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Abstract
The hemoprotein cytochrome b5 (cyt b5) has been demonstrated to affect the kinetics of drug
oxidation by the microsomal cytochromes P450. However, the mechanisms through which cyt b5
exerts these effects are variable and P450 isoform-dependent. While the effects of cyt b5 on the major
drug metabolizing enzymes CYP2D6, CYP2E1, and CYP3A4 are well studied, fewer studies
conducted over limited ranges of cyt b5 concentrations have been performed on CYP2C9. In the
present study with CYP2C9, cyt b5 exerted complex actions upon P450 oxidative reactions by
affecting the rate of metabolite formation, the consumption of NADPH by cytochrome P450
reductase, and uncoupling of the reaction cycle to hydrogen peroxide and water. Cytochrome b5
devoid of the heme moiety (apo-b5) exhibited similar effects as native cyt b5. All rates were highly
dependent on the cyt b5 to CYP2C9 enzyme ratio suggesting that the amount of cyt b5 present in an
in vitro incubation is an important factor that can impact the reliability of extrapolating in vitro
generated data to predict the in vivo condition. The major effects of cyt b5 are hypothesized to result
from a cyt b5 induced conformational change in CYP2C9 that results in an increased collision
frequency between the iron-oxygen species (Cpd I) and the substrate, and a decrease in the oxidase
activity. Together, these findings suggest that cyt b5 can alter multiple steps in the P450 catalytic
cycle via complex interactions with P450 and P450 reductase.

The cytochrome P450 (CYP) enzyme family catalyzes the oxidation of a wide variety of
structurally diverse compounds (Guengerich, 1997). In light of the large number of drug classes
that interact with human CYPs, a thorough understanding of this enzyme system is necessary
in developing therapeutic agents that can safely be administered in the treatment of diseases.
Traditionally, characterization of the involvement of the major hepatic CYPs (CYP1A2, 2C9,
2C19, 2D6, 2E1 and 3A4) in drug metabolism is conducted using an array of in vitro
methodologies including regression analysis with a panel of human liver microsomes (HLM),
chemical and/or immuno-inhibition of the particular oxidative biotransformation, and
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metabolism by single recombinant CYP systems (rCYPs) (Wrighton, et al., 1993). Recent
advances in recombinant DNA technology have allowed for significant improvements in
evaluating the in vitro role of human CYPs and as a consequence, have increased the relative
importance of recombinant CYPs as a complementary enzyme system to HLM (Crespi and
Miller, 1999).

While the use of rCYPs has gained utility, there are still issues associated with relating
observations generated from rCYP assays to results obtained from HLM. For example, several
laboratories have reported the predicted contribution of CYP1A2 to drug biotransformation
from rCYP to be substantially greater than that predicted from HLM (Rodrigues,
1999;Venkatakrishnan, et al., 2000). It has been postulated that differences between rCYPs
and HLM may be attributed to differing expression levels of cytochrome P450 oxidoreductase
(CPR) or cytochrome b5 (cyt b5) in each system. Moreover, Nakajima et al., demonstrated
that the coexpression of recombinant CYPs with cyt b5 plays an important role in robustness
of data when comparing results between rCYPs and HLM (Nakajima, et al., 2002). The
hemoprotein cyt b5 transfers electrons for a wide array of reactions occurring in the
endoplasmic reticulum and mitochondrial membranes (reviewed by Schenkman (Schenkman
and Jansson, 2003) and Porter (Porter, 2002)). For instance, cyt b5, anchored by a C-terminal
hydrophobic helix, interacts directly with the membrane-bound CYPs and CPR to alter the rate
of P450 catalysis. The addition of cyt b5 to mixtures of CYPs and CPR results in varied effects
on the activity of P450-mediated drug oxidation. There are reports of increases (Yamazaki, et
al., 2002), decreases (Gruenke, et al., 1995;Morgan and Coon, 1984), or no effect on the rate
of drug metabolism, and changes in kinetic profiles (Jushchyshyn, et al., 2005) induced by cyt
b5, all of which appear to be P450 isoform- and substrate-dependent. Any correlation between
reconstituted systems, and more complex systems, such as microsomes requires an
understanding of how the different constituents in the system interact. Thus, the effects of
different ratios of P450, CPR, and cyt b5 must be understood for each of the major drug
metabolizing enzymes.

Cyt b5 can impact the rates of substrate oxidation at a number of steps in the catalytic cycle
(Scheme 1). It has been shown to enhance electron transfer, resulting in increased NADPH
consumption, and presumably production of the iron-oxygen species, also known as Cpd I.
This direct effect of cyt b5 in enhancing electron transfer increases the activity of CYP2E1 and
CYP3A4. Cytochrome b5-induced conformational effects on the CYP3A4 protein structure
are also thought to stimulate CYP3A4 in a manner independent of the electron transfer process
(Perret and Pompon, 1998). Interestingly, cyt b5 has no effect on the major drug metabolizing
enzyme 2D6 (Yamazaki, et al., 2002). While the cyt b5 effect has been thoroughly studied for
CYP2E1 and CYP3A4 only two reports of the effects of cyt b5 on the major drug metabolizing
enzyme CYP2C9 appear in the literature (Yamazaki, et al., 1997;Yamazaki, et al., 2002). These
investigators reported that both cyt b5 and apo-b5 stimulated the metabolism of tolbutamide
and (S)-warfarin by 2- and 5-fold, respectively. In these studies, the ratio of cyt b5 to P450 was
varied from 0 to 2, with an apparent saturation of cyt b5 binding (Yamazaki, et al., 2002).
Effects due to changes in buffer, ionic strength and the influence of other P450 enzymes on
activity were observed, but the mechanism of cyt b5 stimulation of CYP2C9 was not apparent.

To explore the mechanism(s) of cyt b5 stimulation of CYP2C9, the effect of a wide range of
cyt b5 concentrations on oxidation of three [(S)-flurbiprofen, diclofenac and (S)-warfarin]
CYP2C9 substrates and P450 cycle stoichiometry was examined. In addition, studies were
conducted with apo-b5 to determine if the cyt b5 effects were solely due to provision of
electrons or whether cyt b5-induced conformational changes might play a role in altering
CYP2C9 activity.

Locuson et al. Page 2

Drug Metab Dispos. Author manuscript; available in PMC 2008 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Materials and Methods
Materials

All biochemicals and reagents were from Sigma-Aldrich/Fluka (St. Louis, MO). The 4′-OH
metabolite of diclofenac was purchased from BD Gentest (Bedford, MA). (S)-warfarin and the
7-OH-warfarin metabolite were gifts from Professor William Trager at the University of
Washington. (S)-flurbiprofen and 4′-OH flurbiprofen were gifts from the former Pharmacia
Corporation (Kalamazoo, MI).

Enzymes
Full length, recombinant human CYP2C9 with the N-terminal sequence MALLLAVF was
expressed and purified as before (Locuson, et al., 2006). Cytochrome P450 reductase (CPR)
from rat was expressed and purified from E. coli as described previously (Hanna, et al.,
1998). Detergent solubilized CYP2C9 and CPR underwent chromatography over
hydroxyapatite and dialysis to help eliminate as much detergent as possible before freezing the
enzymes in buffer containing 20 % glycerol. Purified recombinant human cyt b5 was purchased
from Invitrogen (Carlsbad, CA). Apo-b5 was a gift from Dr. Monica Jushchyshun (Pfizer
Global Research and Development, St. Louis Laboratories) and was produced from the same
Invitrogen human cyt b5 by the method of Yamazaki et al (Yamazaki, et al., 1996a). The
concentration of apo-b5 was determined by the BCA assay with bovine serum albumin as the
standard (Pierce Biotechnology, Rockford, IL).

Reconstitution conditions
Enzymes were reconstituted by adding P450 to CPR and incubating the mixture on ice for at
least 5 min, followed by addition of lipid. Liposomes formed by extrusion of 1,2-dilauroyl-
sn-glycero-3-phosphocholine were added to gain optimal diclofenac 4′-hydroxylation activity
indicating successful reconstitution of 2C9 with CPR (∼ 8-10 nmol/min/nmol CYP2C9 at 37
°C, no cyt b5). Optimal activity was achieved between 0.5 and 2.0 μg 1,2-dilauroyl-sn-
glycero-3-phosphocholine/pmol CYP2C9 with the latter being used to ensure an adequate
supply of lipid over the wide range of P450-CPR-cyt b5 ratios employed. Higher amounts of
lipid, while more physiologically relevant, decreased activity presumably by limiting the
incorporation of enzymes into the same liposome. Through use of a fixed pore size
polycarbonate membrane (200 nm), the diameter of the bilayer liposomes average 200 nm after
extrusion (Avestin, Ottawa, Ontario). After 5 additional min, cyt b5 was then added. Two hour
enzyme and lipid reconstitution intervals on ice or room temperature only increased the activity
of the resulting liposome-enzyme mixtures by < 15 %. The widest ranges of CPR:P450 and
cyt b5:P450 ratios used were 0.2 – 16 and 0.1 – 50, respectively, unless otherwise noted.
Incubations where cyt b5 and lipid were added before CPR were also conducted at suboptimal
CPR concentrations (2:1 CYP2C9:CPR) for comparison.

Activity assays
All enzyme assays were performed at 37 °C with 10-20 pmol of CYP2C9 with a range of
limiting, equal, or saturating amounts of CPR and cyt b5. Reactions were carried out either in
1.5 mL microcentrifuge tubes in a temperature controlled water bath or in a quartz cuvette in
a peltier-equipped UV-vis spectrophotometer. After five min of temperature equilibration,
reactions were initiated with 1 mM NADPH unless otherwise noted. Further details regarding
assays have been previously described (Locuson, et al., 2006).

Diclofenac
Diclofenac is hydroxylated at its 4′-position by CYP2C9. Saturating concentrations of
diclofenac were used (200 μM), and reactions were allowed to proceed for 15 min. A solution
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of acetonitrile (0.1 mL) containing 7-ethoxycoumarin (1 nmol, retention time = 6.5 min) as an
internal standard was used to stop the reactions. 4′-OH diclofenac (retention time = 7.8 min)
was then separated by HPLC and quantitated by UV absorption at 282 nm. The mobile phase
consisted of 30 % methanol and 70 % of a 30 % acetonitrile solution containing 1 mM
perchloric acid. A linear gradient to 80 % methanol over 10 min was started one min after
injection to carry out separation. This method is based on that used by Haining et al (Haining,
et al., 1999).

(S)-warfarin
The formation of 7-OH-warfarin, the primary hydroxylation product of (S)-warfarin by
CYP2C9, was monitored by the fluorescence method exactly as described by Lang and Böcker
(Lang and Bocker, 1995). Incubations were carried out with 100 μM (S)-warfarin for 45 min,
stopped with 5 μL of 70 % perchloric acid, and spiked with 20 pmol of internal standard, 7-
ethoxycoumarin.

(S)-flurbiprofen
Hydroxylation of (S)-flurbiprofen at the 4′ position was quantitated via fluorescence exactly
as described (Tracy, et al., 2002).

H2O2
Hydrogen peroxide formation was monitored with freshly prepared xylenol orange reagent
described by Jiang et al. (Jiang, et al., 1990). Reactions were carried out exactly as described
(Locuson, et al., 2006). In all cases, separate control reactions were run for each enzyme ratio,
but in the absence of substrate. Any background level of H2O2 formed in the absence of
substrate was subtracted from the H2O2 formation measured in the presence of substrate.

NADPH
The use of NADPH by the enzyme system with the substrate diclofenac was measured by the
change in absorbance at 340 nm (ε = 6.23 mM−1•cm−1) as a function of time. Reactions were
initiated with 0.3 mM NADPH and typically run for 3 min. Data points taken 10 seconds apart
were used to calculate the moles of NADPH consumed per min.

NADPH measurements with the substrates (S)-flurbiprofen and (S)-warfarin were conducted
using a coupled enzyme system, which increased sensitivity and required much less enzyme
(10-20 pmol P450) for these lower turnover substrates. Reactions (0.2 mL each) containing 1
U of isocitrate dehydrogenase and 10 mM isocitrate were initiated with 0.1 mM NADPH,
allowed to proceed for 30 min, and quenched with 20 μL of 70 % perchloric acid (Gruenke, et
al., 1995). Next, 0.1 mL of 1 mM 2,4-dinitrophenylhydrazine/1 M HCl solution was added and
incubated at room temperature for one hour. Formation of the hydrazone of α-ketoglutarate
was monitored spectroscopically at 390 nm to ensure completion of the reaction. Next, 0.3 mL
of 10 % NaOH was added and the samples monitored immediately at 515 nm along with
standard curve samples. This wavelength was chosen, versus 440 nm, due to its wider linear
range (Anthon and Barrett, 2003). Standard curves were prepared using α-ketoglutarate at
5-100 μM and processed at the same time as enzyme reaction samples.

Heme incorporation by apo-cytochrome b5
An experiment was carried out to ensure that apo-b5 was not forming its native heme-bound
state by scavenging heme from CYP2C9. Native cyt b5 (1 μM) and apo-b5 (1 μM) were
incubated separately with CYP2C9 (1 μM) for one hour under identical buffer, lipid, and
temperature conditions used for the drug metabolism reactions outlined above. Hence, the
duration of this incubation was at least three times longer than drug-containing reactions that
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included diclofenac or (S)-flurbiprofen. At this time, the samples were reduced with
Na2S204 and subjected to an absorbance wavelength scan in split beam mode. An identical
sample containing reduced CYP2C9 but lacking cyt b5 was used in the reference cell as
described previously (Yamazaki, et al., 2001). No significant apo-b5 to native cyt b5 transition
was noted (data not shown).

Equilibrium binding of CYP2C9 redox partners
The binding (KS values) of CPR and cyt b5 to CYP2C9 were assessed by their ability to
influence the absorbance spectrum of CYP2C9. Although this technique is not amenable to all
P450 isoforms, both cyt b5 and CPR were able to induce measurable changes in the spin state
of CYP2C9 in an analogous manner as was observed with rabbit CYP2B4 (Tamburini, et al.,
1985). Experiments were conducted with an Olis upgraded Aminco DW-2000 UV/Vis
spectrophotometer (Olis, Bogart, GA) operating in split beam mode as described by Tamburini
(Tamburini, et al., 1985). The sample cuvette contained 0.2 μM CYP2C9 in 50 mM potassium
phosphate buffer (pH 7.4) and 20 % glycerol. Extruded 1,2-dilauroyl-sn-glycero-3-
phosphocholine (100 μg) was added, though it provided no discernable differences in the total
spectroscopic signal change or in KS values. The reference cuvette contained only buffer and
glycerol. Next, either concentrated CPR (0.001 – 0.7 μM) or cyt b5 (0.001 – 1.8 μM) was
titrated into both sample and reference cuvettes and scanned from 340 – 500 nm to monitor
the peak heights of the low and high spin Soret bands (390 and 418 nm, respectively). The
differences between the two peaks in the absolute spectra were used for calculating the fraction
of CYP2C9 complexed to either CPR or cyt b5 based on the following rationale. First, the
change in the low spin peak area as determined by gaussian curve fitting resulted in estimation
of similar KS values as were obtained during data fitting to those estimated by calculating the
differences in peak height. Second, by adding the P450 redox partners to both cuvettes, the cyt
b5 and CPR signals that absorb at similar wavelengths as the P450 heme are kept to a minimum.
Experiments were conducted at 30 °C and samples allowed to sit at least 20 min after each
addition of enzyme to reach equilibrium, as confirmed by periodic sample scanning.

KS values for CPR and cyt b5 were determined with DynaFit (Kuzmic, 1996) using floating
molar response coefficients, the total measured P450 concentration (Omura and Sato, 1964),
and an equilibrium expression for CPR binding:

or, two distinct cyt b5 binding events as suggested by the observed two apparent phases:

Addition of substrate to CPR titrations abolished the ability to detect CPR binding, but CPR
binding could still be detected in the presence of an equimolar mixture of P450+cyt b5 and for
cyt b5 with P450+CPR.

Results
Reconstitution

The reconstitution of membrane-bound P450s into liposomes has previously been optimized
with respect to buffers, various ions, and mixtures of lipids (Yamazaki, et al., 1997). In our
hands, using liposomes in inadequate amounts (< 0.5 μg/pmol P450) led to suboptimal activity
while the use of excessive levels (> 2.0 μg/pmol P450) of liposomes in effect diluted the
enzymes so that higher levels of CPR were required to obtain the same activity with a given
concentration of P450 (data not shown). The average sized liposome was 200 nm in diameter
based on the extrusion membrane and the lipid/protein ratio was 40 (w/w), which is on the
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order of that typically used in the reconstitution of membrane-bound proteins to achieve activity
and ‘infinitely dilute’ any residual detergent (Ollivon, et al., 2000). A wide range of total
enzyme concentrations were tested as described in the Experimental section.

To determine if the order of addition changed the results, reconstitution was also carried out
in the reverse order of that described above. In this case P450 was added to cyt b5, followed
by addition of lipid, and then a limiting amount of CPR (P450:CPR = 2) to allow cyt b5 to
better interact with CYP2C9. Cyt b5 and apo-b5 stimulated (S)-flurbiprofen hydroxylation by
CYP2C9 to the same degree regardless of the order of addition of the enzymes (data not shown).

Cytochrome b5 effects on CYP2C9 substrate oxidation
A wide range of limiting and saturating cyt b5 concentrations were added to the reconstituted
CYP2C9-CPR-lipid enzyme mixture. Initially, CPR was held constant at a ratio of 2:1
CPR:CYP2C9 when comparing the substrates diclofenac, (S)-warfarin, and (S)-flurbiprofen
(Fig. 2). The rate of oxidation of diclofenac increased to a maximum around 250% relative to
the rate with no cyt b5. The maximum was reached when the ratio of cyt b5 to P450 was four,
but decreased when the ratio exceeded ∼4 (Fig. 2a). The rate of oxidation of (S)-flurbiprofen
(Fig. 2a) and (S)-warfarin (Fig. 2a, inset) hydroxylation was stimulated approximately 100%,
at an enzyme ratio of 4, and decreased with higher ratios of cyt b5/P450. At a ratio of sixteen
molar equivalents of cyt b5 to P450 the level of metabolite formation from all substrates
declined to levels similar to incubations without cyt b5.

Cytochrome b5 effects on CYP2C9 Hydrogen Peroxide Formation
At the ratio of cyt b5/P450 that gave maximum product, the formation of hydrogen peroxide
decreased 31%, 27%, and 55% for diclofenac, (S)-flurbiprofen, and (S)-warfarin, respectively,
as compared to the absence of cyt b5. At ratios of cyt b5/P450 ≥ 16 (Fig. 2b), H2O2 formation
dropped to < 0.2 nmol/min/nmol P450, which was near the detection limit of the assay.

Cytochrome b5 effects on CYP2C9 NADPH Consumption
The rates of NADPH consumption by CPR in the reconstituted enzyme system were also
measured at different cyt b5 ratios (Fig. 2c). These values indicate both the frequency that the
catalytic cycle is initiated and the amount of “excess” water formed by 2 electron reduction of
the ferryl-oxo intermediate, also called Cpd I (Scheme 1). Across all concentrations of cyt b5,
the amount of NADPH consumed (diclofenac > (S)-flurbiprofen > (S)-warfarin) followed the
same order as observed for the H2O2 formation rates. Interestingly, cyt b5 decreased NADPH
oxidation with all three substrates, even while metabolite formation was stimulated.

Cytochrome b5 effects on coupling of electrons to metabolite formation
The presence of cyt b5 exerts substantial effects on the coupling (e.g, the moles of metabolite
formed divided by the moles of NADPH consumed) for all three substrates (Fig. 3a). As the
ratio of cyt b5 to 2C9 was increased from zero to four, the fraction of NADPH used to form
the metabolite of diclofenac increases from 7.0 to 63.0 %. For (S)-flurbiprofen, and (S)-
warfarin, the fraction of NADPH used to product formed, increased from 3.8 to 11.9 %, and
from 1.4 to 4.7 %, respectively. Since cyt b5 decreased oxidase activity, which uses two
equivalents of NADPH, this suggests that the increase in coupling was more a result of reduced
NADPH consumption than an increase in substrate oxidation (Fig. 2a and c). At higher ratios
of cyt b5 to P450, a plateau in the ratio of product to NADPH consumption was observed with
diclofenac and warfarin. In the case of flurbiprofen, NADPH consumption appeared to level
off and then increase. However, the levels of NADPH consumed at the two highest
concentrations of cyt b5 was very low and thus, computing a ratio with such a small number
exaggerates the error in this measurement.
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Changes in uncoupling to H2O2 (H2O2 formed/NADPH consumed) (Fig. 3b) were variable
but appeared to increase or remain the same at ratios of cyt b5/P450 below 2-4 for all substrates.
The degree of uncoupling then decreased at higher cyt b5/P450 ratios, except with flurbiprofen.
As noted above, the results for flurbiprofen at high ratios are most likely associated with error
in the denominator (NADPH used) resulting from assay sensitivity limitations due to the
dramatic decrease in NADPH consumption.

Effect of the CPR – cyt b5 enzyme ratio
All the measurements described above were conducted at a fixed (2:1) ratio of CPR to P450.
To further assess the combined effect of CPR and cyt b5 concentrations on CYP2C9
metabolism, (S)-flurbiprofen was used as the substrate and ratios of CPR/CYP2C9 and cyt b5/
CYP2C9 were varied (Fig. 4). (S)-Flurbiprofen was chosen as the substrate because its
metabolite could be detected by a highly sensitive fluorescence HPLC assay even at low CPR
concentrations. Formation of 4′OH-flurbiprofen and the amount of H2O2 formed as a shunt
product of this reaction were determined. The degree of maximal stimulation provided by cyt
b5 (four eq) was for the most part independent of the CPR concentrations used and ranged
from 21 to 27 % (Fig. 4a). For H2O2 production, higher CPR concentrations inhibited the ability
of cyt b5 to diminish uncoupling to H2O2 (Fig. 4b). In the presence of 0.5 eq of CPR to P450,
cyt b5 reduced H2O2 formation 7.4-fold and in the presence of twelve eq of CPR H2O2
formation was reduced only 1.4-fold.

Equilibrium binding of CPR and cyt b5 to P450
Binding affinity constant values (KS) for CPR and cyt b5 were determined based on the ability
of CPR and cyt b5 to perturb the heme iron spin state equilibrium of CYP2C9 (Fig. 5). CPR
increased the population of high spin heme while lower concentrations of cyt b5 increased the
fraction of low spin heme, but the effect reversed at cyt b5 concentrations equimolar to
CYP2C9. Table 1 lists the determined KS values. Even under saturating CPR or cyt b5
conditions, the decrease in low spin P450 was modest (< 10 %) as determined from gaussian
curve fitting of the absolute spectra (Locuson, et al., 2006). However, the effects were
reproducible and highly dependent on the amount of added CPR or cyt b5. The affinity of CPR
was not altered by the presence of cyt b5 (Table 1). Conversely, the cyt b5 binding profile was
more complex in the presence of CPR (Fig. 5b) and fitting did not allow estimation of KS for
the first phase, but the lower affinity second and third phases could be fit using an equilibrium
model for two, distinct cyt b5 binding events (Table 1).

Coupling changes induced by apo-b5
Apo-b5 lacks the heme prosthetic group normally liganded to two histidine residues at the
heme iron. Therefore, while apo-b5 could influence electron transfer from CPR to P450, it
most likely is not capable of existing as a lone, reduced intermediate. In the present studies,
apo-b5 exerted relatively similar effects as native cyt b5 as evidenced by its ability to increase
(S)-flurbiprofen metabolite formation and decrease H2O2 formation (Fig. 6a and b).
Furthermore, control studies (data not shown) demonstrated that apo-b5 was not converted to
its native heme-bound state on the time scale used for these studies. Optimal stimulation of
metabolite formation was observed at four eq of apo b5 to CYP2C9 with an increase in
metabolite production of 40 % in the presence of apo-b5. This was the same ratio of b5/P450
that resulted in maximal stimulation (62 %) with native cyt b5. H2O2 formation was 44 %
higher, on average, with apob5, but apo-b5 clearly remained effective at reducing H2O2
formation when present in equimolar or higher levels than P450. Reaction coupling
(metabolite/NADPH ratio) was also increased 2.1-fold with apo-b5 at four eq of apo-b5
compared to 2.4-fold with native cyt b5 (Fig. 6d).
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Discussion
With the recognition that metabolic properties can play a major role in the success of a new
drug, the focus on identifying the enzymes responsible for the metabolism of a potential drug
has increased. In early drug discovery, in vitro systems are used including human liver
microsomes, microsomes containing expressed enzymes (e.g., Baculosomes®), and
occasionally, reconstituted purified enzymes. The hope is that in vitro systems can be predictive
of human in vivo metabolism. While purified and reconstituted systems provide definitive
evidence that a given P450 enzyme can metabolize a drug, the artificial nature of the
reconstitution system can lead to quantitative differences. Several studies have examined the
effects of varying the concentration of various cellular components on the activity of P450
enzymes in vesicles. Cyt b5 has been shown to activate at least 16 different P450 isoforms
(Porter, 2002), including CYP3A4, 2E1 and 2C9. The activation of cyt b5 on CYP3A4, while
controversial, has been extensively studied (Perret and Pompon, 1998;Guryev, et al.,
2001;Yamazaki, et al., 1996a), and appears to involve multiple mechanisms. The primary effect
of cyt b5 on CYP2E1, is again activation, and appears to involve a single mechanism - enhanced
electron transfer from cyt b5 to CYP2E1 (Yamazaki, et al., 1996b;Yamazaki, et al., 2002). One
report has concluded that CYP2D6 is relatively unique in that cyt b5 has no effect on the rates
of metabolism by this enzyme (Yamazaki, et al., 2002). Relative to the other major metabolic
enzymes, fewer studies of cyt b5 effects on CYP2C9 have been reported. These studies have
used relatively low ratios of cyt b5 to P450, and have reported hyperbolic activation (Yamazaki,
et al., 1997;Gorsky and Coon, 1986;Yamazaki, et al., 2001). Given the importance of CYP2C9
in drug metabolism, a thorough understanding of the role of cyt b5 on the rates of metabolism
is needed to optimize reconstituted in vitro systems, for use in drug metabolism studies.

The qualitative changes observed at different cyt b5 concentrations with CYP2C9 are similar
for each of the three substrates. Optimum product formation was observed at 4 equivalents of
cyt b5, hydrogen peroxide production decreased with increasing cyt b5/CYP2C9 ratios, and
an apparent decrease in NADPH dependent oxidase activity was noted with increasing cyt b5/
CYP2C9 ratios. Oxidase activity results from 4 electron reduction of oxygen to two waters by
two equivalents of NADPH. Thus, a decrease in oxidase activity results in an increase in
coupling of NADPH to product formation (a process that only requires one equivalent of
NADPH). Spectroscopic measurements suggested that cyt b5 and CPR do not share a single
common site of interaction with CYP2C9, although some degree of competitive interaction
was observed at high cyt b5 concentrations. Finally, using flurbiprofen as a model substrate,
experiments with apo-b5 (i.e., heme removed) still resulted in increases in coupling to a level
almost 70% that observed with native cyt b5. Control experiments demonstrated that heme
transfer to the apo-b5 (from P450) did not occur in the time-scale used in these experiments,
suggesting that the major role for cyt b5 is not to act as an electron sink.

Given these observations, a mechanism for the cyt b5 effect on CYP2C9 can be hypothesized.
It is proposed that through protein-protein interactions, binding of cyt b5 causes CYP2C9 to
undergo a conformational change that decreases the active-site volume. This would limit the
number of free waters in the active-site, decreasing protonation of the oxygen proximal to the
iron in the iron-peroxo intermediate (also known as Cpd 0) and subsequently reduce hydrogen
peroxide release (Scheme 1). The ordered water molecules associated with the I-helix water
channel are thus better able to protonate the distal oxygen of the iron-peroxo intermediate
resulting in formation of the iron-oxo species, Cpd I. This mechanism would explain the
difference in peroxide and product formation observed with increased cyt b5 levels, but not
the increase in coupling between NADPH and product formation. However, a decrease in
active-site volume would also increase collision frequency between Cpd I and the substrate,
increasing the amount of product formed per Cpd I oxygen produced. An increase in collision
frequency decreases the lifetime of Cpd I, and the probability that it will be reduced by another
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two electrons to form a second molecule of water. The resulting decrease in oxidase activity
would account for the greater change in NADPH consumption, relative to product formation.
This line of reasoning is also consistent with the observation that when sufficient levels of
hydrogen peroxide, in the absence of NADPH, are present to support catalysis by shunting
into the P450 catalytic cycle, cyt b5 can still stimulate metabolite formation (Kumar, et al.,
2005). At very high concentrations of cyt b5, competition between CPR and cyt b5 at a
purported common site would result in a decrease in electron transfer from NADPH, as well
as formation of products, including hydrogen peroxide and water.

An explanation of the differences in CYP2C9 function observed between apo-b5 and the native
cyt b5 requires a second (heme dependent) mechanism, independent of the decreased active-
site volume. It is possible that the conformation of apo-b5 is affected by removal of the heme,
and that apo-b5 does not induce the same extent of conformational change as the holo-enzyme.
This would imply that the binding affinity of apo-b5 to CYP2C9 is similar to that of native cyt
b5 (Figure 6) but that the effect of this binding is attenuated. Alternatively, the difference could
be due to native cyt b5 acting as an electron sink, decreasing the oxidase activity by slowing
the delivery of the third and four electrons and thus increasing the life-time of Cpd I.

Since earlier studies on cyt b5-CYP2C9 interactions employed a narrow range of cyt b5 to 2C9
ratios (0 to 2), it is of interest to understand the range of ratios observed in human livers. The
concentration of cyt b5 in human liver microsomes has been reported to be 374 pmol/mg of
protein, which gives a ratio of cyt b5 to CYP proteins in human microsomes that varies between
1-200 depending on the P450 enzyme (Venkatakrishnan, et al., 2000). A positive correlation
was observed for metabolic activity versus the ratio of cyt b5 to P450 3A4, 2B6, and 1A2
activity suggesting that in microsomes, the concentration of cyt b5 may be an important
determinant of activity. The cyt b5 effects on CYP2C9 were not determined in the
abovementioned study (Venkatakrishnan, et al., 2000). However, based on the variation in cyt
b5 to P450 ratios for other enzymes in human liver, it is likely that the full range of cyt b5 to
2C9 ratios presented herein would be observed in human microsomes, and in vivo.

The overall rates of metabolism of a compound by any P450 is determined by a complex
interplay between the rate of the first two electrons transferred to generate Cpd 0, a competition
between protonation of Cpd 0 to give Cpd I or the release of hydrogen peroxide, and a second
competition between oxidation of substrate and reduction of water to form a second molecule
of water (oxidase activity) (Scheme 1). These branched pathways are likely responsible for the
weak correlation between NADPH consumption, and product formation. The pronounced
effect of cyt b5 on electron transfer and shunting of the reaction to each of the branch points
demonstrates the importance of the levels of each component in the reconstituted system in
determining the amounts of each product formed. It can be speculated that the organism's desire
to balance the use of reducing equivalents versus xenobiotic detoxification should lead to a
system in vivo producing the highest ratio of substrate oxidation to NADPH consumption. The
results shown in Figure 2a indicate that this optimum metabolic condition requires 4-5
equivalents of cyt b5 for all three of the substrates, a value higher than normally used in
vitro. Furthermore, given these results and the potential differences in interactions in a vesicle
relative to intact endoplasmic reticulum, it is not clear that a simple reproduction with in
vitro systems of the ratios of cyt b5, CPR and P450 observed in vivo will accurately reflect the
interactions occurring in vivo. The mechanism we propose may not be specific to cyt b5, or
even redox active proteins, as protein-protein interactions may occur with a number of proteins
in the cellular matrix. In fact, with the high concentration of proteins in cells in vivo the apparent
conformational effect of cyt b5 on CYP2C9 may be a general effect that can be mediated by
any cellular protein, including other P450 proteins as reported and reviewed by Backes and
colleagues (Backes and Kelley, 2003).
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In conclusion, cyt b5 exhibited concentration-dependent effects on CYP2C9-mediated drug
oxidation. The ability of cyt b5 to greatly increase P450 coupling, at enzyme ratios found in
liver microsomes where cyt b5 exceeds the levels of the human P450s, has not previously been
reported. Though reconstituted P450 systems will not exactly reflect the membrane
environment of the endoplasmic reticulum, it is important to understand the effects of
physiological concentrations on cyt b5 on P450 function. The majority of these effects can be
explained by a cyt b5-induced conformational change in CYP2C9 resulting in a decrease in
active-site volume leading to the exclusion of water from the active-site and an increase in
collisions between the substrate and the active-oxygen species.
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Fig. 1.
Stuctures of CYP2C9 substrates diclofenac, (S)-flurbiprofen, and (S)-warfarin with arrows
denoting their sites of hydroxylation.
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Fig. 2.
Cyt b5 concentration effects on the catalysis of liposome reconstituted CYP2C9-CPR with
drugs diclofenac (●) (200 μM), (S)-flurbiprofen (▽) (100 μM), and (S)-warfarin (■) (100 μM).
(A) drug metabolite formation rate. (B) H2O2 formation rate. (C) NADPH consumption rate.
Data points represent the average of duplicate determinations except when error bars are
present (triplicate ± standard deviation).
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Fig. 3.
Coupling and uncoupling changes in CYP2C9 catalysis with the drugs diclofenac (●) (200
μM), (S)-flurbiprofen (▽) (100 μM), and (S)-warfarin (■) (100 μM) induced by alternate cyt
b5 concentrations. (A) reaction coupling to drug metabolite formation (metabolite formation
rate/NADPH consumption rate). (B) reaction uncoupling to H2O2 (H2O2 formation rate/
NADPH consumption rate).
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Fig. 4.
Combined effects of CPR and cyt b5 concentration on the metabolism of (S)-flurbiprofen to
4′-OH-flurbiprofen and H2O2 formed as a result of catalytic uncoupling (CYP2C9 = 100 nM).
(A) rate of 4′-OH-flurbiprofen formation. (B) rate of H2O2 formation. CPR concentrations were
as follows: 50 nM (●), 100 nM (○), 200 nM (■), 400 nM (□), 800 nM (▼), 1200 nM (△).
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Fig. 5.
Binding of CPR and cyt b5 to CYP2C9 (200 nM) as measured by the difference between the
peak heights of the high spin (HS) and low spin (LS) heme iron components in P450 absolute
spectra. (A) CPR binding (●), cyt b5 binding (○), and CPR binding with equimolar CYP2C9/
cyt b5 (▼). (B) cyt b5 binding with equimolar CYP2C9/CPR (low cyt b5 concentrations shown
in inset for clarity).
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Fig. 6.
Comparison between the activities of native cyt b5 (●) and apo-b5 (○) on the metabolism of
(S)-flurbiprofen with a 1:2 ratio of CYP2C9:CPR. (A) rate of (S)-flurbiprofen metabolite
formation. (B) rate of H2O2 formation. (C) rate of NADPH consumption. (D) calculation of
reaction coupling to metabolite formation (metabolite formation rate/NADPH consumption
rate). Data points represent the average of duplicate determinations except when error bars are
present (triplicate ± standard deviation). Experiments with native or apo-b5 were conducted
on different days resulting in product levels being slightly offset.
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Table 1
Measured binding constants of CYP2C9 complexes.

complex KS (nM)a

CYP2C9 + CPR 32.8 ± 0.2
CYP2C9 + b5 8.1 ± 0.9
CYP2C9•CPR + cyt b5 2nd phase ∼ 221

3rd phase ∼ 794
CPR + cyt b5 NDb
CYP2C9•cyt b5 + CPR 25.6 ± 0.7c

a
Errors represent the error of the parameter estimate derived from non-linear regression

b
Not determined

c
Determined with cyt b5 equimolar to CYP2C9, which was at or near saturating levels according to the spectral signal
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