r  ).   

 Figure 2.    Replicating minichromosomes are concentrated in few foci.  
Cells were cotransfected with II CMV , DsRed ,pA (so transfection effi ciencies 
could be monitored by FACS using DsRed fl uorescence) and another en-
coding  EGFP  as indicated; after 8 h, cells were replated (to wash away 
input) and regrown for 4, 16, and 28 h. (A) The DNA copy number of 
II CMV , EGFP ,pA per transfected cell — determined by reference to known 
amounts of pure plasmid DNA (by blotting using a  “ Hirt ”  extract and qPCR 
using total DNA) — increases above the maximum possible background due 
to input (upper limit of gray area). Numbers (24 h) obtained in analogous 
experiments for I 45S , EGFP ,pA, III 7SK , EGFP ,pT, and II CMV , EGFP  V ,pA were 
similar (i.e., 23,000  ±  2,000, 18,000  ±  3,000, and 21,000  ±  3,000, 
respectively; one-way ANOVA, P  >  0.05). (B) Promoters and introns affect 
the RNA copy number per transfected cell (determined using qRT-PCR by 
reference to known amounts of pure RNA). (C) DNA FISH shows that mini-
chromosomes are concentrated in  � 20 foci. (inset) Fluorescent bead used 
for normalization. Bar, 2.5  μ m. (D) Mean intensities (+SD) of pixels in or 
outside foci in 100 images like those in C were normalized relative to the 
beads; most signal is in the foci, and this increases with time.   
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catalytic subunit (Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200710053/DC1). Most RNA in such foci is 

nascent (i.e., still associated with engaged polymerases), as tran-

scripts leave transcription sites so soon after the polymerase 

terminates ( Iborra et al., 1998 ). 

 We distinguished a nuclear focus from the background 

using two criteria. A focus should have an intensity greater than a 

threshold defi ned as follows. As some  DsRed  transcripts might be 

made by read-through from the SV40 promoter on the backbone 

(despite down-regulation and the presence of an effi cient polyade-

nylation signal), we determined the extent of this using 0, EGFP ,pA. 

As  EGFP  lacks a promoter, any  EGFP  RNA seen must result 

from read-through from the SV40 promoter.  EGFP  signal is again 

normalized relative to the intensity given by reference beads; it is 

just above ( Fig. 3 B , red bars) the irreducible background caused 

by the autofl uorescence seen in mock-transfected cells ( Fig. 3 B ; 

gray bars). We require foci to have intensities above a threshold 

just above the maximum signal given by this read-through (i.e., 

above the green dotted line in  Fig. 3 B ). We also require a focus to 

occupy  > 4 pixels (where a pixel is 100  ×  100 nm and little signal 

is then discarded, as such foci contain  > 85% nuclear signal above 

the threshold). A nucleus transfected with II CMV , EGFP ,pA typi-

cally contains 23  ±  6 foci (mean area of 7  ±  3 pixels) defi ned 

in this way. Such foci are not seen if cells are treated after fi xa-

tion with RNase or before fi xation with an inhibitor of RNA 

polymerase II:  � -amanitin ( Fig. 3 C ). 

 Inspection of the two nuclear foci in the inset in  Fig. 3 A  

(ii – iv) reveals that each contains red and green signal. We deem 

signals to colocalize if  ≥ 25% of a focus of either color overlaps 

a focus of the other color; then, 95%  EGFP  foci colocalize with 

 DsRed  foci, and vice versa ( Fig. 3 A , iv, bottom). As expected, 

two units on one minichromosome driven by similar viral pro-

moters are transcribed in the same place. Transcripts from 

the (down-regulated) SV40 promoter are not considered from 

now on, as  Neo r   probes are not used and read-through is below 

our threshold. 

 Minichromosomes with identical promoters 
are targeted to the same factories 
 Two minichromosomes identical except for coding region were now 

compared: II CMV , EGFP ,pA and II CMV , DsRed ,pA ( Fig. 3 A ,v – viii). 

 Figure 3.    RNA FISH shows nascent minichromosomal RNA in few nuclear 
foci.  Cells were transfected and grown for 24 h, minichromosomal tran-
scripts were detected by RNA FISH, DNA was counterstained with DAPI, 
and images were collected. (A) Two sets of four views of one fi eld are 
shown. (bottom) Percentages ( ±  SD) of green foci that overlap red foci, 
and vice versa. (i – iv) Transfection with II CMV , DsRed ,pA. An untransfected 
cell (arrowhead) contains no  DsRed  or  Neo r   transcripts. The other contains 
many cytoplasmic  DsRed  transcripts but few  Neo r   transcripts; its nucleus 
contains some red and green foci (marking nascent RNA at transcription 
sites) against a general background (marking transcripts on their way to 
the cytoplasm). (insets) Two foci with both red and green fl uorescence; 

this is expected, as the plasmid encodes both  DsRed  and  Neo r   (on the 
backbone). (v – viii) Cotransfection with II CMV , DsRed ,pA and II CMV , EGFP ,pA, 
which differ solely in coding region. The two central (transfected) cells 
contain  DsRed  and  EGFP  RNA mainly in the cytoplasm, with some in the 
nuclear foci. (insets) Nuclear focus with both types of RNA. Insets show an 
enlarged view of the boxed portions. (B) Discriminating between nuclear 
foci and background. Intensities are expressed relative to those given 
by fl uorescent reference beads, and the fraction of foci in 200 cells with 
relative intensities of 0 – 0.05, 0.06 – 0.1, etc., is indicated. Promoterless 
0, EGFP ,pA gives faint  EGFP  signal due to autofl uorescence (equivalent 
to that seen in mock-transfected cells, not depicted; gray bar) and read-
through from the SV40 early promoter into  EGFP  (red bars). For plasmids 
with promoters (e.g., II CMV , EGFP ,pA), only foci with intensities greater than 
the maximum read-through (green dotted line) were considered. (C) Cells 
were transfected with II CMV , EGFP ,pA and incubated with or without  � -ama-
nitin and RNase, DNA was stained with DAPI, and  EGFP  transcripts were 
detected; the treatments abolish  EGFP  signal. Three sets of two views of 
one fi eld are shown. Bars: (A) 5  μ m; (C) 10  μ m.   
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( DsRed ) transcripts are cytoplasmic, whereas most  U2G  tran-

scripts are nuclear. This is expected; standard messages are ex-

ported to accumulate in the cytoplasm, whereas  U2G  transcripts 

are detected using a probe complementary to sequences in the 

preU2 RNA that are removed rapidly and degraded ( Medlin 

et al., 2003 ). Most nuclear RNA of both types is again found 

in foci, but now  ≤ 6% foci colocalize ( Fig. 4, A – D );  U2G  units 

are transcribed in different factories from CMV units, which 

is consistent with possibility 3 in  Fig. 1 A . There are 23  ±  6 

and 15  ±  4  DsRed  and  U2G  nuclear foci of similar area (7  ±  3 

pixels), respectively. 

 This experiment was repeated using II CMV , DsRed ,pA and 

II U2p �  , U2G ,3 � box, the only difference being the replacement of 

12 bp in the U2 promoter with an irrelevant sequence that destroys 

promoter activity ( Cuello et al., 1999 ). No U2G transcripts were 

As before, transfected cells contained high concentrations of both 

types of mature mRNA in the cytoplasm as well as nuclear foci 

against the nuclear background. 78% of  DsRed  foci colocalize 

with  EGFP  foci, and vice versa; minichromosomes with identical 

promoters are transcribed in the same factories. 

 Different polymerase II units target 
minichromosomes to different factories 
 We next examined two very different polymerase II units. 

II CMV , DsRed ,pA encodes a  “ standard ”  intronless unit, whereas 

II U2 , U2G ,3 � box encodes a structural U2 RNA (which can be 

differentiated from host U2 RNA because it is marked by a 

globin sequence) and possesses its own special enhancers, pro-

moter, and 3 �  end ( Cuello et al., 1999 ;  Smith and Lawrence, 

2000 ;  Matera et al., 2007 ). After cotransfection, most standard 

 Figure 4.    Promoters and introns target minichromosomes to specifi c factories.  Cells (cotransfected with II CMV , DsRed ,pA and the plasmid indicated) were 
grown (24 h), transcripts were detected by RNA FISH, and DNA was counterstained with DAPI. Four views of one fi eld for each pair are shown. (bottom) 
Percentages ( ±  SD) of green foci that overlap red foci, and vice versa. Arrows indicate noncolocalizing foci and arrowheads indicate colocalizing foci. 
Insets show an enlarged view of the boxed portions. (A – D) Different polymerase II units. One transfected cell contains  DsRed  but not  U2G  transcripts in the 
cytoplasm; both are found in nuclear foci. (insets) Nuclear foci do not colocalize (confi rmed by low percentages shown on the bottom). (E – H). Plus/minus 
intron. Both cells contain  DsRed  and  EGFP  transcripts in cytoplasm and nucleus. (insets) The top focus contains both types, whereas the bottom shows only 
 EGFP  RNA (infrequent colocalization is refl ected by low percentages on the bottom). (I – L) I + II. The central transfected cell contains  DsRed  but not  EGFP  
RNA in the cytoplasm; nuclear foci do not colocalize. (insets) Foci do not colocalize (as confi rmed by the low percentages shown below). (M – P) II + III. 
The transfected cell (left) contains both types of RNA in cytoplasm and nucleus. (insets) Foci do not colocalize (as confi rmed by the low percentages shown 
below). Bar, 5  μ m.   
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 nascent RNA made by polymerase II (but not III), whereas others 

contain transcripts made by polymerase III (but not II;  Pombo 

et al., 1999 ). 

 Chromatin immunoprecipitation (ChIP)-3C 
confi rms that minichromosomes with 
similar promoters lie together 
 We now used 3C to compare the relative proximity of two plas-

mids when they encode similar or different promoters. Prelimi-

nary experiments (unpublished data) revealed that  DsRed  and 

 EGFP  lie closer (P  <  0.05, Mann-Whitney test) in a II + II com-

bination (i.e., II CMV , DsRed ,pA + II CMV , EGFP ,pA) than in a II + 

III combination (II CMV , DsRed ,pA + III 7SK , EGFP ,pT). As in-

active DNA (i.e., naked input and/or minichromosomes in the 

diffuse nuclear background) probably masks larger differences, 

we repeated the experiment after selecting the transcriptionally 

active fraction by ChIP using an antibody directed against tri-

methyl K4 in histone H3 ( Barski et al., 2007 ). Then,  DsRed  –

  EGFP  3C products were seen in both the supernatant and pellet 

( Fig. 5 A , rows 1 and 3), which is consistent with the presence 

of inactive DNA in the supernatant. More such products were 

seen in the pellet (the active fraction) when promoters were 

similar ( Fig. 5 A , row 3). In contrast,  ALDOA  is an active house-

keeping gene on the host chromosome and no  ALDOA  –  ALDOA  

3C products are seen in the supernatant ( Fig. 5 A , row 2); more-

over, pellets from both combinations yield similar levels ( Fig. 5 A , 

row 5). The mean of four independent experiments confi rms 

that the II + II combination gives sixfold more  DsRed  –  EGFP  

3C product than the II + III combination ( Fig. 5 A , row 7). 

We conclude that minichromosomes bearing similar promoters 

are more likely to be together, which confi rms the FISH results. 

 Similar units on mini- and host 
chromosomes lie close together 
 Do active minichromosomes organize their own factories or 

share host factories? Plasmids encoding either the U2G or CMV 

unit, which are transcribed in different factories ( Fig. 4, A – D ), 

were transfected, and proximity between the common plasmid 

backbone and host  U2  units was determined. Ninefold more 

plasmid – host 3C product was obtained with the U2G unit ( Fig. 

5 B ). This is consistent with minichromosomal and host genes 

being transcribed in the same factory. 

 Discussion 
 Using replicating minichromosomes as probes, we examined 

whether transcription occurs in factories and whether factories 

specialize in producing particular types of transcripts. Plasmids 

encoding the SV40 origin of replication are transfected into 

cos7 cells, where they are assembled into minichromosomes to 

be replicated and transcribed by the cellular machinery. By 24 h, 

there are at least 8,000 minichromosomes per cell ( Fig. 2 A ), 

and DNA FISH shows these to be concentrated in only  � 20 foci 

( Fig. 2 C ); this is in accord with results obtained with viruses 

( Pombo et al., 1994 ;  Dean, 1997 ;  Mearini et al., 2004 ). When 

two plasmids encoding different transcription units are cotrans-

fected, RNA FISH reveals the two kinds of nascent RNA to be 

then detected (unpublished data), so those seen previously can-

not be produced from a cryptic promoter. 

 Introducing an intron modifi es targeting 
 The introduction of an intron also affects localization. Thus, 

transcripts copied from II CMV , DsRed ,pA and II CMV , EGFP  V ,pA 

are both mainly cytoplasmic ( Fig. 4, E – H ), and quantitative RT-

PCR (qRT-PCR) shows that those from the intron-containing 

unit are present in higher quantities ( Fig. 2 B ;  Brinster et al., 

1988 ). Protein levels are also higher, as the ratio of EGFP –

 DsRed (protein) fl uorescence (detected using FACS) in cells 

transfected with II CMV , EGFP  V ,pA + II CMV , DsRed ,pA is greater 

than that given by II CMV , EGFP ,pA + II CMV , DsRed ,pA (unpub-

lished data). Both intron-containing and intronless nascent RNA 

is also found in  � 20 nuclear foci of similar size and intensity 

(there are 21  ±  4 and 23  ±  6 intron-containing and intronless 

nuclear foci of 6  ±  3 and 7  ±  3 pixels, respectively.) Although 

fl anked by the same promoter and 3 �  signals, they are usually 

found in different factories ( Fig. 4, E – H ). Immuno-FISH shows 

that intron-containing foci colocalize more often with splicing 

factor SC-35 than their counterparts without introns; however, 

neither type of transcript generally colocalizes with the very 

brightest  “ splicing speckles, ”  which are known to be transcrip-

tionally inactive (Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200710053/DC1; see  Lamond and Spector, 2003 ; 

 Xie et al., 2006 ). 

 Polymerase I, II, and III units are 
transcribed in different factories 
 We next analyzed promoters transcribed by the three different 

nuclear polymerases. Few transcripts copied using the poly-

merase I promoter in I 45S , EGFP ,pA are found in prominent nu-

cleoli ( Fig. 4 K ) or the cytoplasm; instead, most are found in 

38  ±  13 large nuclear foci (area of 30  ±  13 pixels). These nu-

clear polymerase I transcripts often colocalize with upstream 

binding factor (UBF) and are still seen when transcription by 

polymerase II is inhibited with  � -amanitin (Fig. S3, available 

at http://www.jcb.org/cgi/content/full/jcb.200710053/DC1). 

This is consistent with what has been seen previously. When 

UBF-binding sites are inserted ectopically into host chromosomes, 

they organize many nonnucleolar foci — or  “ pseudonucleoli ”  —

 which, in this case, are transcriptionally inactive, as they lack 

polymerase I promoters ( Mais et al., 2005 ). However, few of 

our (nascent) polymerase I transcripts colocalize with (nascent) 

polymerase II transcripts ( Fig. 4, I – L ). Similarly, few transcripts 

copied from a polymerase III unit are cytoplasmic ( Fig. 4 O ), 

and nuclei typically contain 16  ±  5 small foci (area of 6  ±  3 

pixels). Few of these colocalize with polymerase II foci, and 

vice versa ( Fig. 4, M – P ). There are more polymerase II tran-

scripts than polymerase I or III transcripts ( Fig. 2 B ), so it was 

possible that we might have missed some polymerase I or III 

foci. However, differential detection is unlikely to underlie the 

low colocalizations seen here, as the same values are obtained 

when we selected green foci and then determined how many 

also contain red foci, and vice versa ( Fig. 4 , values given at 

the bottom). These results are again consistent with possibility 3 

in  Fig. 1 A , and with the fi nding that some factories contain 
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likely to be together than those with different promoters ( Fig. 5 A ). 

All these results are consistent with different templates being 

transcribed in different factories that specialize in transcribing 

particular types of gene. 

 We can envisage that these factories might form in two 

extreme ways from host components: either minichromosomes 

diffuse to preexisting host factories that then transcribe both 

host chromosomes and minichromosomes; or they recruit host 

factors, perhaps even complete assemblies ( Mitchell and Fraser, 

2008 ), to generate factories that transcribe only minichromo-

somes. Our results are most simply explained if both processes 

occur simultaneously. On the one hand, 3C results reveal that 

minichromosomal U2G genes lie near host U2 genes ( Fig. 5 B ); 

this suggests that a U2 promoter on a minichromosome must 

fi rst diffuse to a host U2 factory before it can be transcribed 

concentrated again in  � 20 foci ( Figs. 4  and S1); this is consis-

tent with transcription of many templates in one factory. More-

over, the two different types of transcripts are generally found in 

distinct foci. For example, nascent transcripts produced from 

CMV and U2 promoters are seen in nonoverlapping foci ( Fig. 4, 

A – D ), as are most of those with and without an intron (even 

though they are produced from the same CMV promoter;  Fig. 4 

E – H ). Similarly, nascent transcripts copied from polymerase I, 

II, and III units are all found in their own distinct foci ( Fig. 4, I – P ). 

3C confi rms that templates bearing similar promoters are more 

 Figure 6.    Models.  (A) Targeting to factories. The promoter encoded by 
the minichromosome in the center can initiate only in a factory containing 
the appropriate machinery (i.e., one of similar color). As a result, it forms 
a cluster with two similar minichromosomes by association with the fac-
tory on the right. (B) Intron targeting. A newly replicated intron-containing 
minichromosome is  “ na ï ve ”  (left), and may either bind and initiate (incor-
rectly) in a nonsplicing (polymerase II) factory (bottom, blue) or a  “ splicing ”  
factory (top, magenta), where it acquires a mark during splicing (e.g., a 
histone modifi cation; right) that now targets it to the appropriate (splicing) 
factory. (C) Chromosome pairing. Just as similar ( “ homologous ” ) minichromo-
somes cluster ( “ pair ” ) in A, a similar process may underlie the pairing of 
homologous chromosomes in both somatic and meiotic cells. For example, 
during meiosis, homologues seek out and align with their partners before 
the close synapsis that occurs during recombination. It is now accepted that 
distinct mechanisms underlie alignment and synapsis, as homologues still 
align in mutants unable to carry out the later steps ( McKee, 2004 ;  Gerton, 
and Hawley, 2005 ). During alignment, homologues are transcriptionally 
active ( Cook, 1997 ) so that each chromosome in the haploid set will pos-
sess a unique array of active transcription units running from telomere to 
telomere. Only the homologue will possess a similar array. Here, only one 
of the many loops associated with a factory is shown. The yellow promoter 
on maternal chromosome 2 (2m) is unlikely to bind to the green factory 
on maternal chromosome 1 (1m). But just as a factory of a particular type 
nucleates pairing between minichromosomes bearing similar transcription 
units, correct alignment begins when the yellow (2m) promoter binds to 
the yellow factory on its homologue (2p). Once transcription of the yellow 
promoter on 2m begins, 2m and 2p become temporarily tethered together, 
and this will increase the chances that adjacent promoters bind to homolo-
gous factories (i.e, the gray unit on 2m with the gray factory on 2p, etc.). 
As a result, 2m and 2p eventually become zipped together (arrowhead) 
and thus aligned.   

 Figure 5.    ChIP-3C shows that similar genes on mini- and host chromo-
somes lie together.  Cells were transfected, grown for 24 (rows 1 – 7) or 8 h 
(rows 8 – 13), and treated with or without cross-linker. Active and inactive 
chromatin was separated by ChIP (using an antibody against trimethyl 
K4 in H3) and the proximity between selected genes was assessed by 
3C. Images illustrate gels containing amplimers, whereas rows 7 and 13 
give the relative cross-linking frequency (the amounts of 3C amplimers in 
bands were determined by reference to equivalent weights of DNA and 
normalized relative to  ALDOA  –  ALDOA  levels and the PCR control for am-
plifi cation effi ciency).  ALDOA  is an active housekeeping gene on the host 
chromosome. (A) Minichromosome – minichromosome. Cotransfection with 
II CMV , DsRed ,pA + II CMV , EGFP ,pA (II + II) or II CMV , DsRed ,pA + III 7SK , EGFP ,pT 
(II + III).  DsRed  –  EGFP  3C products were obtained from both supernatant 
and pellet (rows 1 and 3), which is consistent with naked input and/or 
active minichromosomes in the supernatant, and they were seen only after 
cross-linking (X-link; rows 1 and 4). More are seen in the pellet when pro-
moters are identical (row 3, compare left and right lanes; row 7, mean of 
four experiments); therefore, templates lie closer together in the II + II com-
bination than in the II + III combination.  ALDOA  –  ALDOA  3C products are 
seen only in the pellet (rows 2 and 5) and in similar amounts in both com-
binations (row 5). Amplimers are obtained in roughly equal amounts using 
the same primers and synthetic 3C templates made by ligating equimolar 
amounts of pure DNA from relevant genes (row 6). (B) Minichromosome –
 host chromosome. Transfection with II U2 , U2G ,3 �  box (II U2 ) or II CMV , EGFP ,pA 
(II CMV ). More plasmid – host 3C products (detected using primers targeting 
the plasmid backbone and sequences fl anking host  U2  genes) are seen 
with II U2  than with II CMV  (row 1, compare left lane with the right; row 6, 
mean of four experiments); therefore, II U2  lies closer to host  U2  units than 
II CMV . In contrast, amplimers from  ALDOA  –  ALDOA , synthetic 3C templates, 
and the  Neo r   gene on the backbone (which refl ect plasmid copy number) 
are all obtained in roughly equal amounts (rows 3 – 5).   
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constructs encoding  DsRed  were made from pDsRed-N1 (Clontech Labo-
ratories, Inc.). Appropriate construction was confi rmed by sequencing 
(using oligo pair 13). S. Murphy and N.J. Proudfoot (University of 
Oxford, Oxford, UK) provided constructs containing the U2G, 7SK, 
and  HBB  fragments. 

 Cell culture and transfection 
 Cos7 cells ( Mellon et al., 1981 ) were grown in DME + 10% fetal calf 
serum (Invitrogen). Cells in 90-mm Petri dishes were transfected using 
FuGene6 (Roche) with 1.2  μ g of plasmid DNA plus sheared salmon sperm 
DNA (Sigma-Aldrich) added to 6  μ g. After 8 h, cells were trypsinized, 
washed, and replated to reduce background of input DNA. For  Fig. 5 B  
(where we wished to detect a few interactions between minichromosomes 
and host chromosomes against a high minichromosome – minichromosome 
background), transfected cells were grown for 6 h and washed before 
cross-linking. Transfection effi ciencies were determined by measuring EGFP 
levels by microscopy and FACS. Polymerase II was inhibited by incubation 
(16 h at 37 ° C) in 50  μ g/ml  � -amanitin (Sigma-Aldrich). 

 FACS 
 2  ×  10 5  cells were washed in PBS, resuspended in 2 ml PBS, and analyzed 
on a fl ow cytometer (FACScan; Becton Dickinson). Cell debris/clusters 
were differentiated from single cells using forward and side scattering and 
eliminated from the analysis. Backgrounds were determined using mock-
transfected cells and those transfected with II CMV , EGFP ,pA or II CMV , DsRed ,pA 
( Fig. 3 B ). Data on 10,000 cells were analyzed using CellQuest software 
(Becton Dickinson), and the fractions of cells expressing red fl uorescence 
(from the reference plasmid) and green fl uorescence (from the test plasmid) 
were calculated. 

 DNA copy number determined by blotting and qPCR 
 Plasmid DNA from a  “ Hirt ”  extract ( Hirt, 1967 ) of  � 10 7  cells was digested 
with the appropriate restriction enzyme, separated on an agarose gel, and 
blotted onto nylon. Probes were labeled with DIG (digoxigenin) using a 
DIG labeling kit (Roche) by random priming and hybridized at 65 ° C for 
16 h in  “ Church ”  buffer (0.5 M sodium phosphate buffer, 1 mM EDTA, 1% 
bovine serum albumin, and 7% SDS, pH 7.2), then bound targets were 
detected using a DIG detection kit (Roche). 

 Total DNA from  � 10 7  cells was purifi ed using Trizol (Invitrogen), 
and the  EGFP  copy number was determined by qPCR using a thermal 
cycler (Roter-Gene 3000; Corbett Life Science); signals were normalized 
relative to those given by  GAPDH . In brief, each 25- μ l reaction contained 
Platinum SYBR Green qPCR SuperMix-UDG with ROX (Invitrogen) and 
5 pmol of each primer (oligo pairs 11 and 12). Cycling conditions were: 
50 ° C for 30 min and 95 ° C for 10 min followed by 40 cycles at 94 ° C for 
15 s and 57.5 ° C for 30 s. Samples were run in triplicate and each experi-
ment was repeated three times. 

 Absolute copy numbers were obtained by reference to the known 
numbers of pure plasmids. Concentration and purity was determined 
from the absorbance using a spectrometer (Nanodrop ND-100; Thermo 
Fisher Scientifi c). 

 mRNA copy number determined by qRT-PCR 
 Total RNA was purifi ed using Trizol, and cDNA was prepared using the 
SuperScript III Platinum one-step system for RT-PCR (Invitrogen) and normal-
ized to  GAPDH  mRNA levels in the same sample. qRT-PCR was conducted 
similarly to qPCR. 

 Absolute copy numbers were obtained by reference to known num-
bers of  EGFP  transcripts prepared by in vitro transcription using T7 RNA 
polymerase (Roche). The template (pcDNA-EGFP-N1) was constructed by 
inserting  EGFP  (from pEGFP-N1) between the HindIII and BamHI sites into 
pcDNA3 (Invitrogen). The integrity and size of RNA were verifi ed by gel 
electrophoresis, and concentration and purity were determined from the 
absorbance (see DNA copy number...). 

 DNA FISH 
 Plasmid DNA was detected using DNA FISH ( Brown, 2002 ). Cells were 
rinsed in PBS, fi xed (17 min at 20 ° C) in 4% paraformaldehyde and 0.05% 
acetic acid in 0.15 M NaCl, washed three times (5 min at 20 ° C) in PBS, 
incubated (30 min at 37 ° C) with 50  μ g/ml RNase (which removes all de-
tectable  EGFP  RNA;  Fig. 3 C ), permeabilized (5 min at 37 ° C) in 0.01% 
pepsin, pH 2.0, rinsed in water treated with diethylpyrocarbonate, postfi xed 
(5 min at 20 ° C) in 4% paraformaldehyde in PBS, washed (10 min at 20 ° C) 
in PBS, denatured (2 min at 70 ° C) in 70% deionized formamide and 
2 ×  SSC (0.03 M sodium citrate and 0.3 M NaCl, pH 7.0), and immediately 

( Fig. 6 A ). On the other hand, nascent transcripts from polymer-

ase I units are found in nucleoplasmic foci ( Fig. 4, I – L ; and 

Fig. S3) known as pseudonucleoli ( Mais et al., 2005 ). As host 

(polymerase I) units are only active in the nucleolus, we must 

assume that nucleoplasmic minichromosomes recruit host fac-

tors to nucleate these pseudonucleoli, which then recruit addi-

tional minichromosomes (as in  Fig. 6 A ). 

 These results beg many other questions. For example, how 

many different types of factory are there? In this preliminary 

screen, we found fi ve different kinds ( Fig. 4 ), and we expect to 

fi nd more. How might targeting be achieved? There is some evi-

dence that certain factories contain high concentrations of partic-

ular factors ( Bartlett et al., 2006 ). Then, as a promoter diffuses 

through the nucleus, it might only bind stably to a factory con-

taining the appropriate factors. This might then increase the fre-

quency of initiation. But how could a gene with an intron recruit 

(or be recruited to) a different factory from an intronless gene 

( Fig. 4, E – H ), especially when binding to a factory inevitably 

precedes synthesis of a transcript with an intron? One possibility 

is that the  � -globin intron used, which is known to contain bind-

ing sites for transcription factors ( Jackson et al., 1995 ;  Wen et al., 

2005 ), stabilizes binding to a factory with the appropriate factors, 

as described above. Another possibility, which is consistent with 

both the imprecise targeting of a minority of plasmids to certain 

factories ( Fig. 4, E – H ) and of the majority to another set of fac-

tories that contain the splicing component SC35 (Fig. S2), is 

as follows. A newly replicated intron-containing gene might be 

 “ na ï ve, ”  and bind to and initiate (incorrectly) in a  “ nonsplicing ”  

(polymerase II) factory. However, on binding to a  “ splicing ”  fac-

tory, it might acquire some mark (e.g., a histone modifi cation) 

that now targets it to the appropriate factory ( Fig. 6 B ). We also 

note that just as transcriptionally active minichromosomes  “ pair ”  

by binding to the appropriate factories, a similar process might 

underlie the pairing of homologous chromosomes in both somatic 

and meiotic cells ( Fig. 6 C ;  Cook, 1997 ). 

 Materials and methods 
 Oligonucleotides 
 Oligonucleotides (MWG Biotech AG; or Sigma-Aldrich) are listed in Table S1 
(available at http://www.jcb.org/cgi/content/full/jcb.200710053/DC1). 

 General procedures 
 General procedures have been described previously ( Harlow and Lane, 
1999 ;  Sambrook and Russell, 2001 ). 

 Plasmids 
 Plasmids with a common backbone but encoding transcription units with 
different promoters, introns, and 3 �  ends ( Fig. 1 B ) were constructed as 
follows: plasmid 0, EGFP ,pA from pEGFP-N1 (Clontech Laboratories, Inc.) 
by deleting bp 8 – 591 (using oligo pair 3); I 45S , EGFP ,pA by inserting 
the 250-bp truncated human polymerase I promoter (prepared using oligo 
pair 1;  Pleschka et al., 1996 ) between the AseI and NheI sites of 0, EGFP ,pA; 
III 7SK , EGFP ,pA by inserting the 234-bp human 7SK promoter ( Boyd et al., 
1995 ) between the PstI and KpnI sites of 0, EGFP ,pA; II U2 , U2G ,3 �  box and 
II U2p �  , U2G ,3 � box from pEGPF-C1 (Clontech Laboratories, Inc.) by delet-
ing bp 8 – 1,367 and inserting the 623-bp  U2G  fragment ( Medlin et al., 
2003 ) or the promoterless U2G fragment (both prepared using oligo pair 
4;  Cuello et al., 1999 ) between the AseI and PstI sites; and II CMV , EGFP  V ,pA 
by inserting 925 bp of the  HBB  intron 2 (chromosome 11 positions 
5,203,482 – 5,204,406 in the National Center for Biotechnology Informa-
tion 36 assembly; prepared by PCR amplifi cation of human DNA using 
oligo pair 2) between the HindIII and PstI sites of pEGPF-C1. Analogous 
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were fi xed (10 min at 20 ° C) in 50 ml DME + 10% FCS supplemented with 
2% formaldehyde before glycine was added to 0.125 M. Cells were 
pelleted; lysed (90 min at 4 ° C) with vigorous stirring in 50 ml of 10 mM 
Tris-HCl, pH 8, 10 mM NaCl, 0.2% NP-40, and protease inhibitors 
(Sigma-Aldrich); repelleted; incubated (1 h at 37 ° C) with shaking in NEB 
buffer for BamHI (New England Biolabs, Inc.) + 0.3% SDS; and subse-
quently incubated in 1.8% Triton-X (1 h at 37 ° C). 10 6  nuclei were di-
gested (16 h at 37 ° C) with 600 U BamHI and incubated (20 min at 65 ° C) 
in a fi nal concentration of 1.6% SDS. Samples containing 2  μ g DNA were 
incubated (1 h at 37 ° C) in 1% Triton X-100 and the volume was adjusted 
to 2 ml, then incubated (4 h at 16 ° C) in 2,000 U T4 DNA ligase (New 
England Biolabs, Inc.), incubated (16 h at 65 ° C) with 100  μ g/ml protein-
ase K (Sigma-Aldrich), and treated (30 min at 37 ° C) with 0.4  μ g/ml 
RNase A (Roche). DNA was then purifi ed by phenol extraction and etha-
nol precipitation. PCR (30 cycles; controls showed this was in the linear 
range) was performed with serially diluted samples using oligo pairs 
14 – 17, and PCR products were sized by gel electrophoresis. Expected liga-
tion products were generally prepared in vitro from each pair of templates 
and used to confi rm that amplifi cation effi ciencies were equivalent. Plas-
mid pTP18 ( Pavelitz et al., 1995 ) and a BAC (RP-11-114A14; BACPAC 
Resources Center) were used as sources of host  U2  and host  ALDOA  
DNA, respectively. The relative cross-linking frequency is the intensity of 
the  DsRed  –  EGFP  or plasmid – host  U2  band divided by the product of the 
intensities of the  ALDOA  –  ALDOA  and PCR control bands, normalized rel-
ative to equivalent values given by the reference experiment (i.e., II + III or 
CMV in  Fig. 5 ). 

 For  Fig. 5 , transcriptionally active chromatin fractions were selected 
before 3C by incubation (16 h at 4 ° C) with antibodies against trimethyl 
K4 in histone H3 (Abcam). After immunoselection ( Cai et al., 2006 ) on 
protein G – Sepharose beads, beads were washed once (at 4 ° C for 5 min) 
with low-stringency buffer (10 mM Tris-HCl, 150 mM NaCl, and 10 mM 
MgCl 2 , pH 7.5), twice (at 4 ° C for 5 min) with high-stringency buffer (10 mM 
Tris-HCl, 500 mM NaCl, and 10 mM MgCl 2 , pH 7.5), and once (at 
4 ° C for 5 min) with low-stringency buffer. Beads were then incubated 
(37 ° C for 16 h) with 600 U of BamHI or PstI and the 3C ligation was 
performed. Plasmid copy numbers in experimental and reference samples 
were shown to be equivalent by PCR amplifi cation of  Neo r   using oligo 
pair 18 ( Fig. 5 B , row 5). 

 Statistics 
 The Mann-Whitney test, one-way analysis of variance (ANOVA) and 
Student ’ s  t  tests were performed using GraphPad Prism version 4.00 for 
Windows (GraphPad Software, Inc.). Sample sizes were such that the 
last fi ve samples analyzed yielded values that lay within 5% of the pro-
gressive mean. 

 Online supplemental material 
 Fig. S1 shows that nuclear foci containing high concentrations of minichro-
mosomal transcripts colocalize with the active form of RNA polymerase II. 
Fig. S2 shows that intron-containing RNA colocalizes with faint SC-35 foci. 
Fig. S3 shows that transcripts made from a polymerase I promoter co-
localize with UBF. Table S1 lists oligonucleotide sequences of primers, link-
ers, and probes. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200710053/DC1. 
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dehydrated (for 3 min) by passage through 70, 90, and then 100% ice-cold 
ethanol before hybridization (16 h at 37 ° C) in a moist chamber. Hybrid-
ization mix contained 50 ng of DIG- and/or biotin-tagged probe, 25% 
deionized formamide, 2 ×  SSC, 200 ng/ μ l of sheared salmon sperm DNA, 
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0.1% bovine serum albumin), 50 mM phosphate buffer (20 mM KH 2 PO 4 , 
and 30 mM KHPO 4   ×  2 H 2 O, pH 7.0), and 1 mM EDTA. Probes were 
prepared by DIG random priming (Roche) of pure plasmid DNA, purifi ed 
using Sephadex G-50 spin columns (GE Healthcare), and denatured (10 
min at 94 ° C) before hybridization. Cells were then washed three times in 
2 ×  SSC (15 min at 37 ° C) and twice (5 min at 20 ° C) in TST (0.15 M NaCl, 
0.1 M Tris-HCl, and 0.05% Tween 20, pH 7.5), and incubated in 1.4% 
blocking reagent (Roche) in TS (0.15 M NaCl and 0.1 M Tris-HCl, pH 7.5). 
Immunodetection was performed either using sheep anti-DIG (60 min at 
20 ° C; 1:250; Roche) followed by donkey anti – sheep Cy3 (30 min at 20 ° C; 
1:250; Jackson ImmunoResearch Laboratories) or using mouse anti-biotin 
(30 min at 20 ° C; 1:250; Jackson ImmunoResearch Laboratories) followed 
by donkey anti – mouse Alexa 488 (30 min at 20 ° C; 1:200; Invitrogen) or 
donkey anti – mouse Cy5 (30 min at 20 ° C; 1:150; Jackson ImmunoResearch 
Laboratories). Cells were washed three times (5 min at 20 ° C) in PBS after 
incubation with each antibody and mounted in Vectashield (Vector Labora-
tories) containing 1  μ g/ml DAPI (Sigma-Aldrich). 

 RNA FISH 
 Transcripts were detected using RNA FISH ( Osborne et al., 2004 ). Cells 
were rinsed in PBS, fi xed (17 min at 20 ° C) in 4% paraformaldehyde and 
0.05% acetic acid in 0.15 M NaCl, rinsed three times (5 min at 20 ° C) in 
PBS, permeabilized (5 min at 37 ° C) in 0.01% pepsin, pH 2.0, rinsed in 
diethylpyrocarbonate-treated H 2 O, postfi xed (5 min at 20 ° C) in 4% para-
formaldehyde in PBS, and washed (10 min at 20 ° C) in PBS before hybrid-
ization (16 h at 37 ° C) in a moist chamber. Probes for  EGFP ,  Neo r  , and 
 DsRed  were prepared by PCR followed by nick-translation (Roche) or asym-
metrical PCR using oligo pairs 5 – 9. In some cases, three probes for each 
target were mixed. Biotinylated oligonucleotide probes (oligo 10) comple-
mentary to the preU2 sequence were used for  U2G  ( Smith and Lawrence, 
2000 ). Hybridization, subsequent washes, and immunodetection were 
performed as described for DNA FISH. 

 In analogous experiments using nonreplicating plasmids and differ-
ent fi xation conditions, two patterns of nuclear signal were seen ( Binnie 
et al., 2006 ). Some transfected nuclei contained plasmid transcripts concen-
trated in foci (as we found), but others contained diffusely spread tran-
scripts; as plasmid input increased, the fraction with the diffuse pattern 
increased. We also observed two patterns in preliminary experiments and 
were concerned that a diffuse pool might obscure some foci and/or artifac-
tually aggregate to create foci. But as we used progressively harsher fi xa-
tion, progressively more nuclear signal was detected (up to 1.5-fold), and 
the cell fraction with foci increased. Therefore, we used harsh conditions 
where detection is optimized,  > 85% nuclear signal was in the foci (see 
Results), and it is unlikely that much diffuse pool is extracted or aggregates 
(as nuclear signal does not fall or remain constant). 

 Immuno-RNA FISH 
 Cells were fi xed (17 min at 20 ° C) in 4% paraformaldehyde and 250 mM 
Hepes, pH 8.0, permeabilized (5 min at 37 ° C) in 0.5% Triton X-100 and 
0.5% saponin, postfi xed and hybridized as with RNA FISH, and UBF or 
SC-35 were detected using mouse monoclonal anti-UBF (2 h at 20 ° C; 1:150; 
Santa Cruz Biotechnology, Inc.) or anti-SC-35 (2 h at 20 ° C; 1:200; Sigma-
Aldrich) followed by donkey anti � mouse Alexa 647 (2 h at 20 ° C; 1:200; 
Invitrogen). Alternatively, RNA polymerase II was detected using a rabbit 
antibody directed against phospho-Ser2 in the heptads of the C-terminal do-
main of the largest catalytic subunit (2 h at 20 ° C; 1:250; Abcam) followed 
by donkey anti – rabbit Alexa 488 (2h at 20 ° C; 1:250; Invitrogen). 

 Microscopy 
 2.5  μ m of orange or green intensity calibration beads (0.1% intensity; Invi-
trogen) were added to the mounting medium at 6  ×  10 4 /ml. Images were 
collected on a microscope (Axioplan 2; Carl Zeiss, Inc.) with a charge-
coupled device camera (MicroMax 1024B; Princeton Instruments) using 
an exposure that gave a signal intensity of the beads of 200 – 255 on the 
grayscale. Signal intensities were measured using ImageJ (W.S. Rasband, 
National Institutes of Health, Bethesda, MD; http://rsb.info.nih.gov/ij/) and 
normalized relative to the intensity of the reference beads. 

 3C and ChIP-3C 
 Relative proximity between templates was assessed using 3C ( Dekker 
et al., 2002 ;  de Laat, 2007 ;  Ohlsson and Gondor, 2007 ). 4  ×  10 7  cells 
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