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Abstract

Meprin (EC 3.4.24.18) is an oligomeric metalloendopeptidase found in microvillar membranes of kidney proximal tubular
epithelial cells. Here, we present the first report on the expression of meprinb in rat glomerular epithelial cells and suggest a
potential involvement in experimental glomerular disease. We detected meprinb in glomeruli of immunostained rat kidney
sections on the protein level and by quantitative RT-PCR of laser-capture microdissected glomeruli on the mRNA level. Using
immuno-gold staining we identified the membrane of podocyte foot processes as the main site of meprinb expression. The
glomerular meprinb expression pattern was altered in anti-Thy 1.1 and passive Heymann nephritis (PHN). In addition, the
meprinb staining pattern in the latter was reminiscent of immunostaining with the sheep anti-Fx1A antiserum, commonly
used in PHN induction. Using Western blot and immunoprecipitation assays we demonstrated that meprinb is recognized
by Fx1A antiserum and may therefore represent an auto-antigen in PHN. In anti-Thy 1.1 glomerulonephritis we observed a
striking redistribution of meprinb in tubular epithelial cells from the apical to the basolateral side and the cytosol. This might
point to an involvement of meprinb in this form of glomerulonephritis.
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Introduction

Many forms of inflammatory kidney disease are characterized

by excessive proliferation of mesangial cells (MC) and by increased

deposition of extracellular matrix (ECM) in glomeruli and the

tubulo-interstitium, with subsequent structural alteration of the

glomerular basement membrane (GBM) and the mesangial matrix

[1,2]. Therefore, an analysis of the factors responsible for the

regulation of MC proliferation and for the metabolism of ECM is

of highest priority. The processing of ECM proteins in the kidney

is influenced substantially by members of the metzincin super-

family of metalloendopeptidases, notably by the matrix metallo-

proteases (MMPs) [3–5] and by the ADAMs (a disintegrin and

metalloprotease) [6,7]. The role of MMPs in basement membrane

remodelling in particular has recently received a lot of attention

due to their ability to influence the progression of renal

dysfunction [8]. Moreover, the pharmacological ablation of

MMP enzymatic activity in a mouse model of Alport syndrome

prior to the onset of proteinuria or structural defects of the GBM

led to significant attenuation in disease progression and to

prolonged survival [9]. Recently, the metalloendopeptidase

meprin has been suggested to be involved in these processes, as

well [10,11]. Meprin (EC 3.4.24.18), an oligomeric zinc

endopeptidase of the astacin family, was originally identified on

the apical brush-border membrane of epithelial cells in the cortico-

medullary portion of proximal kidney tubules and the intestine

[12–15]. It is composed of a and b subunits that are expressed

separately or coordinately either forming homo- or hetero-

oligomeric complexes [16,17]. Meprins are highly conserved

among different species and are capable of cleaving a wide range

of protein substrates in vitro, such as ECM components (collagen

type IV, laminin, fibronectin and nidogen [18–21]), cytokines

(interleukin-1 b), protein kinases, growth factors and peptide

hormones [22–27]. Meprins act extracellularly in that they are

either bound to the plasma membrane by transmembrane

domains or secreted into the extracellular space [28,29].

The role of meprin in the pathogenesis of kidney disease has

been studied previously in animal models. There are mouse strains

(ICR or C57B1/6) that express both meprina and b in proximal

tubular cells and others (C3H/He or CBA) that exclusively express

meprinb, mostly in a latent form (pro-meprinb) with low

proteolytic potential [30]. When exposed to different renal insults,

the latter mice developed less severe forms of kidney disease

compared to those with normal meprin levels, suggesting a
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potential role for meprin in the pathology of acute renal failure

[31]. Moreover, in a model of ischemia and reperfusion injury,

meprin was reported to be redistributed from the apical brush-

border membrane to the basolateral side and the cytosol of tubular

epithelial cells resulting in degradation of ECM and damage to

adjacent peritubular structures [21]. Recently, it could be shown

that this relocalization occurs also in a mouse model of acute

kidney injury using cisplatin, suggesting that common mechanisms

for meprin redistribution are involved in toxic and ischemic renal

injury [32]. Furthermore, meprin was found to be directly

cytotoxic to cultured tubular epithelial cells and its inhibition by

actinonin and by the metal chelator 1,10-phenanthroline resulted

in a protective effect on cell integrity during ischemia-reperfusion

injury in rats [10,33].

Multiple studies have also revealed that meprin expression is

down-regulated in models of renal injury leading to acute renal

failure. For example, renal damage associated with hydronephrosis

(unilateral urethral obstruction) occurred with an early and

progressive decline in rat meprin subunits on both mRNA and

protein levels [34]. In addition, microarray analysis demonstrated

marked declines in mouse meprinb expression in acute renal

ischemic reperfusion injury and in adriamycin-induced nephrop-

athy [33,35].

In a previous study using a rat model of chronic renal allograft

rejection, we observed a concomitant down-regulation of meprinb
and MMP-9 [36]. MMP-9 has been shown to be secreted by both

mesangial cells and glomerular epithelial cells (podocytes) [37–39].

We therefore decided to check for meprinb expression in

glomeruli and then to further assess meprin regulation in models

of glomerular disease. For this purpose, we focused on meprinb
expression in healthy rat kidney and in two models of rat

glomerular disease: passive Heymann nephritis (PHN), a rat model

of human membranous nephropathy, and anti-Thy 1.1 mesangial

proliferative nephritis [3,40–42]. We demonstrate that a reloca-

lization of the protease occurs following the induction of

glomerular disease, an effect that may contribute to the

pathogenesis of rat glomerulonephritis. Moreover, we demonstrate

that meprin may represents a potential auto-antigen in PHN.

Results

Meprinb expression in podocytes of rat glomeruli
To assess meprinb expression in healthy kidney paraffin-

embedded kidney sections from Wistar rats were analyzed by

immunostaining (Fig. 1). As expected, we observed strong apical

staining of proximal tubular cells (PT) using a specific anti-

meprinb antibody (Fig. 1A, 1E). In addition, glomeruli (G) also

displayed positive meprinb staining (Fig. 1B, 1E). No signal was

observed when the primary meprinb antibody was replaced by

normal rabbit serum (Fig. 1C, 1F), or following pre-incubation

with a five-fold excess of recombinant human meprinb (Fig. 1D).

No effect on signal intensity was seen when the antibody was pre-

incubated with bovine serum albumin (data not shown). We

confirmed these data using Fisher and Lewis rats (supplementary

Figure S1).

To further investigate the localization of meprinb in glomeruli,

we double-stained the Wistar kidney sections with anti-meprinb
antibodies and anti-synaptopodin or anti-Thy 1.1 antibodies

(Fig. 2). Synaptopodin is abundantly expressed in the foot

processes of podocytes whereas Thy 1.1 is localized on the surface

of glomerular mesangial cells. The staining pattern of meprinb
revealed co-localization with synaptopodin (Fig. 2A–C), but not

with Thy 1.1 (Fig. 2D–F). Both meprinb and synaptopodin

displayed a linear staining pattern drawing the contour of the

intra-glomerular capillaries. These findings clearly demonstrate

the expression of meprinb protein in podocytes of rat glomeruli.

mRNA expression of meprinb in glomeruli
Next, we analyzed the mRNA expression by real-time

quantitative RT-PCR (RQ-PCR) on laser-capture microdissected

glomeruli from Wistar rats (Fig. 3). Importantly, the tissue

surrounding the captured glomeruli remained intact following

microdissection (Fig. 3A, 3B). RQ-PCR analyses using 18S RNA

as a house-keeping gene confirmed high meprinb mRNA

expression in glomeruli. The signal of meprinb mRNA derived

from the 200 collected glomeruli was 467-fold higher when

compared to the level of the respective total kidney homogenate

(arbitrarily set as 1.0-fold) (Fig. 3C), explained by the fact that all

glomeruli contribute to meprin expression, while tubular meprinb
is confined to some proximal tubules of the cortico-medullary

section and is therefore diluted in a whole kidney homogenate.

The meprinb mRNA results support the immunostaining data

described above.

Meprinb in experimental PHN
PHN is a rat model of human membranous nephropathy

associated with altered podocyte slit diaphragm integrity, sub-

epithelial immune deposits and expansion of glomerular basal

membranes [43,44]. Analysis of kidney sections from control rats

after injection of normal sheep globulin showed a linear staining

pattern for meprinb. This changed to a granular staining following

injection of anti-Fx1A antiserum to induce PHN (Fig. 4A–C). At

day 3, glomerular capillaries displayed a significant and well

outlined meprinb and synaptopodin staining, whereas at day 6, the

staining intensity became granular and clustered and the overall

picture was less intense in signal strength (Fig. 4B–F and Fig. 4

compare J and K to L), with the granular pattern being more

pronounced for synaptopodin (Fig. 4G, 4H), probably as a result of

a deterioration of podocyte integrity (Fig. 4I).

Detection of meprinb by anti-Fx1a antisera
Since the introduction of PHN as a model for auto-immune

glomerulonephritis [45], a substantial effort was made to identify

responsible antigens. It has been recognized that biologically

relevant antigens must be present in the brush borders of the

proximal kidney tubules as well as in podocyte membranes. PHN

is induced by the administration of sheep or rabbit anti-Fx1A

antisera generated against the brush border membrane fractions of

rat proximal kidney tubules. Meprinb is abundantly expressed in

these membranes but, as shown above, also in glomeruli, the main

target for the antibodies. Moreover, the staining pattern we

observed for meprinb resembled the one obtained by immuno-

staining using anti-Fx1A [46]. Hence, we checked if meprinb was

detected by the anti-Fx1A antiserum using Western blot analysis.

In kidney homogenate from Wistar rats we detected a band of

110-kDa corresponding to the molecular size of meprinb (Fig. 5A,

lane 1). The same band was observed when the blot was stripped

and re-probed with a specific anti-meprinb antibody to show the

specificity of the detection by anti-Fx1A (Fig. 5A, lane 3). In

contrast, no band was detected when the membrane was blotted

with normal serum as a negative control (Fig. 5A, lane 2). A 110-

kDa band corresponding to meprinb was also obtained after

immunoprecipitation using anti-Fx1A antiserum, followed by

Western blot analysis with a specific anti-meprinb antibody

(Fig. 5B, lane 1). No band appeared when the kidney homogenate

was immunoprecipitated with normal serum as a negative control

(Fig. 5B, lane 2). In addition, we stably transfected Madin-Darby

canine kidney (MDCK) cells with human meprinb. Wild-type and

Meprinb in Glomerular Disease
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meprinb transfected MDCK cells were then subjected to

immunoprecipitation using anti-Fx1A antiserum, followed by

Western blot analysis with anti-meprinb antibody. We obtained

a 110-kDa band in lysates of meprinb-transfected MDCK cells

whereas in wild-type MDCK cells this band was absent (Fig. 5B,

line 3 and 5B, line 4). These findings clearly demonstrate that the

anti-Fx1A antiserum, in addition to other brush border membrane

proteins, detects meprinb. Meprinb could therefore be recognized

at the podocyte membrane by the anti-Fx1A antiserum and thus

contribute to the pathology of PHN as another auto-antigen.

To further strengthen this hypothesis, we analyzed the

subcellular localization of meprinb by immuno-gold labelling of

ultra-thin sections of kidney cortex from adult Wistar rats using the

specific anti-meprinb antibody (Fig. 5C). Gold particles were

Figure 2. Double immunofluorescence staining of kidney sections from Wistar rats. Immunofluorescence staining of glomeruli: (A) anti-
meprinb antibody, (B) anti-synaptopodin antibody, (C) merged image meprin/synaptopodin, (D) anti-meprinb antibody, (E) anti-Thy 1.1 antibody,
(F) merged image meprin/Thy 1.1. Nuclei are marked by staining with 4,6-diamidino-2-phenylindole (DAPI).
doi:10.1371/journal.pone.0002278.g002

Figure 1. Meprinb expression in Wistar rat kidneys. Immunostaining of paraffin embedded kidney tissues from Wistar rats: (A) positive
immunofluorescence staining of proximal tubules and (B) of glomeruli using a specific meprinb antibody. Control immunofluorescence staining: (C)
replacement of the primary antibody with normal rabbit serum. (D) Competitive inhibition of meprinb by pre-incubation with an excess of
recombinant meprinb (r-meprinb). (E) Positive immunohistochemical staining of glomeruli using a specific C-terminal meprinb antibody. Control
immunohistochemical staining: (F) replacement of the primary antibody with normal rabbit serum. G: glomeruli, PT: proximal tubuli. Similar results
were obtained using a different antibody directed against the N-terminal domain of meprinb.
doi:10.1371/journal.pone.0002278.g001
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found mostly at the membrane of podocyte foot processes and

main processes, facing the urinary space and, to less extent, at the

slit diaphragm. Meprinb, an ectoenzyme, is thus accessible to

circulating antibodies in rat glomeruli and this could lead to the

formation and deposition of immuno-complexes and to the

development of glomerulonephritis.

Meprinb in experimental anti-Thy 1.1 nephritis
Anti-Thy 1.1 nephritis is characterized by an initial phase of

complement-dependent mesangiolysis lasting for approximately 2

days, followed by a marked proliferative response of the residual

mesangial cells associated with the accumulation of ECM [47]. We

observed in preliminary experiments that the latter two features

were reached at day 11 [48]. Therefore, this time point was chosen

for nephrectomy and subsequent meprinb immunostaining (Fig. 6).

We observed a dramatic decrease in meprinb expression in all

glomeruli tested at day 11 after anti-Thy 1.1 injection (Fig. 6B). In

contrast, in control rats injected with PBS we observed normal

meprinb protein levels (Fig. 6A). This observation is in accordance

with the alterations in glomerular structure featuring various

glomerular diseases, particularly at the level of podocytes.

Substantial damage to glomeruli was also reflected by a distorted

synaptopodin staining, indicating loss of podocyte integrity (data

not shown). These changes in protein levels occur along with the

onset of proteinuria, having a maximum around day 2 and 3 after

induction of disease. Moreover, we also noticed a different staining

pattern in proximal tubules: in control rats, a strong signal was

localized at the apical plasma membrane, whereas kidney sections

of nephritic rats displayed a more diffuse staining throughout the

tubular epithelial cells (Fig. 6D–6F). These findings point to a

differential and rapid relocalization of meprinb towards the

basolateral side and the cytoplasm of proximal tubular cells during

mesangioproliferative glomerulonephritis.

Discussion

Meprin comprises approximately 5% of the brush border

membrane in rodent kidney, only second in abundance to actin

[49]. Hence it is considered to be the major protein of the

microvillar membrane with activity for degrading extracellular

matrix proteins [21]. Numerous studies have demonstrated that

renal meprin expression plays a key role in the severity and

progression of renal injury, with meprin exacerbating the disease.

In our study we detected for the first time meprinb expression in

the glomeruli of three different rat strains, a finding expanding our

knowledge on meprin’s previously described expression in the

apical membrane of proximal tubular epithelial cells. Interestingly,

a metalloendopeptidase with a molecular weight corresponding to

that of meprin was previously found in rat glomeruli, but was not

identified [50]. Using specific markers for glomerular cells and

immuno-gold staining we identified the membrane of podocyte

foot processes as the main site of glomerular expression of

meprinb.

In two different rat models of glomerulonephritis we detected

changes in the expression pattern of meprinb, both in the

glomeruli as well as in the proximal tubules. In passive Heymann

nephritis (PHN), the immunofluorescence signal for meprinb in

glomeruli paralleled that of synaptopodin. An increasingly

granular staining was observed indicative of the disruption in

structural integrity of the podocyte foot processes. In addition, the

intensity of meprinb staining was decreased both in the glomeruli

and in the proximal tubules with disease progression. PHN is

induced by the administration of antibodies generated against a

membrane fraction of rat renal proximal tubular cells (sheep or

rabbit anti-Fx1A antibodies), which results in the formation and

deposition of sub-epithelial immune complexes at the glomerular

basement membrane (GBM) [51]. This leads to the disruption of

the functional integrity of the GBM and the filtration barrier,

which in turn results in proteinuria. Megalin, a multiligand

endocytic receptor, localized in the microvillus membrane of

proximal tubular epithelial cells, was previously identified as an

antigen in these immune deposits [52]. The observation of

identical staining patterns with anti-meprinb and anti-rat Fx1A

antibodies [46], the direct detection of meprinb by anti-Fx1A

antibody in Western blots and in immunoprecipitation assays, and

the subcellular localization of meprinb in the membrane of

podocyte foot processes all suggest that meprinb may be involved

in the pathogenesis of PHN by representing another auto-antigen.

The decrease of meprinb immunostaining signal in glomeruli from

rats with PHN may reflect the typical injury of podocytes in this

disease or may reflect a reduced binding affinity of the staining

antibody to the meprinb-immunocomplexes.

Physiologically, the integrity and the structure of the glomerular

basement membrane (GBM) is maintained by the podocytes in a

continuous replacement and recycling effected by proteases [53–

56]. Meprin, expressed by podocytes, may act as such a processing

entity in breaking down GBM components, prior to being

substituted by new matrix proteins. A plethora of ECM

components are processed by meprin in vitro, such as laminin,

collagen IV, nidogen and fibronectin [19–21]. Damage to the

podocytes, either directly in PHN or indirectly through mesangial

injury in Thy 1.1 nephritis, may then interfere with the normal

turnover function of meprin and may thus disturb the steady-state

Figure 3. Relative meprinb mRNA levels of laser-capture
microdissected (LCM) glomeruli from Wistar rats. Two hundred
glomeruli were selected for microdissection with a laser. Kidney cortex
(A) before and (B) following LCM treatment. The tissue surrounding the
captured glomeruli remains intact after microdissection. The presence
of meprinb was confirmed in the microdissected glomeruli by real-time
quantitative PCR (C), and compared with the expression in the total
homogenized kidney. mRNA levels were normalized with 18S as
housekeeping gene.
doi:10.1371/journal.pone.0002278.g003
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processing of GBM components and hence enhance progression of

the disease.

Thy 1.1 nephritis is a reversible glomerular disease that affects

mesangial cells. We observed a loss of meprinb signal in rat

podocytes at day 11 following induction of the disease. We

postulate that the damage occurring in the mesangial compart-

ment may also lead to changes in podocytes in Thy 1.1 nephritis.

In addition, we observed a marked alteration in meprinb staining

of proximal tubular cells despite the fact that Thy 1.1 nephritis is a

glomerular disease: the immunostaining revealed a shift from a

linear staining confined to the apical brush border membrane in

the corticomedullary junction towards a diffuse cytoplasmatic

staining involving the tubular basement membrane. These findings

are reminiscent of meprinb relocalizations reported in tubular

nephritis such as in hypoxia/reperfusion injury [10,21,31] or in an

acute kidney injury model of cisplatin nephrotoxicity [32]. These

data provide evidence that high levels of meprin are present in

locations other than the apical membrane exposing the protease to

a distinct set of substrates not normally available to meprinb.

These include proteins of the basement membranes and cell-cell

adhesion complexes. It has been shown that mice with low renal

meprin expression levels had less severe forms of structural injury

when compared to mice with higher meprin levels [31,57].

Therefore, expression of meprin in epithelial cells of proximal

tubules appears to be detrimental in an already stressed kidney and

thus worsens the disease course.

This report is to our best knowledge the first to show expression

of the metalloendopeptidase meprinb in rat glomeruli. Moreover,

our results suggest that localization, balance and regulation of

meprinb may constitute features in kidney disease progression. In

order to investigate whether meprinb also has a direct, causal role

in the pathogenesis of glomerulonephritis such as PHN, further

experiments using animal models are needed. Moreover, it will be

interesting to correlate our results with studies in human

glomerulonephritis to assess a role of meprinb as a possible

auto-antigen in membranous nephropathy.

Materials and Methods

Animal tissues
Paraffin-embedded kidney tissues from Fisher and Lewis rat

strains were kindly provided by collaborators in Leiden, The

Netherlands. Approval for the studies was obtained from the local

animal studies commission.

The rats were sacrificed by intra-peritoneal injection of 1 ml of

pentobarbital. After nephrectomy the kidneys were either snap

frozen in liquid nitrogen and stored at -80uC, or fixed for 24 hours

in 5% buffered formalin, de-hydrated and embedded in paraffin.

Induction of disease
Anti-Thy 1.1 nephritis was induced at day 0 in Wistar rats

(150 g body weight) by an intravenous injection of anti-Thy1.1

Figure 4. Meprinb expression in rat glomeruli after induction of Passive Heyman nephritis (PHN). Immunofluorescence staining (A–C) of
meprinb and (D–F) synaptopodin in kidney sections from Sprague-Dawley rats. (G–I) Merged images of meprin/synaptopodin. (J–L)
Immunohistochemical staining of meprinb in glomeruli and in proximal tubules. Staining (A, D, G and J) in control rats, (B, E, H and K) in rats
at day 3 and (C, F, I and L) in rats at day 6 after induction of PHN. A change in distribution of the meprinb in PHN kidneys from a linear to a granular
appearance was observed concomitantly associated with an overall reduction in signal intensity. The distribution of meprinb and synaptopodin in
glomeruli appeared increasingly divergent following progression of PHN.
doi:10.1371/journal.pone.0002278.g004

Meprinb in Glomerular Disease
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IgG (OX-7; 1 mg/kg body weight in 500 ml PBS) as previously

described [48]. Kidneys were harvested 11 days after injection,

fixed in formalin and embedded in paraffin.

PHN was induced in male Sprague-Dawley rats (weighing

180 g to 200 g) by intra-peritoneal injection (5 ml/kg body weight)

of sheep anti-Fx1A antibody prepared as described previously

[58,59]. Rats were sacrificed 3 or 6 days after induction of

nephritis.

Immunohistology
Immunohistochemistry of meprinb on rat kidney section was

performed as described previously [36]. Replacement of the

primary antibody with normal rabbit serum served as a control for

the staining specificity (DAKO Diagnostics, Zug, Switzerland).

Immunofluorescence
The paraffin-embedded kidney sections were de-waxed, re-

hydrated and pre-treated by heating in a microwave oven in

10 mM citrate buffer, pH 5.65. Thereafter, sections were washed

with PBS and incubated in 5% bovine serum albumin blocking

solution, before further incubation with the primary antibody for 1

hour at room temperature. Sections were then incubated with

fluorescence labelled secondary antibody for 45 min at room

temperature in the dark, 4,6-diamidino-2-phenylindole (DAPI)

stained for 2 min, mounted in Dako Cytomation Fluorescence-

Mounting Medium and sealed with a cover slip. To prove

specificity of the antisera, we either re-placed the primary

antibodies with normal rabbit serum (DAKO Diagnostic) or we

pre-incubated the primary antibody with recombinant meprinb
(competitive inhibition) [60]. For double labelling, we applied a

second primary antibody for 1 hour. We used the following

antibodies: primary rabbit polyclonal anti-meprinb, targeting

amino acids 468–612 of meprinb, as previously described [61],

primary mouse monoclonal anti-synaptopodin (Progen, Heidel-

berg, Germany), primary monoclonal mouse anti-Thy 1.1 (Oxford

Biotechology, UK), secondary goat anti-rabbit and goat anti-

mouse (Dako Cytomation, Denmark), diluted 1:500, 1:4, 1:20,

1:1000 and 1:400 respectively.

Figure 5. Meprinb is recognized by anti-Fx1A antiserum. (A) Homogenized kidneys from Wistar rats were prepared and analyzed by Western
blotting using sheep anti-Fx1A antiserum (lane 1), normal serum (NS) (lane 2) and meprinb specific antibody (lane 3). A 110-kDa band was detected
using the anti-Fx1A antiserum (lane 1) which corresponds to the meprinb specific band (lane 3). No specific signal was detectable when normal
serum was used as negative control (lane 2). (B) Anti-Fx1A antiserum was used to immunoprecipitate the proteins from homogenized rat kidneys or
from the cell lysates of wild-type and human meprinb-transfected MDCK cells. Normal sheep serum was used instead of anti-Fx1A antiserum as
negative control. Immunoprecipitates were analyzed by Western blots using a specific meprinb antibody. A 110-kDa fragment corresponding to
meprinb was found exclusively in the rat kidney (lane 1) and meprinb-transfected MDCK cell lysates (lane 3) when immunoprecipitation was
performed with anti-Fx1A antisera whereas no band was visualized with normal serum (lane 2). (C) Immuno-gold labeling shows meprinb localization
in podocyte major processes (MP) and foot processes (FP), as indicated by arrows. Meprinb is located in the membrane of the podocyte. GBM:
glomerular basal membrane. CL: capillary lumen.
doi:10.1371/journal.pone.0002278.g005
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Immunoelectron microscopy
Isolated rat kidneys were fixed in 0.1% glutaraldehyde and 3%

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 3 hours

at room temperature. Fixed tissue was dehydrated to 96% ethanol,

embedded in LR White hard (Science Services, Munich,

Germany), and polymerized at 4uC under ultraviolet (UV) light

for 48–60 hours. Ultrathin sections (50 nm) were cut on a Leica

Ultracut S and were collected on Formvar-coated nickel grids.

Sections were first etched with saturated sodium periodate (Sigma)

at room temperature for 2 min. The grids were pre-incubated with

0.1% Tween 20 in phosphate-buffered saline (PBS), then blocked

with 50 mM NH4Cl in PBS and in blocking solution (0.5% fish

gelatine (Sigma) plus 0.1% ovalbumin (Sigma) in PBS). Sections

were incubated with primary antibodies against meprinb diluted in

blocking solution at 4uC for 60 hours, washed in PBS and twice in

a mixture of 0.1% ovalbumin, 0.5% cold-water fish gelatin, 0.01%

Tween 20, 0.5 M NaCl in 10 mM phosphate buffer, pH 7.3 (IgG-

gold buffer). The sections were incubated for 2 hours with goat

anti-rabbit Fab conjugated to nanogoldTM (1.4-nm gold particles;

Nanoprobes, Stony Brook, NY), diluted in IgG-gold buffer.

Washed sections were postfixed in 1% glutaraldehyde for 5 min

and air-dried. The nanogoldTM labeling was silver-enhanced for

25 min at room temperature as described [62]. The grids were

then washed in distilled water and stained with 2% ethanolic

uranyl acetate for 10 min and with lead citrate for 2 min before

examination in a FEI Tecnai 12 TEM [63].

Figure 6. Meprinb expression in experimental anti-Thy 1.1 nephritis. Meprinb was detected by immunofluorescence and by
immunohistochemistry in kidney sections (A, C and E) of healthy Wistar rats and (B, D and F) of Wistar rats at day 11 after induction of anti-
Thy 1.1 nephritis. In nephritic rats, meprinb expression is decreased in the glomeruli. Moreover, meprinb expression is not only restricted to the brush
border membrane of the tubules, but is also found diffusely spread within the tubular cells, as indicated by the arrow.
doi:10.1371/journal.pone.0002278.g006
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Laser-capture microdissection (LCM) and reverse
transcription

Kidneys of Wistar rats were embedded individually in

polyethylene glycol freezing media (Tissue-Tek OCT Compound,

Sakura Finetek, Torrance, CA, USA), placed at -20uC for 1 hour

and then stored at 280uC. Tissues were sectioned and mounted

on PALM PEN-covered membrane slides (PALM AG, Bernried,

Germany). LCM was performed immediately after sectioning.

Sections were stained with hematoxylin for 20 s using the

HistoGene Staining Solution (Arcturus HistoGene, LCM Frozen

Section Staining Kit, CA, USA) and dehydrated in graded

solutions of ethanol for 30 s each. Once air-dried, 200 glomeruli

were microdissected and catapulted into PALM adhesive caps

tubes using the laser microdissector pressure catapulting device

(PALM AG, Bernried, Germany). Cells were lysed in RNA

extraction buffer and total RNA was extracted using the PicoPure

RNA Isolation Kit (Arcturus). Total RNA was reverse-transcribed

according to the manufacturer’s instructions (Promega, Catalys

AG, Wallisellen, Switzerland).

Real-time quantitative RT-PCR (RQ-PCR)
cDNA was used as a template for RQ-PCR analysis with the

Applied Biosystems 7500 PCR System according to the manufac-

turer’s protocol in a reaction volume of 20 ml containing 1x

TaqMan Universal PCR Master Mix and 1x TaqMan gene

expression assay (Applied Biosystems Rotkreuz, Switzerland). All

the target genes were measured in duplicates. To detect genomic

DNA contamination, all analyses were also carried out without

reverse transcriptase and without template as negative controls.

18S RNA expression levels served as a housekeeping gene to

normalize expression between different samples and to monitor

assay reproducibility. Relative quantification of all targets was

calculated by the comparative cycle threshold method outlined by

the manufacturer (User Bulletin No. 2; Applied Biosystems).

Immunoblot and immunoprecipitation assay
Homogenized kidney from Wistar rats or cell pellets of the

stably transfected MDCKb and WT [64] were lysed in buffer A

(25 mM Tris/HCl pH 8, 50 mM NaCl) containing 1% deoxy-

cholic acid and 1% Nonidet P-40 in the presence of protease

inhibitors for 30 min on ice. Protein extracts were then denatured

by boiling 5 min with SDS 0.5% followed by electrophoresis on

7.5 or 10% SDS-polyacrylamide gels and transfer to polyvinyli-

dene difluoride membranes (Hybond–P PVDF, Amersham

Biosciences, Uppsala, Sweden). The membranes were saturated

with 5% dry milk and 0.1% Tween-20 in Tris-buffered saline for

2 hours, incubated overnight with the Fx1A antibody (1:1000) or

the specific meprinb antibody (1:2000) and then incubated with

horseradish peroxidase-conjugated anti-sheep IgG (1:5000) for

1.5 hours at room temperature. Immunocomplexes were visual-

ized using the ECL Plus Western blotting kit (Amersham

Biosciences) and X-ray films.

For immunoprecipitation, denatured protein extracts were

incubated with 50 ml of protein G-Sepharose beads conjugated

with the Fx1A antibody for 30 min at 4uC. Immune complexes

were pelleted by microcentrifugation at 15000 g for 5 min at 4uC
and washed 4 times with 0.5% Nonidet P-40, 0.05% deoxycholic

acid and 0.05% SDS in NaCl/Pi. The immunoprecipitate was

then subjected to immunoblotting using anti-meprinb antibodies

as described above.

Supporting Information

Figure S1 Meprinb expression in Fisher and Lewis rat kidneys.

Immunostaining of paraffin-embedded kidney sections (A and C)

from Fisher and (B and D) Lewis rats. Positive staining of

glomeruli and proximal tubules (A and B) in immunohistochemical

sections and (C, D) in immunofluorescence sections using the C-

terminal anti-meprinb antibody.

Found at: doi:10.1371/journal.pone.0002278.s001 (2.15 MB

DOC)
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