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Abstract

When researchers build high-quality models of protein structure from sequence homology, it is today
common to use several alternative target-template alignments. Several methods can, at least in theory,
utilize information from multiple templates, and many examples of improved model quality have been
reported. However, to our knowledge, thus far no study has shown that automatic inclusion of multiple
alignments is guaranteed to improve models without artifacts. Here, we have carried out a systematic
investigation of the potential of multiple templates to improving homology model quality. We have used
test sets consisting of targets from both recent CASP experiments and a larger reference set. In addition
to Modeller and Nest, a new method (Pfrag) for multiple template-based modeling is used, based on the
segment-matching algorithm from Levitt’s SegMod program. Our results show that all programs can
produce multi-template models better than any of the single-template models, but a large part of the
improvement is simply due to extension of the models. Most of the remaining improved cases were
produced by Modeller. The most important factor is the existence of high-quality single-sequence input
alignments. Because of the existence of models that are worse than any of the top single-template
models, the average model quality does not improve significantly. However, by ranking models with a
model quality assessment program such as ProQ, the average quality is improved by ;5% in the CASP7
test set.
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The gap between the number of known protein se-
quences in genome databases and corresponding three-
dimensional structures is rapidly increasing, and for the
vast majority of proteins we will likely never determine
experimental structures. One important tool to bridge this
gap and deduce structural properties from sequence is
theoretical modeling based on homology. Even if the
quality of these models cannot yet compete with exper-
imental structures, they are extremely cheap to produce

and can be applied on a much larger scale. Homology
modeling methods use the fact that evolutionarily related
proteins frequently share a similar structure. Therefore, if
the sequence identity is high enough a three-dimensional
model of a protein with unknown structure (target) can
be built using a sequence alignment to a protein of known
structure (template). Improving these model-building algo-
rithms is important not only for decreasing the structure–
sequence gap, but also to achieve higher-quality individual
models that, e.g., are accurate enough for drug design.

The accuracy of homology models is directly related to
how similar the target is to the template sequence, and
there is pretty solid consensus that the two most important
factors are to (1) choose the best possible template and
then (2) optimally align the target sequence onto this
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template (Moult 2005). When the sequence identity is
>40%, the alignment is usually considered to be trivial
and the main reason for model inaccuracies is due to
structural divergence. However, if there are several differ-
ent templates with similar sequence identity it is hard or
impossible to choose the best. With more distance targets,
neither the selection of the best template nor its alignment
is trivial. Many studies have analyzed different ways to
obtain better models, for instance to use profile–profile,
or HMM–HMM methods, which appear to do best at
identifying the template folds (Rychlewski et al. 2000;
Ohlson et al. 2004). For the actual alignments, profile–
profile methods seem to achieve better results than
methods that do not use information from profiles for
both the target and the query sequences (Honig 1999;
Wang and Dunbrack 2004; Ohlson and Elofsson 2005).
Finally, with finished models, many methods have been
developed to attempt to identify the best model out of a
set of predictions (Colovos and Yeates 1993; Sippl 1993;
Eisenberg et al. 1997; Wallner and Elofsson 2003), and it
has clearly been shown in the latest CASP experiments
that consensus methods (Lundström et al. 2001) using
input from several predictors excel in this context. In
particular, these methods are excellent at resolving and
predicting relative quality of different parts of a model
(Wallner and Elofsson 2006).

Significantly less focus has been given to the final step
in the homology modeling, i.e., the model building itself.
In a recent study (Wallner and Elofsson 2006), we showed
that three methods, Nest (Petrey et al. 2003), Modeller
(Sali and Blundell 1993), and SegMod (Levitt 1992), all
perform quite well for single-template homology model-
ing, while several other methods frequently failed to
produce close-to-optimal models. In addition, the per-
formance of some common modeling programs using
alignments of low sequence identity has been tested
recently (Dalton and Jackson 2007). For many years,
the authors and other investigators have claimed that the
use of multiple templates ‘‘naturally’’ increases the accu-
racy of homology modeling, presumably since it better
captures the variability and divergence of natural struc-
tures. Although several individual such examples have
been reported (Venclovas 2003), there have not really
been any large scale studies that investigate if this is
generally true, what extra information is really being
extracted, and how it improves models—and not least, if
there are cases when it causes problems. It has, for
instance, been proposed that a good reason to use multi-
ple templates is because it is nontrivial to identify the best
out of two or more templates (Contreras-Moreira et al.
2003). However, this would mean that if it were possible
to always select the better of two (or more) single-template
models, the single-template performance would be superior
or at least equal to the multiple-template model.

To gain insight into these questions we have examined
to what extent multiple templates can improve quality,
where the improvement comes from, and whether we can
predict this potential for improvement before deciding
whether to use multiple templates. We have used two
standard programs (Nest and Modeller) that are designed
to use multiple templates, and in addition (as a future test
bed) developed a new multi-template builder, Pfrag, that
can utilize multiple templates in two different ways,
either by averaging high-scoring templates or by starting
from the single highest-scoring template and then extend-
ing that model.

These four algorithms have been benchmarked using
two different test sets, one set of difficult targets, where
alignments were obtained from automatic servers during
the CASP7 experiment, and an easier set, where align-
ments were obtained using standard sequence alignment
algorithms as described by Wallner and Elofsson (2005).
We show that for a significant number of cases Modeller
actually manages to produce models that are better than
any of the single-template-based models, but that the
probability of producing a significantly worse model also
increases. The other methods produce fewer improved
models, but are also somewhat less likely to completely
disrupt the structure. Therefore, we propose a method to
select when to use multiple templates and when not to.
We show that this method improves the performance of
our Pcons algorithm used in CASP7 by 5% and also dis-
cuss other alternatives to predict the potential for model
improvement.

Results

To analyze the performance of the four different methods
tested, up to six of the highest-ranked alignments were
fed to the model-building algorithms, and the resulting
quality was evaluated from the change in TM score
(Zhang and Skolnick 2004) averaged over all targets in
each of the two data sets. Many other evaluation functions
exist, such as LG score (Cristobal et al. 2001) and
MaxSub (Siew et al. 2000). The TM score is useful since
it exhibits quite high agreement with the results of human
expert visual assessment (Zhang and Skolnick 2004).
However, in addition to the TM score, model quality
was also evaluated using GDT_TS (Zemla et al. 1997),
which is the gold standard for evaluation in CASP. Both
scoring functions provided virtually identical results, and
the evaluations based on the GDT_TS score can be found
in the Supplemental material.

Change in TM score with different number of alignments

Figure 1 illustrates the change in the average TM score
versus the number of alignments used for the four different
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methods. The left panel in Figure 1 shows the performance
on the CASP7 set, and the right, the Wallner benchmark set
that includes simpler targets (see Materials and Methods).
The baseline for comparison is the highest-ranked single-
template model built by Modeller; the reason for this
choice is simply that the Pcons6 models were originally
built with Modeller and thus served as a convenient point of
reference.

In general, Modeller appears to perform best when
using two or three templates, which provides an average
TM score improvement of just above 0.01 (for two
templates) compared to a single template. However, when
more alignments are used the performance gradually
falls. Nest actually produces slightly better models than
Modeller when using a single template. The behavior of
Nest when using multiple templates is similar to Mod-
eller, with a small increase when using two or three
templates and then a gradual drop in average quality. For
our Pfrag-average method, the largest improvement
occurs when using three templates, while the Pfrag-

shotgun model behaves differently, with the best results
obtained when using all available templates.

The results for the larger, and easier, Wallner set are
similar to those of the CASP7 set, but a few things are
worth observing. First, the trend from the CASP7 data set
that Nest builds slightly better single-template models
persists in the larger data set. Also, Nest performs on par
with Modeller using both two and three alignments, but
both these programs then deteriorate more than for the
CASP7 targets with an increasing number of alignments.
The most likely explanation is that some of the lower-
ranked alignments in this data set are of rather poor
quality. While the improvement for Pfrag shotgun is never
as high as for Modeller or Nest, it maintains the behavior
of continuously improving with additional alignments.

However, as noted before, one of the major factors
when using multiple templates is that regions not present
in the highest-ranked target-template alignment can be
added to the model, i.e., the length of the model increases.
TM score and many other quality measures do not

Figure 1. Average change in TM score for models built using different numbers of target-template pairs. Error bars indicate the

standard error. The reported scores are for (A) full-length CASP7 models and (B) Wallner models. Panel C shows the length reduced

CASP7 models and D shows the Wallner models. For both data sets, there is an increase in average TM score using two to three

alignments. Modeller shows the most improvement of all programs for the CASP7 data (with a 0.0116 change in average score), while

Nest and Modeller perform almost identically for the Wallner set. In contrast, Pfrag shotgun gives the best results using all six available

alignments. Contrary to A and B, when only taking into account the residues already present in the first model (CASP7 in C and

Wallner in D), the average TM score drops for both data sets and all programs except Modeller, indicating that Modeller actually can

improve these core residues to a limited extent.
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penalize incorrect regions, i.e., increasing the length of
the model cannot decrease the average score. These
improvements due to length can be considered rather
trivial compared to the potential of improving local
structure by better modeling variability and mutations
in segments present already in the first model. Therefore,
a more critical test of the ability of the different programs
to actually improve upon the best single template in any
given region is to take into account only those residues
that are found in the best single-template model.

Thus, from this point (with the exception of Table 2)
we only evaluate residues present in the highest-ranked
single-template model, which we refer to as ‘‘core’’
residues. In Figure 1C it can be seen that Modeller is
now the only program showing a slight improvement
using two alignments. For Nest and Pfrag the models now
get worse as more alignments are included. Unfortu-
nately, this shows that the increase in TM score plotted in
Figure 1A,B is largely an effect of the models becoming
longer, not that we are able to discriminate between
alternative local templates.

Chemical correctness

In our earlier study (Wallner and Elofsson 2005) we
showed that all three programs (Modeller, SegMod, and
Nest) produced models that were mostly chemically
correct using single target-template alignments. Applying
WHATCHECK (Hooft et al. 1996) and the same criteria

as in the earlier study, the chemical correctness of single-
and multiple-template models was investigated. Figure 2
shows that all four methods produce roughly the same
amount of ‘‘bad’’ residues and that there are an increased
number of such residues when multiple templates are
used. However, in general it can be claimed that all
methods are able to produce chemically correct models
for a large majority of these test cases, and there are no
obvious differences between the programs. In addition,
all methods produce an equal (and low) fraction of
knotted conformations (see Materials and Methods for
details).

Examples

To improve the understanding of how the different
modeling methods perform, a large set of models was
manually examined and a few selected successes and
failures discussed below.

Figure 3 illustrates a Modeller model from the Wallner
set using either of the two top single-template alignments
(top left and right) or a multiple-template model using
both alignments (bottom). This is a typical example of
what happens when a program seems to fail to converge:
There appear to be some constraints introduced from
the multiple templates that make the program produce
a suboptimal model. For this target, the Nest and
Pfrag multiple-template models are similar to the corre-
sponding single-template models, indicating that these

Figure 2. Evaluation of chemical correctness of the models calculated using the WHATCHECK program for (A) CASP7 models and

(B) Wallner models. The ‘‘Any’’ category is simply a union of the other three categories. For all methods and both data sets used, the

chemical correctness is best with fewer alignments, but Pfrag (average and shotgun) seems to be most sensitive to the number of

alignments using the CASP7 data set. For the Wallner data set, Pfrag (both versions) produces the most chemically correct models,

possibly attributable to the energy minimization that follows initial model building. The left and right bars for each program correspond

to models built with two and six template sequences, respectively.
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programs manage to handle this particular case better (see
figures in Supplemental material).

The second example (Fig. 4) also comes from the
Wallner data set and shows a model built with Modeller
that is improved using multiple templates. Here, the
multi-template model is better than either of the two
single-template models, because the program has chosen
to follow different templates in different regions of the
final model (Fig. 4, left panels). It can be seen from the
bottom right panel in Figure 4 that the local sequence
identity is important in this decision. Regions with a high
local sequence identity to the template sequence have a
lower RMSD. The region around residues 60–65 where
the sequence identity is very low for both alignments also
corresponds roughly to the region with the peak in RMSD
between the multi-template model and the native struc-
ture (gray line in the top right panel in Fig. 4).

Discussion

From the results above it is quite clear that no significant
average improvement is obtained for any of the tested
methods when the increase in model length is ignored,
which is somewhat striking. To improve a model, and not
just increase its length, the modeling program needs to

identify the best features of each of the target-template
alignments and decide when to use one or another and
how to combine them. An example of this type of
algorithm has been published by Qian et al. (2004),
who proposed using principal component vectors of
variation between a set of template structures as degrees
of freedom in refinement. If the modeling program is not
capable of local discrimination or refinement, it is likely
that the multiple-template model will rather resemble an
‘‘average’’ model, with a quality in between the corre-
sponding single-template models. In that case it would be
better to use the best single-template model if it could just
be identified, and the only justification for the ‘‘average’’
model would be our shortcomings in selecting the best
individual one (Contreras-Moreira et al. 2003). Finally,
the multiple-target-template alignments might create
conflicting constraints that make it harder for the model-
ing program to converge, and therefore the resulting
model might be significantly worse than the correspond-
ing single-template models.

However, when looking at the individual examples
shown above, it is obvious that all four methods some-
times do improve models when multiple templates are
used. Therefore, if it were possible to decide when to stop
including multiple templates, it should be possible to build
better models, at least on average. In addition, a better
understanding of the factors that enable the modeling
programs to create improved models might enable the
development of even better modeling programs.

Which models are improved?

In Figure 5, models built from one or several target-
template pairs are compared. Here, the multiple-template
models are compared with all single-template models
used. The fraction of multi-template models that are bet-
ter or worse than all single-template models is reported. It
can be seen that all methods sometimes produce both
models that are better than the best of the single-template
models and worse than all of the top-ranking ones. A
similar ratio of models are improved using the Wallner set
as in the CASP7 set, but fewer multiple-template models
score lower than the best single-template models in the
Wallner set. Obviously, as more alignments are included,
a larger fraction of the multiple-alignment models fall
into the intermediate region.

Modeller stands out from the other methods and clearly
produces the largest number of improved models. How-
ever, when using more than three alignments in the CASP7
set, Modeller also produces slightly more deteriorated
models. Taking this into account, Modeller seems to be
the program that has the greatest potential to improve if it
were possible to decide when to stop using multiple
alignments.

Figure 3. An example of a program (in this case Modeller) failing to

converge to a good model when more alignments are added. The TM score

drops from 0.936 for the first single-template model (top left) and 0.930

for the second single-template model (top right), to 0.512 for the multi-

template model (bottom), which also adopts a nonphysical conformation.

This happens despite the fact that the two single-template models are

quite similar (RMSD between the two single-template structures is 1.201).

The same model built with Nest and Pfrag can be found in the Sup-

plemental material. Molecular graphics were generated with PyMOL

(DeLano Scientific).
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We have attempted to identify factors that deter-
mine when a model is improved and when it is not
by comparing the first and second single-template
model with the multiple-template model built from
these two alignments (Table 1). It should be remembered
that when we measure performance, only residues pres-

ent in the first of the models are included, i.e., im-
provements due to a larger coverage are ignored. From
Figure 6 it is evident that it is more likely to see
an improvement with easy rather than hard models
using Modeller. In particular, it is less likely that the
model’s quality will deteriorate. This could explain the

Figure 4. Example of a model structure successfully alternating between templates, resulting in an overall better multi-template

model. The per-residue RMSD (top right) shows how the multi-template model (gray) alternates between the two structures and in

general stays closer to the one of the two (the first single-template model in blue and the second in red). A comparison can be made

between regions of high RMSD in the top right panel and corresponding regions in the left panels. The bottom right panel shows that

the local target-template sequence identity affects the modeling procedure (calculated using a 20-residue sliding window). A high local

sequence identity corresponds to low RSMD-regions (top left). Overall RMSD between the multi-template model and single-template

model 1 is 3.64, and 4.76 between the multi-template model and single-template model 2. In this case, the multi-template model is

better (overall RMSD 3.3) than either of the two single-template models.

Figure 5. Fraction of multiple-template models that are either better or worse than the top single-template models for different

numbers of alignments. For both data sets ([A] CASP7 and [B] Wallner), the fraction of multiple-template models that is better than all

single-template models for a given number of alignments decreases with increasing number of alignments. Also, the number of

multiple-template models that are worse than all top-scoring single-template models decreases, as the single-template models built

from alignments with a lower ranking are more likely to result in poor models.
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difference between the CASP and Wallner data sets, as
the latter has a higher fraction of easy targets. To a
large extent, the lower fraction of models with de-
creased quality can be explained by the fact that the
quality of the second model rarely is significantly worse
than the first ranked model for good models (that
would correspond to the empty area in the right corner
of Fig. 6).

It was also observed that good models as judged by
ProQ or significant Pcons/E-value scores are more likely

to be improved. However, in particular for targets with
low scores, fewer improve and more models deteriorate
using multiple templates. Also, it seems that the chance
of improving a multi-template model is greater if the
template sequences are similar, as measured by their
target sequence overlap. All these results indicate that
multiple alignments are primarily useful when two good
single-sequence alignments/models are combined. To a
varying degree, the same trend can be seen for the other
modeling programs.

Figure 6. Improvement with Modeller using two target-template pairs in (A) the CASP7 data set and (B), the Wallner data set. The

figure shows the change in TM score relative to the best single-template model, and data are presented both for the second best single-

template model as well as the second multi-template model. More multi-template models with a positive n-TM are found toward the

right-hand side in both A and B, indicating that improvement with multiple templates is most prominent for easy models (high TM

score). It is evident for the Wallner data set in particular that bad alignments in general produce bad models, as some of the second-

ranking single-template models are quite bad, but also that some of the second-ranking models give scores higher than first-ranking

models.

Table 1. Factors affecting model quality (%), using ‘‘core’’ residues only

Data set Program: Modeller Nest Pfrag average Pfrag shotgun

CASP7 Feature Better Worse Better Worse Better Worse Better Worse

All 47 20 37 25 19 35 14 32

Pcons score $0.4 56 13 35 24 16 38 16 37

Pcons score <0.4 38 25 38 24 22 32 13 28

Overlap $0.6 48 21 37 23 21 35 16 32

Overlap <0.6 0 50 50 50 0 40 0 40

ProQ score $1.5 56 17 40 22 23 34 19 34

ProQ score <1.5 28 32 32 32 11 37 3 30

Wallner Feature Better Worse Better Worse Better Worse Better Worse

All 45 7 27 17 31 9 30 13

E-value score #1e-5 47 7 26 18 33 7 32 13

E-value score >1e-5 29 9 34 11 21 19 17 19

Overlap $0.6 46 6 39 12 32 7 32 12

Overlap <0.6 28 13 26 17 26 23 39 6

ProQ score $1.5 48 4 27 15 34 6 33 9

ProQ score <1.5 27 26 22 30 15 25 21 29

Features of the alignments and corresponding models that affect the likelihood that a particular model would benefit from going from one to two templates.
For example, a high overlap between the two template sequences means a particular model is 46%–48% likely to show improvement with Modeller, when
compared to the corresponding single-template model. All of these factors can be computed without knowledge of the native structure. Cutoffs for the features
are not done to contain equal numbers of models, meaning that observed percentages in the ‘‘all’’ category are not simple averages of better and worse numbers.
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In the modeling procedures of Modeller and Nest the
sequence information is explicitly taken into account
when using multiple templates. In Modeller the local
sequence information is taken into account when the
probability density functions (PDFs) are created from
multiple templates, while in Nest the modeling is per-
formed stepwise, and thereby the template with fewer
local mutations might have more influence on the final
structure. In the Pfrag-average method no such informa-
tion is used, so both models are always given equal
weight. Despite this, ;15%–30% of the models are better
than the best of the two individual models, which indi-
cates that sometimes it is not only the ability to choose
the right parts of a template that is important for using
multiple templates.

Identification of improved models

The results above indicate that using multiple templates
actually can improve the resulting models significantly,
but also that it might cause the programs not to converge
correctly. This would indicate that a strategy to identify
convergence could provide a general tool to improve
homology modeling using multiple target-template align-
ments. One of the reasons why a model deteriorates is if a
particular program cannot resolve conflicting information
from different alignments, and the ability to detect non-
converging models would be useful. Therefore, it would
be interesting to examine automated procedures to decide
when to stop including additional alignments. Although
it might be possible to use the internal energy of the
modeling programs, we tried to avoid this to make it
generally applicable to other programs.

We have attempted two different approaches for this,
as illustrated in Figure 7. In the first case we compared
the structural similarity between the highest-ranked
single-template model and the multiple-alignments-based
model. Our results show that by comparing the difference
in TM score between (1) the best single model and the
first multiple-template model, (2) the first and second
multiple-template models, and (3) the second and third
multiple-template models, it is possible to improve the
total cumulative TM score. We see an improvement when
using a cutoff in TM score difference of 0.5. Modeller
provided the best result, followed again by Nest and both
Pfrag methods. Although the curves follow a similar trend
without any cutoff rule, the overall performance is better.
The improvement when using two or three alignments
and Modeller or Nest is now larger and the gradual drop
in performance with more alignments smaller. However,
the performance of this method is still decreased when six
alignments are used for most modeling programs.

An alternative idea is to use a model quality assessment
program (MQAP) (Wallner and Elofsson 2007) to select

the best model out of a set of predictions. We tested
MQAPs, ProsaII (Sippl 1993), and ProQ (Wallner and
Elofsson 2003) to pick one of the models built from one
to six multiple target-template alignments pairs. Using
this, most methods show an almost monotonous increase
with the number of included alignments (Fig. 7). The only
exception is when using Nest and ProsaII on the CASP7
benchmark set. This indicates that although Pcons is a
better method than any of these MQAPs to detect the best
models (Wallner and Elofsson 2007), the MQAPs are
somewhat capable of automatically deselecting models
that did not converge. It is also clear that Modeller in
general is the method that gains most from including
multiple sequence alignments. However, because Nest
produces slightly better single-template models, the final
performance difference between the two programs is
quite small. By using a MQAP to select models, an
automated pipeline relies heavily on the ability of the
program to select good models. The accuracy of ProQ and
ProsaII in this work is in approximately 70%, meaning
that when either of the programs identifies another model
than the first as being the best, they are successful in 70%
of the cases (Fig. 8). In this light, other MQAPs, such as
the most recent work of Qiu et al. (2007), are interesting.
It should also be noted that inclusion of the single-
template models for alignments two to six to the proce-
dure did not improve the performance (data not shown).

Improvement in CASP7 results

Finally, we examined what effect the inclusion of multiple-
template alignments would have had on the Pcons
performance in CASP7. Using Modeller and the three
different strategies for inclusion of multiple sequence
alignments, the performance of Pcons was tested on the
CASP7 targets and compared with all other automatic
predictions (Table 2). Without multiple sequence infor-
mation or ROBETTA models the performance of Pcons
would have been intermediate (rank 6) for the hard targets
and quite bad for the easy targets (rank 30). However, the
performance difference compared to all other methods,
except the top-ranked Zhang server, is quite small. For the
easy targets the three multiple target-template alignment
methods would have performed better than all other
methods except Zhang server, i.e., rank 2. The improve-
ment is on the order of 5%, partly due to the fact that the
models increase in size (;35% of the improvement). For
the hard targets the improvement is marginal for the
ProsaII and ProQ methods, while the TM-cutoff method
actually performs worse than the single-template approach,
again indicating that currently the most useful application
of multiple template alignments is for easier targets. To put
numbers in perspective, the top 20 groups in the latest
round of CASP, leaving out the Zhang server, all score
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within 6% of each other, clearly illustrating the significance
of a seemingly modest increase of 5%.

Conclusions

Automatic inclusion of multiple templates for large-scale
modeling definitely has potential to improve the average
quality of models. The main effect is simply that the
sequence coverage is improved, which increases the size

of the produced model and most standard scores. However,
when this size increase is ignored the picture is less rosy;
none of the methods studied here manages to significantly
improve average quality of the ‘‘core residues’’ present
already in the single-template model. It is also noteworthy
that multiple templates are not efficient for ‘‘averaging’’
information—in fact, the resulting quality typically drops
when more than a handful of templates are included.

Figure 7. Changes in quality for the CASP7 (left panels) and the Wallner sets (right panels) using different methods of selecting the

best model out of a given number of multi-template models with only core residue included. For panels A and B, no more alignments

were added when the change in TM score between two consecutive models was above 0.5. Using ProQ as an energy function to select

the best possible model for each target (CASP7 is C and Wallner D) gives an almost monotonous increase in model quality, since there

are increasingly more models to choose from. The same trend (except for Nest in E ) can be observed using ProsaII for both data sets

(CASP7 in E and Wallner in F ).
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A more detailed analysis shows that all methods
actually do produce individual models that are better,
but also those worse than the top-ranked single-template
models. Therefore, if it was possible to assess when
models improve and when they do not, it should be
possible to improve the average model quality. Indeed we
show that using either measure to identify convergence
problems or by using a MQAP (ProQ or ProsaII), it is
quite straightforward to obtain models whose average

quality improves by 5%. If this method had been applied
to the Pcons algorithm in CASP7, the rank for the easier
targets would have improved from 30th to 2nd. By
analyzing a number of factors that could influence the
performance of the multi-template algorithms, it is clear
that the single most important property is that both the
first and second individual alignment used for the multi-
template model are of high quality. To conclude, it is not
obvious that multiple templates a priori improve models
in all cases, but it is clear that at least Modeller some-
times is able to select the best regions out of the two
alignments and combine them into an improved structure.
Also, from the Pfrag results, it is clear that homology
modeling with multiple templates is a tricky business.

Materials and Methods

Data sets

Two test sets were employed for this study. Both these
were created to represent realistic problems in large-scale
homology modeling. For each data set, the alignments were
ranked and most comparisons are made with the first-ranked
model. For each target, from one up to six of the highest-ranked
target-template alignments were used as an input to the different
homology modeling programs.

The smaller CASP7 set consists of the targets from the recent
CASP7 event (Moult et al. 2007). For this data set, alternative
target alignments were obtained from different servers around
the world by the Pcons.net Web server (Wallner et al. 2007).
These target-template alignments were ranked based on the

Table 2. Changes in CASP7 performance for different methods

Easy Name (MX + TM + GDT_TS)/3 MX TM GDT_TS

1 Zhang-server 38.36 36.36 41.38 37.33

Pcons-TMcut 37.51 35.37 40.64 36.53

Pcons-ProsaII 37.38 35.21 40.53 36.40

Pcons-ProQ 37.11 34.95 40.27 36.11

2 UNI-EID_expm 36.90 34.56 40.20 35.94

14 hhpred2 36.41 34.03 39.52 35.66

24 ROBETTA 36.04 33.64 39.32 35.16

30 Pcons 35.41 33.17 38.78 34.28

Hard Name (MX + TM + GDT_TS)/3 MS TM GDT_TS

1 Zhang-server 17.30 14.84 19.74 17.32

2 ROBETTA 15.67 12.96 18.10 15.96

Pcons-ProsaII 15.36 12.93 17.66 15.50

5 hhpred2 15.30 13.00 17.47 15.42

Pcons-ProQ 15.24 12.86 17.54 15.31

6 Pcons 15.22 12.78 17.47 15.42

UNI-EID_expm 14.81 12.32 17.18 14.94

11 Pcons-TMcut 14.47 12.28 16.64 14.48

Performance in CASP with Modeller using different methods of selecting the best model (ProQ, ProsaII, TM-cut) as well as the raw models using different
quality measures. Easy targets are defined here as having a MaxSub score of $0.4; the rest are hard targets. Starting from Pcons at ranks 30 (easy targets)
and 6 (hard targets), the score improves significantly for easy targets (35.41 to 37.51) but hardly anything for hard targets (15.22 to 15.36). Some other
prediction methods and their rankings are shown for comparison.

Figure 8. Fraction of models (%) selected by either ProsaII or ProQ that

are not the first-ranked single-template model in the Wallner data set and

the accuracy in making that selection, i.e., how many of the selected

models were actually better than the first-ranked single template. Both

MQAPs show a similar accuracy level, but ProQ selects on average slightly

more models that are based on multiple templates.
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Pcons consensus score (Lundström et al. 2001; Wallner and
Elofsson 2005) for the corresponding single-template model,
i.e., not using any information about the alignments themselves.
Pcons will report two pieces of information, a global quality
score, reflecting the overall protein structure quality, and a local
per-residue score, reflecting the quality of each residue in the
model. Here, the alignment with the highest global Pcons score
is selected as alignment number one, the second highest as
number two, etc. This means that several alignments could be
based on the same template, and in those cases differ only in the
positions of, e.g., alignment gaps.

The larger data set is based on a previously used benchmark
consisting of 1037 models (Wallner and Elofsson 2006). This set
consists of alignments between protein sequences with known
three-dimensional structure belonging to the same family
according to SCOP (Murzin et al. 1995). The structures should
have a resolution better than 3 Å and an R-factor less than 0.25.
The alignments were constructed using RPSBLAST to search
against the profile library of the Pcons.net server. All reported
E-values are those given by RPSBLAST (Altschul et al. 1997).
Also, all target-template pairs with a sequence identity >80%
were removed, since it was judged that in such cases the best
single-template model would be difficult to improve upon.
Further, any possible improvement would be small and hence
more difficult to detect. The alignments for each target were
then ranked based on the reported E-value. The majority of
alignments are quite similar, and 90% of the second-ranking
templates have an E-value <1e-5. For ;70% of the targets six or
more template sequences with an E-value <1e-5 were found. For
the rest, the six alignments with the lowest E-value were used
anyway, to get a complete set of alignments (and because the E-
value is not always a perfect measure of alignment quality). This
set is referred to as the ‘‘Wallner’’ data set. It should also be
noted that the aim of this work is to study multiple templates in
the context of automated modeling. While different templates
might introduce constraints that can be potentially difficult for
a particular program to resolve, the possibilities for manual
inspection of such constraints are very limited here.

Modeling methods

In our previous benchmark of homology modeling methods it
was shown that three programs (Modeller, Nest, and SegMod)
provided very similar performance and were better than alter-
natives. Of these, Nest and Modeller can utilize multiple target-
template alignments.

Modeller

Modeller (Sali and Blundell 1993) is perhaps the most fre-
quently used homology-modeling program. It was one of the
first fully automated programs and it is also relatively fast,
making it suitable, e.g., for whole-genome modeling (Marti-
Renom et al. 2000; Pieper et al. 2004). Models are derived by
optimizing spatial restraints derived from the alignment and
expressed as PDFs for the different types of restraints. The PDFs
restrain CA–CA and backbone N–O distances, as well as
backbone and side-chain dihedral angles for different residue
types. Minimizing violations of these restraints generates the
model. When multiple templates are used, Modeller will
automatically combine the target-template alignments using
information about the local sequence identity and the structural

differences to guide the modeling. This study used Modeller
version 9.1, which is available from http://salilab.org/modeller/.

Nest

Nest (Petrey et al. 2003) is the core program within the Jackal
Modeling Package and uses an artificial evolution method. To
build models, changes from the template structure such as
residue mutations, insertions, and deletions are made one at a
time. After each change, a torsion energy minimizer is applied
and energy calculated based on a simplified potential function.
The alteration that produces the most favorable change in
energy is accepted and the process repeated until the target
sequence is completely modeled. When multiple alignments are
used, the changes that provide the smallest evolutionary change
to the target sequence are applied first. The Jackal Package can
be downloaded from http://wiki.c2b2.columbia.edu/honiglab_
public/index.php/Software:Jackal.

Pfrag—an extended version of the SegMod algorithm

SegMod/ENCAD is a combination of a segment-matching
algorithm (SegMod) (Levitt 1992) and energy minimization
routines (ENCAD) (Levitt 1983). SegMod is based on a data-
base of fragments from known protein structures. First, the
aligned coordinates are copied to the target structure and then it
tries to bridge the gaps by breaking down the target structure
into a set of short segments and searches the database for
segments that match the framework of the target structure. The
matching is based on three criteria: sequence similarity, con-
formational similarity, and compatibility with the target struc-
ture using van der Waals interactions. The final model is then
energy minimized using ENCAD. SegMod/ENCAD is available
upon request from michael.levitt@stanford.edu.

We are extending the original SegMod algorithm into a GPL-
licensed modeling program called Pfrag (http://pfrag.cbr.su.se/),
which will be described in detail in future work. Multiple target-
template alignments can be used in two different ways in Pfrag,
both rather simplistic. For each target-template pair in the input
alignment, we first build single-template models. Then, in the
first method (Pfrag average) a model is constructed using the
SegMod algorithm with the target coordinates of each residue
not found in the first model being the average coordinates after
an optimal superposition of the single-template models. This is
in the same spirit as the original SegMod algorithm, which by
default builds 10 independent models of each target and then
averages them. More elaborate schemes are certainly possible,
but this method serves as a basis for future improvements. To
verify that this way of averaging coordinates does not introduce
knotted or otherwise unphysical conformations, the output from
Pfrag was screened for knots using the http://knots.mit.edu
server (Kolesov et al. 2007). The fraction of knots for Pfrag
models is between 0% and 2%, well comparable with Modeller
and Nest (between 0% and 3%), at least for this data set.

In our second approach (Pfrag shotgun), the building starts
from the highest-ranking single-template model and in the next
step it is extended with residues that are missing in the first
model but exist in models built from other target-template pairs.
The idea behind this is to test if averaging extensions or
selection between models primarily improves current multi-
template modeling. To this end, Pfrag iterates over a given
number of single-template models, and (yet again after a
structural superposition of the models) uses any coordinates
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from the other models in order of their ranking for parts of the
model that are not found in the first. In addition, it looks at the
local residue quality scores in the first model and replaces any
residues with a low local quality score with the corresponding
residue in another model with a higher local quality score. This
way, a model is produced in a similar way as in the 3D-shotgun
method (Fischer 2003), with coordinates and fragments taken
from different sources. For both approaches the models are
energy minimized using the ENCAD force field (Levitt 1983).

Evaluation

TM score measures the structural similarity between two
structures. In many instances it is preferred over other measures
such as RMSD, since it does not overly penalize a model that is
bad in only a small part of the overall structure. The TM score
runs between 0 and 1, where a score from 0 to roughly 0.2 is
considered a random hit, and a score above 0.4 is meaningful
(Zhang and Skolnick 2004). To get rid of the length dependence
in that longer models will get higher TM scores, we made a
reduction of models to only include residues present in the
highest-ranked single-template model. We refer to these resi-
dues as ‘‘core’’ residues. This way, it is possible to assess how
much of the improvement in model quality is due to the in-
creased length of models, and how much the programs improve
already existing parts of a structure using several templates. For
reference, alternative evaluation methods such as LGscore
(Cristobal et al. 2001), MaxSub (Siew et al. 2000), or GDT_TS
(Zemla et al. 1997) provided virtually identical results.

Comparison with CASP7 results

The baseline for a comparison of automatic modeling methods
in CASP7 was the Pcons method. However, during CASP7,
models from the ROBETTA server were also included in the
consensus predictions of Pcons, but because the ROBETTA
models do not come with alignments, they could not be used as
input to the different modeling programs. Therefore, a version
of Pcons ignoring the ROBETTA models was used as a baseline
of CASP7 performance. The performance of Pcons without
ROBETTA models is just slightly worse than the performance
including ROBETTA, in particular for the harder targets (data
not shown), and the expected improvements in CASP7 based on
these slightly lower numbers (see Table 2).

Acknowledgments

Michael Levitt is kindly acknowledged for providing the
SegMod code as a template for the work in this study, as well
as stimulating discussion, and Anna Johansson for critically
reading the manuscript. This work was supported by the Carl
Trygger Foundation and the Swedish Foundation for Strategic
Research to E.L., and the Swedish Research Council to A.E. and
E.L. The EU 6th Framework Program is gratefully acknowl-
edged for support to the EMBRACE project, contract LSHG-
CT-2004-512092.

References

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new

generation of protein database search programs. Nucleic Acids Res. 25:
3389–3402.

Colovos, C. and Yeates, T.O. 1993. Verification of protein structures: Patterns
of nonbonded atomic interactions. Protein Sci. 2: 1511–1519.

Contreras-Moreira, B., Fitzjohn, P.W., and Bates, P.A. 2003. In silico protein
recombination: Enhancing template and sequence alignment selection for
comparative protein modelling. J. Mol. Biol. 328: 593–608.

Cristobal, S., Zemla, A., Fischer, D., Rychlewski, L., and Elofsson, A. 2001. A
study of quality measures for protein threading models. BMC Bioinfor-
matics 2: 5. doi: 10.1186/1471-2105-2-5.

Dalton, J.A. and Jackson, R.M. 2007. An evaluation of automated homology
modelling methods at low target template sequence similarity. Bioinfor-
matics 23: 1901–1908.

Eisenberg, D., Luethy, R., and Bowie, J.U. 1997. VERIFY3D: Assessment of
protein models with three-dimensional profiles. Methods Enzymol. 277: 396–
404.

Fischer, D. 2003. 3D-SHOTGUN: A novel, cooperative, fold-recognition meta-
predictor. Proteins 51: 434–441.

Honig, B. 1999. Protein folding: From the levinthal paradox to structure
prediction. J. Mol. Biol. 293: 283–293.

Hooft, R.W., Vriend, G., Sander, C., and Abola, E.E. 1996. Errors in protein
structures. Nature 381: 272.

Kolesov, G., Virnau, P., Kardar, M., and Miny, L.A. 2007. Protein knot server:
Detection of knots in protein structures. Nucleic Acids Res. 35: W425–
W428. doi: 10.1093/nar/gkm312.

Levitt, M. 1983. Molecular dynamics of native protein. I. Computer simulation
of trajectories. J. Mol. Biol. 168: 595–617.

Levitt, M. 1992. Accurate modeling of protein conformation by automatic
segment matching. J. Mol. Biol. 226: 507–533.

Lundström, J., Rychlewski, L., Bujnicki, J., and Elofsson, A. 2001. Pcons: A
neural network based consensus predictor that improves fold recognition.
Protein Sci. 10: 2354–2365.

Marti-Renom, M.A., Stuart, A.C., Fiser, A., Sanchez, R., Melo, F., and Sali, A.
2000. Comparative protein structure modeling of genes and genomes.
Annu. Rev. Biophys. Biomol. Struct. 29: 291–325.

Moult, J. 2005. A decade of CASP: Progress, bottlenecks and prognosis in
protein structure prediction. Curr. Opin. Struct. Biol. 15: 285–289.

Moult, J., Fidelis, K., Kryshtafovych, A., Rost, B., Hubbard, T., and
Tramontano, A. 2007. Critical assessment of methods of protein structure
prediction-round VII. Proteins 69(Suppl): 3–9.

Murzin, A.G., Grenner, S.E., Hubbard, T., and Chothia, C. 1995. SCOP: A
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol. 247: 536–540.

Ohlson, T. and Elofsson, A. 2005. ProfNet, a method to derive profile–profile
alignment scoring functions that improves the alignments of distantly re-
lated proteins. BMC Bioinformatics 6: 253. doi: 10.1186/1471-2105-6-253.

Ohlson, T., Wallner, B., and Elofsson, A. 2004. Profile–profile methods provide
improved fold-recognition. A study of different profile–profile alignment
methods. Proteins 57: 188–197.

Petrey, D., Xiang, Z., Tang, C.L., Xie, L., Gimpelev, M., Mitros, T., Soto, C.S.,
Goldsmith-Fischman, S., Kernytsky, A., Schlessinger, A., et al. 2003. Using
multiple structure alignments, fast model building, and energetic analysis in
fold recognition and homology modeling. Proteins 53(Suppl): 430–435.

Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M.S., Davis, F.P.,
Stuart, A.C., Mirkovic, N., Rossi, A., Marti-Renom, M.A., Fiser, A., et
al. 2004. MODBASE: A database of annotated comparative protein
structure models, and associated resources. Nucleic Acids Res. 32: D217–
D222. doi: 10.1093/nar/gkj059.

Qian, B., Ortiz, A.R., and Baker, D. 2004. Improvement of comparative model
accuracy by free-energy optimization along principal components of
natural structural variation. Proc. Natl. Acad. Sci. 101: 15346–15351.

Qui, J., Sheffler, W., Baker, D., and Noble, W.S. 2007. Ranking predicted
protein structures with support vector regression. Proteins 71: 1175–1182.

Rychlewski, L., Jaroszewski, L., Li, W., and Godzik, A. 2000. Comparison of
sequence profiles. Strategies for structural predictions using sequence
information. Protein Sci. 9: 232–241.

Sali, A. and Blundell, T.L. 1993. Comparative modelling by statisfaction of
spatial restraints. J. Mol. Biol. 234: 779–815.

Siew, N., Elofsson, A., Rychlewski, L., and Fischer, D. 2000. MaxSub: An
automated measure to assess the quality of protein structure predictions.
Bioinformatics 16: 776–785.

Sippl, M.J. 1993. Recognition of errors in three-dimensional structures of
proteins. Proteins 17: 355–362.

Venclovas, C. 2003. Comparative modeling in CASP5: Progress is evident, but
alignment errors remain a significant hindrance. Proteins 53(Suppl): S380–
S388. doi: 10.1002/prot.10591.

Multiple template modeling benchmark

www.proteinscience.org 1001

JOBNAME: PROSCI 17#6 2008 PAGE: 12 OUTPUT: Monday May 5 06:43:41 2008

csh/PROSCI/152320/ps0733449



Wallner, B. and Elofsson, A. 2003. Can correct protein models be identified?
Protein Sci. 12: 1073–1086.

Wallner, B. and Elofsson, A. 2005. All are not equal: A benchmark of different
homology modeling programs. Protein Sci. 14: 1315–1327.

Wallner, B. and Elofsson, A. 2006. Identification of correct regions in protein
models using structural, alignment, and consensus information. Protein Sci.
15: 900–913.

Wallner, B. and Elofsson, A. 2007. Prediction of global and local model
quality in CASP7 using Pcons and ProQ. Proteins 69(Suppl): 184–
193.

Wallner, B., Larsson, P., and Elofsson, A. 2007. Pcons.net: Protein structure
prediction meta server. Nucleic Acids Res. 35: W369–W374. doi: 10.1093/
nar/gkm319.

Wang, G. and Dunbrack, R.L. 2004. Scoring profile-to-profile sequence
alignments. Protein Sci. 13: 1612–1626.

Zemla, A., Venclovas, C., Reinhardt, A., Fidelis, K., and Hubbard, T.J. 1997.
Numerical criteria for the evaluation of ab initio predictions of protein
structure. Proteins 1(Suppl): 140–150.

Zhang, Y. and Skolnick, J. 2004. Scoring function for automated assessment of
protein structure template quality. Proteins 57: 702–710.

Larsson et al.

1002 Protein Science, vol. 17

JOBNAME: PROSCI 17#6 2008 PAGE: 13 OUTPUT: Monday May 5 06:43:42 2008

csh/PROSCI/152320/ps0733449


