Nitrous Oxide Emission Associated with Autotrophic Ammonium Oxidation in Acid Coniferous Forest Soil

PERTTI J. MARTIKAINEN

Department of General Microbiology, University of Helsinki, SF-00280 Helsinki 28, Finland

Received 1 May 1985/Accepted 25 August 1985

Aerobic N₂O production was studied in nitrifying humus from urea-fertilized pine forest soil. Acetylene and nitrapyrin inhibited both NH_4^+ oxidation and N₂O production, indicating that N₂O production was closely associated with autotrophic NH_4^+ oxidation. N₂O production was enhanced by low soil pH; it was negligible above pH 4.7. When soil pH decreased from 4.7 to 4.1, the relative amount of N₂O-N produced from NH_4^+ -N oxidized increased exponentially to 20%. There was also some evidence that N₂O formation was stimulated by salts (potassium sulfate and sodium phosphates). The maximum rate of N₂O-N production was 0.17 μ g of N₂O-N per g of soil per h. When humus was treated with NO₂⁻, N₂O evolved immediately, indicating chemical formation, but no N₂O was formed on the addition of NO₃⁻. The amount of N₂O-N evolved was 0.6 to 4.6% of NO₂⁻-N added. A high concentration of NO₂⁻ and low soil pH enhanced chemical formation of N₂O. There was no accumulation of NO₂⁻ during nitrification. The calculations indicated that chemical formation of N₂O was not the main source of N₂O during NH₄⁺ oxidation. After the addition of inhibitors of NH₄⁺ oxidation the soils contained NO₃⁻, but no N₂O was produced. The results suggest that enhanced autotrophic NH₄⁺ oxidation is a potential source of N₂O in fertilized acid forest soil.

Besides being produced during biological denitrification N_2O is also formed during NH_4^+ oxidation. Results of studies with pure cultures of NH4⁺ oxidizers have revealed that 0.05 to 25% of the nitrogen from NO_2^- (NO_2^- -N) produced evolved as N₂O-N when NH₄⁺-N is used as substrate (13, 16, 17, 41). N₂O production from NH₂OH, which is an intermediate in NH_4^+ -N oxidation (1), can be much higher. Nitrosomonas europaea can produce over 90% of N₂O-N from NH₂OH-N that is oxidized (41). In well-aerated soils N₂O-N production ranges from 0.01 to 2% of NH₄⁺-N added or NO_3^- -N produced (2, 3, 5, 8, 12). When NO_2^- -N accumulates in soil during NH_4^+ -N oxidation, even higher amounts of N₂O-N may be formed (33) via chemodenitrification (9), in addition to direct N_2O emission from cells of NH4⁺-oxidizing bacteria. Although N₂O emission during nitrification may not be of general agronomic importance, it nevertheless is a source of N_2O postulated to be linked to the catalytic destruction of stratospheric ozone (10, 40).

Most studies of N₂O emission from soil, using aerobic atmosphere, have been made with agricultural soils, and only a few results are available from acid forest soils. Goodroad and Keeney (12) have measured N₂O fluxes in deciduous and coniferous forest sites and have found that significantly more N₂O is emitted from coniferous than from deciduous forest floors. They concluded that the lower pH of the coniferous forest soil might cause the difference. Robertson and Tiedje (30) have studied N₂O production in forest soils using intact soil cores in a recirculating aerobic atmosphere. Their results suggest that in some acid forest soils mechanisms other than denitrification might be important in N₂O production. This report presents results from laboratory experiments in which N₂O production was studied in an aerobic atmosphere of fertilized acid coniferous forest humus.

MATERIALS AND METHODS

Soil samples were collected in 1983 from an experimental Myrtillus pine forest site located at Tammela in southern Finland. The soil and the fertilization treatments have been described previously (18). The urea fertilization applied in autumn 1978 was 200 kg of N/ha. Some soil characteristics are given in Table 1. The samples were taken from the organic horizon of both unfertilized and urea-fertilized soils. The sampling techniques and the soil homogenization method have been described previously (18). Storage and laboratory manipulations are described below.

Analytical methods. Soil pH was measured in soil-water suspensions (1/2 [vol/vol]). When exchangeable ammonium, nitrate, and nitrite were determined after the pH was measured, 4 M KCl was added to the suspensions to obtain 2 M KCl for extraction. Ammonium and combined nitrate plus nitrite were determined by steam distillation (6). Nitrite was measured by the method of Montgomery and Dymock (21). Total N was determined by the Kjehldahl method (7), and total C was determined with a Hewlett-Packard 185 C-H-N analyzer. N₂O and O₂ were determined with a Carlo Erba 4200 gas chromatograph equipped with an electron capture detector and a Porapak Q 80/100-mesh column (length, 2 m). Detector, injector, and oven temperatures were 200 to 300, 130, and 50°C, respectively. The flow of carrier gas (either N₂ or 90% argon-10% methane) was 30 ml/min. Analyses are expressed on an oven dry weight basis. The results were treated by the analysis of variance or correlation. The differences between means of various treatments were tested, subsequent to analysis of variance, by the Tukey honestly significant difference method (34).

Soil incubations for measuring nitrification and N₂O production. Incubations were performed at 14°C in 100-ml bottles, stopped with rubber septa, containing 1.5 to 2 g of soil (oven dry weight). Both fresh and air-dried soils were used. In all experiments soil moisture content during incubation was 60% of the water-holding capacity (WHC). Periodically, the bottles were aerated after determination of the amount of N₂O produced. At intervals three replicate bottles for every treatment were analyzed for nitrate and nitrite (after measurement of soil pH; see above). The partial pressure of O₂ was always > 0.18. Autotrophic ammonium oxidation was repressed by adding nitrapyrin (31) in water

TABLE 1. Description of soils

Previous	Soil parameter				
fertilizer treatment ^a	pH (in H ₂ O)	Total C (%)	Total N (%)	C/N ratio	
None	4.0-4.2	31.9 ± 6.6^{b}	0.83 ± 0.13^{b}	38.3 ± 4.7^{b}	
Urea	4.4-4.7	$35.0 \pm 5.1^{\circ}$	$1.00 \pm 0.12^{\circ}$	$35.1 \pm 1.0^{\circ}$	
UABM	4.6-4.7	$27.7 \pm 5.8^{\circ}$	$0.80 \pm 0.11^{\circ}$	$34.2 \pm 4.6^{\circ}$	

^a For the amounts, see Martikainen (18).

^b Values are the mean \pm standard deviation for nine determinations.

^c Values are the mean ± standard deviation for three determinations.

solution (50 μ g/g of soil; Dow N-serve [18]) or C₂H₂ (10% [vol/vol]) (15, 16). All nutrients were added in solution. Soil pH was adjusted by adding CaCO₃.

In the first experiment samples were taken from the plot fertilized with urea, apatite, biotite, and micronutrients (UABM). It has already been shown that, on fertilization, nitrification activity is highest in the plot fertilized with UABM (18). Soil samples for this experiment were taken in mid-January 1983 (soil temperature at a depth of 5 cm was 0 to 0.5°C). After homogenization soil was amended with urea $(200 \mu g \text{ of } N \text{ per } g \text{ of soil})$ and stored in polyethylene bags for 3 weeks at 4°C to activate nitrification. Fresh soil (2 g oven dry weight) was placed in bottles, some of which were supplemented with $CaCO_3$ (18 mg/g of soil) to obtain a higher pH.

In the second experiment the same UABM soil as described above was used, but 40 µg of urea-N was added prior to a 3-week storage at 4°C. The effects of the addition of K_2SO_4 on nitrification and N_2O production were tested in this experiment. It previously has been found that in UABMfertilized soil nitrification is highly inhibited on the addition of 53.5 µmol of K₂SO₄ per g of soil (19). Here, K₂SO₄ was added at 5.35 µmol per g of soil.

The experiments described above were done with UABM soil. N₂O production during nitrification was also measured in urea-fertilized soil not treated with apatite, biotite, and micronutrients. Samples for this experiment were taken in May 1983. Lime, ammonium, phosphate, and micronutrients were tested by the treatments shown in Table 2. Because nutrients were added in water solutions, soil was air dried (after homogenization with a Moulinex homogenizer), so that all solutions could be added to obtain a final soil moisture content of 60% of the WHC. Soil pH was adjusted by adding CaCO₃, after which the soil was added to 100-ml incubation flasks, and the nutrient solutions were then added.

N₂O production from added nitrite. Chemical production of N_2O from NO_2^- was tested by adding NO_2^- to fresh humus samples. Aerobic soil incubations were performed as described above, except that each bottle contained 3 g of soil (oven dry weight). Soils were not sterilized before the addition of NO_2^- . The possibility that evolution of N_2O was due to biological denitrification was tested by determining the amount of N_2O produced from added NO_3^- . $NO_2^$ additions were 0, 50, and 200 µg of N per g of soil. Chemical N₂O evolution at low soil pH was studied by supplementing samples with H₂SO₄. Additions of H⁺ were 0, 57, and 210 μ mol of H⁺ per g of soil. The highest H⁺ level was equivalent to an oxidation by autotrophic ammonium oxidizers of 1,500 μ g of NH₄⁺-N to NO₂⁻-N (2 mol of H⁺ is produced for every 1 mol of NH4⁺ oxidized). An amount of 1,500 μ g of N is equivalent to an NH₄⁺-N application of 200

				Eff	ects of the ad	ditions afte	r the following	times (days)	<i>.</i>				μg of $N_2O-N/$	$N^{-}O^{-}N \times O^{-}N$
Treatment		15			39			65			74		g of soil during days	$(NO_3 + N_2O)$ -
	Hq	N-⁺ ₊ HN	NO3 N	Hd	NH4+-N	NO3 ⁻ -N	Hd	N+⁺+HN	NO3~-N	Hd	NH4+-N	NO, - NO	65-74 ^d	N (65-74 days)
one	4.74 ± 0.02	191 ± 11	⊽	4.71 ± 0.02	259 ± 9	\	4.79 ± 0.02	319 ± 39	7	4.69 ± 0.02	616 ± 19	13 ± 12	0	0
ac	6.79 ± 0.25	345 ± 36	∇	6.26 ± 0.44	323 ± 17	126 ± 6	4.94 ± 0.07	24 ± 4	354 ± 22	4.34 ± 0.09	154 ± 32	697 ± 54	0.98 ± 0.58	0.29
a + Pr	6.12 ± 0.12	387 ± 14	$\vec{\nabla}$	5.78 ± 0.08	416 ± 41	61 ± 12	4.87 ± 0.15	37 ± 26	327 ± 24	4.34 ± 0.04	190 ± 36	474 ± 91	1.83 ± 0.54	1.23
a + N ⁸	6.32 ± 0.06	576 ± 33	√	5.78 ± 0.19	562 ± 24	68 ± 12	4.65 ± 0.02	264 ± 52	312 ± 24	4.24 ± 0.01	262 ± 83^{h}	565 ± 174	9.58 ± 2.09	3.65
$\mathbf{a} + \mathbf{N} + \mathbf{p}$	6.05 ± 0.08	615 ± 25	∇	5.72 ± 0.05	606 ± 14	55 ± 7	4.58 ± 0.08	198 ± 73	375 ± 15	4.23 ± 0.06	268 ± 36^{h}	698 ± 43	13.31 ± 1.11	3.96
$\mathbf{a} + \mathbf{N} + \mathbf{p}$	6.33 ± 0.23	573 ± 10	∇	5.81 ± 0.09	649 ± 100	52 ± 5	4.59 ± 0.02	151.±47	366 ± 113	4.23 ± 0.01	261 ± 26^{h}	602 ± 43^{j}	9.58 ± 0.01	3.90
, W,														

TABLE 2. Effects of calcium carbonate, ammonium sulfate, sodium phosphate, and micronutrients on nitrification and nitrous oxide formation

APPL. ENVIRON. MICROBIOL.

with urea. Each value is the mean ± standard deviation for three replicate incubations at 14°C (60% WHC). Average standard fractions are expressed per gram of oven dry ^b Levels of NH₄⁺-N are in micrograms of nitrogen per gram of soil.
^c Including NO₇⁻-N.
^d N₂O formation began after 60 days of incubation (Fig. 3).
^d N₂O formation began after 60 days of incubation (Fig. 3).
^d 0.0123 g of CaCO₃ per g of soil.
^f 100 µg of P per g of Soil. (Na₂HPO₄ · 2H₂O + NaH₂ PO₄ · H₂O: pH of solution, 6.4).
^f 250 µg of (NH₄): SO₄-N per g of soil was added after 67 days of incubation. previously fertilized 5 years deviation 2% (pH), 24% (N₂O-N), 13% (NO₃⁻-N) and 15% (NH₄⁺-N). N $_{1}$ horizon of soil " Formation in samples of the organic

Ň +

ပီပီပီ

per g of soil was added after 67 days of incubation. ixture per g of soil (see Martikainen [18] for composition).

ixture per g of soil (see days of incubation (Fig. 2 added after 50 µg -C₂H₂ v kg/ha to the O horizon (depth, 5 cm; bulk density, 0.26 g/cm^3).

RESULTS

Nitrification and N₂O production. In the first experiment the lag period before nitrification was shorter in soils treated with CaCO₃ than in nontreated soils (Fig. 1). Also the maximum rate of nitrification and the amount of $(NO_3^- +$ NO₂⁻)-N accumulated was higher in CaCO₃-amended soils (P < 0.001; Fig. 1). NO₂⁻-N did not accumulate during incubation (its concentration remained at $<1 \mu g/g$ of soil). After a 2-week incubation, when nitrification activity was still low (Fig. 1), soil pH was 5.2 and 6.8 without and with CaCO₃, respectively. During nitrification soil pH decreased but was always higher in soils treated with CaCO₃ than in nontreated soils (P < 0.001; Fig. 1). Although accumulation of $(NO_3^- + NO_2^-)$ -N was higher in soils with lime, production of N₂O was lower in these soils than in soils without lime (P < 0.001; Fig. 1). The addition of C₂H₂ inhibited nitrification and N_2O production (Fig. 1). The maximum rate of N_2O production in soils without lime was 0.064 μ g of N₂O-N per g of soil per h.

In the second experiment ammonification increased soil pH (Fig. 2) during the lag phase in nitrification. When nitrification began, soil pH decreased slightly less in soils receiving K_2SO_4 (P < 0.01), probably because of the lower nitrification activity of these soils (P < 0.05; Fig. 2). In contrast, the addition of K_2SO_4 increased N₂O production (P < 0.01; Fig. 2). Nitrapyrin inhibited both nitrification and N₂O formation in K_2SO_4 -treated soils (Fig. 2). In nontreated and K_2SO_4 -treated soils the maximum rate of N₂O production

FIG. 1. $(NO_3^- + NO_2^-)$ -N accumulation, N₂O production and soil pH in UABM soil without lime (-Ca) and with lime (+Ca). Each value is the mean for three replicate incubations at 14°C (60% of the WHC). The average standard deviations are 4%, 2% (N₂O-N), and 1% (pH). Symbols: \Box , pH (-Ca); \blacksquare , pH (+Ca); \bigcirc — \bigcirc , (NO₃⁻ + NO₂⁻)-N (-Ca); \blacksquare — \blacksquare , (NO₃⁻ + NO₂⁻)-N (+Ca), \bigcirc - - \bigcirc , N₂O-N (-Ca); \blacksquare - - \blacksquare , N₂O-N (+Ca). The addition of C₂H₂ is shown by arrows.

FIG. 2. $(NO_3^- + NO_2^-)$ -N accumulation, N₂O production, and soil pH in UABM soils treated or untreated with K₂SO₄ (5.35 µmol/g of soil). Each value is the mean for three replicate incubations at 14°C (60% of the WHC). The average standard deviations are 9%, 8% (N₂O-N), and 1% (pH). Symbols: \Box , pH (-K₂ SO₄); \blacksquare , pH (+K₂SO₄), \bigcirc — \bigcirc , (NO₃⁻ + NO₂⁻)-N (-K₂SO₄); \blacksquare — \blacksquare , NO₃⁻ + NO₂⁻)-N (+K₂SO₄); \bigcirc - - \bigcirc , N₂O-N (-K₂SO₄); \blacksquare - - \blacksquare , N₂O-N (+K₂SO₄). The addition of nitrapyrin is shown by arrows.

was 0.091 and 0.121 μg of $N_2O\text{-}N$ per g of soil per h, respectively.

In the third experiment nitrification activity in soils without lime was low, and no N₂O production was found (Table 2 and Fig. 3). In soils with lime nitrification activity began after a 15-day incubation (Table 2). After incubation for 39 days the soils treated only with lime had the highest (NO₃⁻ + NO₂⁻)-N content (P < 0.01) among the soils with lime, but after further incubation no significant differences in nitrate accumulation were detected in these soils. There were differences (P < 0.01) in N₂O production in soils with lime (Fig. 3). When N₂O production began after 60 days of incubation (Fig. 3), soil pH was different (P < 0.01) in these soils (Table 2).

In soils with lime the addition of ammonium sulfate increased the amount of N₂O production (P < 0.01). The addition of phosphates increased N₂O formation in soils treated with ammonium sulfate and lime (P < 0.05) and in those receiving only lime (not significant; Fig. 3). Micronutrients did not have a statistically significant effect on N₂O production. The rate of N₂O production was highest (0.165 µg of N₂O-N per g of soil per h) in soils treated with lime, ammonium sulfate and phosphates (Fig. 3). Inhibition of both N₂O production and nitrification by C₂H₂ was also demonstrated in this experiment (Fig. 3 and Table 2).

When N₂O production began (after 65 days of incubation; Fig. 3) the pH was lower in soils treated with ammonium than in soils receiving only lime (P < 0.05; Table 2). At the end of the experiment (after 74 days of incubation; Table 2) no statistically significant differences in pH were apparent in soils with lime. Micronutrients did not have statistically significant effects on soil pH, nor did phosphates after 15 days of incubation.

Since no nitrate or nitrite was added before soil incubation, N₂O-N was also derived from oxidized ammonium. This is equal to $(NO_3^- + NO_2^- + N_2O)$ -N, provided that no other nitrogenous gas is produced besides N₂O. The gas chromatographic method used did not detect other N oxides.

FIG. 3. Effects of calcium carbonate (Ca), ammonium sulfate (N), sodium phosphates (P), and micronutrients (M) on N₂O production in urea-fertilized soils. For application rates, see Table 2. Each value is the mean for three replicate incubations at 14°C (60% of the WHC). The average standard deviation is 22%. Symbols: $\blacksquare - \blacksquare$, no additions; $\square - \square$, Ca; $\blacksquare - \blacksquare$, Ca + P; $\blacksquare - - \blacksquare$, Ca + N, $\blacksquare - \blacksquare$, Ca + N + P; $\bigcirc - \bigcirc$, Ca + N + P + M. The addition of C₂H₂ is shown by an arrow.

Also NO_2^- was not found. The amount of N_2O -N produced was 0.29 to 3.96% of the NH_4^+ -N oxidized (Table 2).

N₂O production and soil pH. The results of the three experiments described above suggest that N₂O production is enhanced by low soil pH. The ratio of N₂O-N evolved to NH₄⁺-N oxidized (see above) was plotted against soil pH for different incubation periods of the three experiments. The ratio of N₂O-N evolved to NH₄⁺-N oxidized was determined because of variations in the nitrification rates. Average soil pHs for the measurement period were used. N₂O production was negligible above soil pH 4.7 (Fig. 4). The ratio of N₂O-N to NH₄⁺-N oxidized increased exponentially with a decrease in the soil pH from 4.7 to 4.1 (Fig. 4). Soils receiving K₂SO₄ enhanced N₂O production, even though K₂SO₄-treated soils had a higher pH (Fig. 2).

Chemical production of N₂O from added NO₂⁻. On the addition of NO₂⁻, N₂O production was manifest in both unfertilized and UABM-fertilized soils (Fig. 5). Soil pH below 4.7 had negligible effects on N₂O-N production at a NO₂⁻-N concentration of 50 μ g/g of soil but enhanced it at a concentration of 200 μ g of NO₂⁻-N per g of soil (Fig. 5 and 6). No N₂O was produced from added NO₃⁻. The amount of

N₂O-N produced from added NO₂⁻-N during the experiment (Fig. 5) ranged from 0.63 to 2.05% and 2.55 to 4.58% when 50 and 200 μ g of NO₂⁻-N per g of soil, respectively, were added. Maximum rates of N₂O-N production occurred immediately after the addition of NO₂⁻ (Fig. 5), and these were much higher than the maximum rates in experiments in which N₂O was produced during nitrification (see above). The rates of chemical N₂O production decreased over the experimental period (Fig. 5). After incubation the amount of NO₂⁻-N remained below 0.05 μ g/g of soil.

DISCUSSION

The results of this study show that N_2O may form in nitrifying forest humus under well-aerated conditions. N_2O production was closely associated with autotrophic NH_4^+ oxidation and was enhanced by low soil pH. These results support the observations of Robertson and Tiedje (30), who found that in some forest soils N_2O might not be produced by denitrifiers. They have found that in some intact forest soil cores N_2O is produced only in the absence of C_2H_2 . It is interesting that these soils had lower pHs than those that produced N_2O only in the presence of C_2H_2 (4.6 versus 5.2). Goodroad and Keeney (12) have found that a coniferous forest site produces more N_2O in situ than does a deciduous site. Soil pH was lower in the coniferous site (4.5 versus 5.0).

The effects of nutrients on N₂O production must be considered in terms of nutrient effects on nitrification and soil pH. A low soil pH favored N₂O production (Fig. 4). In K₂SO₄-treated soils N₂O production and soil pH were higher, but $(NO_3^- + NO_2^-)$ -N accumulation was lower than that in nontreated soils (Fig. 2). These results indicate that K_2SO_4 has a stimulative salt effect on N_2O production. (NH₄)₂SO₄ also increased N₂O-N production (Fig. 3 and Table 2), possibly by decreasing soil pH and not by stimulating nitrification (Table 2; see above). It has already been found that the addition of K_2SO_4 and $(NH_4)_2SO_4$ to acid soils inhibits $(NO_3^- + NO_2^-)$ -N accumulation (19). In this study, sodium phosphates had no statistically significant effect on soil pH and nitrification during N₂O production (see above). The slight increase in N₂O production because of phosphates might thus be a salt or nutrient effect.

N₂O production by NH₄⁺ oxidizers may vary with cultural

FIG. 4. Percentage production of N₂O-N from NH₄⁺-N oxidized at pH 6.1 to 4.1. The values were calculated by the results shown in Fig. 1 (**•**), Fig. 2 (\bigcirc), Fig. 3 (\square), and Table 2 (\square). The insert shows the percentage of production of N₂O-N from NH₄⁺-N oxidized at pH 4.6 to 4.1. In y = -2.387 x + 11.184, $y = \log\%$ N₂O-N from NH₄⁺-N oxidized, x = soil pH, r = -0.985 (P < 0.001, df = 7).

FIG. 5. Cumulative production of N₂O-N from NO₂⁻-N in unfertilized (\bigcirc , \bigcirc) and UABM-fertilized (\square , \blacksquare) soils after different additions of H⁺ as H₂SO₄. Open symbols, 50 µg of NO₂⁻-N per g of soil; closed symbols, 200 µg of NO₂⁻-N per g of soil. Added NO₃⁻-N (50 µg of N per g of soil) produced no N₂O. Each treatment had two replicates (means are shown). Incubations were at 14°C (60% of the WHC).

conditions, because it is dependent on the buffer systems used (16, 41) and on cell age. Old cells produce more N_2O than young ones (41). This observation may be of some importance in this study, in which N_2O production occurred at the end of the experiments when most cells were aged. However, at or above soil pH 4.7, N_2O production was negligible even after a long incubation. Thus, low soil pH is essential to N_2O production.

Autotrophic NH_4^+ oxidizers have been reported to produce N₂O in both oxidative and reductive processes (16, 29). It has been suggested that N₂O evolves from a labile intermediate between NH₂OH and NO₂⁻ (possibly N₂O₂H₂) during NH₄⁺ oxidation (1, 29). A low oxygen level supports

FIG. 6. Maximum rates of chemical N₂O-N formation from added NO_2^{-} -N at different soil pH calculated by the results shown in Fig. 5. Symbols as described in the legend to Fig. 5.

 N_2O formation (13, 16, 17), indicating participation of a reductive enzyme system. Recently, Poth and Focht (27) have shown that *Nitrosomonas europaea* produces N_2O mainly by NO_2^- reduction (nitrifier denitrification) and have pointed out that simultaneous NH_4^+ oxidation is needed to transfer electrons from NH_4^+ to NO_2^- (NO_3^- was not reduced). This coupling of NO_2^- reduction to oxidative processes can explain why C_2H_2 , which inhibits the first step in NH_4^+ oxidation, has been reported to inhibit N_2O production from NH_4^+ in the presence of NO_2^- (16). C_2H_2 does not inhibit NH_2OH oxidation (15, 16), which explains why it does not inhibit N_2O production from NH_2OH (16).

The observations from this study that no N_2O is produced on the addition of inhibitors, even when the soil contains NO₃⁻ for possible denitrification by heterotrophic bacteria, support nitrifier denitrification. However, the favorable effects of low soil pH and salts cannot be unambiguously explained by these results. Enhanced N₂O production at a low pH was not detected in studies with pure cultures of Nitrosomonas europaea, but sterile soil was found to greatly stimulate this process (16). It is not known what effect low pH or salts have on N₂O production by Nitrosospira spp., which probably is responsible for NH4⁺ oxidation in fertilized forest soil (20). It is possible that Nitrosospira enzymes that catalyze the oxidation of the intermediate between NH_2OH and NO_2^- are sensitive to low pH and some salts at high concentrations. If the intermediate $(N_2O_2H_2)$ accumulates in cells, N₂O may be formed during hydrolysis of $N_2O_2H_2$ (29). The labile intermediate theory is not supported by the results of Poth and Focht (27). They have pointed out that the use of NO_2^- as a terminal electron acceptor conserves O_2 for the first step of NH_4^+ oxidation. This oxidation needs molecular oxygen. Nitrite, which is a toxic end product, can also be removed by its reduction to N₂O. In this study the oxygen hypothesis did not fit well into the observed N₂O production pattern. For example, in the first experiment (Fig. 1), oxygen depletion probably was greater in soils with lime because of their higher level of nitrification

(and respiration of heterotrophic microbes?), and N_2O formation thus must be higher in soils with lime than in soils without lime. It is more likely that under the extreme conditions caused by low soil pH (or salts) *Nitrosospira* spp. are sensitive to NO_2^- and will eliminate NO_2^- by reducing it to N_2O .

Besides direct evolution from cells of NH_4^+ oxidizers, other mechanisms also exist for the production of N₂O in aerated soils. Biological denitrification in anaerobic microsites, even during incubation of nonwaterlogged soil in an aerobic atmosphere, may occur. This possibility could not be totally excluded in this study because nonsterile soil was used. However, when nitrification was inhibited by nitrapyrin or C₂H₂, N₂O production ceased, although the soil still contained NO₃⁻. It was to be expected that NO₃⁻ would diffuse from soil solution into anaerobic microsites. The possibility that both C₂H₂ and nitrapyrin inhibit denitrification is unlikely. It has been shown that the addition of 50 μ g of nitrapyrin per g of soil does not inhibit denitrification (14). One possible explanation is that denitrifiers in the microsites use NO₂⁻ but not NO₃⁻ as electron acceptor (37, 39). A K_m value as low as 0.20 mg of O₂ per liter at 27°C has been found for Nitrosospira sp. in forest soil (20). It is possible that NO_2^- is produced by NH_4^+ oxidizers in a microenvironment and that part of it is reduced to N₂O by denitrifiers in the same niche. Denitrification is known to occur at O₂ concentrations of 0.1 to 0.2 mg/liter in sewage, ocean, and pure cultures (11). Some denitrifiers can use both O_2 and NO_2^- as electron acceptors simultaneously (39). Pang and Cho (25) recently have reported that biological denitrification of added NO_2^- can occur in the L-H layer of coniferous forest soil, even under aerobic conditions.

In soil, N₂O is also produced from NO₂⁻ by chemical denitrification (9). High organic matter content and low soil pH favor this process (22, 23); forest soil may thus be a good environment for chemical denitrification. In this study the amount of N₂O-N was 0.6 to 4.6% of the amount of NO₂⁻-N added. This agrees with observations made with other types of soil (4, 23, 28, 32). In this study a high concentration of NO₂⁻ at low soil pH enhanced chemical N₂O formation. The rates of chemical N₂O formation immediately after the addition of NO₂⁻ were much higher than those of N₂O formation during nitrification, but when NO₂⁻ concentrations had decreased (final concentrations, <0.05 µg of N per g of soil) the rates were of the same magnitude.

In the second experiment (Fig. 2), chemical N₂O formation could not explain the rate of N_2O production. In soils that received $K_2 \hat{SO}_4$, $N_2 O-N$ and NO_3^--N productions averaged 2.2 and 7.0 µg of N per g of soil per day, respectively. The amount of N₂O-N produced from NO₂⁻-N did not exceed 5% (see above). As estimated by the amounts of N_2O and NO₃⁻ formed, the average rate of NO₂⁻-N production should be at least $(100/5 \times 2.2) + 7.0 = 51 \mu g$ of N per g of soil per day, to provide NO_2^- for chemical denitrification and nitrite oxidation during the whole 40-day period. Over 2,000 μ g of NH₄⁺-N thus must be oxidized during this period. In some K₂SO₄-treated soils ammonium oxidation and N₂O production were inhibited by nitrapyrin during the 95 days of incubation (data not shown in Fig. 2). The ammonium accumulation rates determined for these soils showed that the highest possible amount of NH4⁺-N oxidation was about 600 μ g of NH₄⁺-N per g of soil. Furthermore, after 95 days of incubation the cumulative amount of (NH₄) + NO_3^- + NO_2^- + N_2O)-N was higher in soils without nitrapyrin than in soils with nitrapyrin (673 and 609 µg of N per g of soil, respectively). With a high chemical N_2O production, the amount of N should be lower in the former than in the latter soils because N_2O is a minor component of the nitrogenous gases that evolve during chemical denitrification (4, 23, 28, 35). It must also be mentioned that the reduction of NO_3^- to NO_2^- could not provide enough NO_2^- to make the observed N_2O formation a chemical process. So, in these soils, the chemical N_2O formation seems to be of relatively limited importance in the total N_2O flux.

The long-term laboratory incubations in this study indicate a potential for aerobic N_2O production in nitrifying acid soil. A comparison of this potential with the denitrification potential in the UABM soil with anaerobic incubations and an optimum NO_3^{-} level (38) showed that the maximum aerobic N₂O-N production (0.17 μ g/g of soil per h) was about 50% of the denitrification potential. The production of N₂O by forest soil Nitrosospira spp. must be examined at various conditions for better understanding of the mechanisms of N₂O production. Additional work must also be done to evaluate increases in in situ evolution of N₂O in terms of fertilization, which stimulates nitrification in acid forest soil. Evidence from other types of soil with higher pHs indicated that ammonium or urea fertilization increases N₂O emission in situ and that this N₂O is produced by ammonium oxidizers (5, 9). Urea fertilization is likely to increase N₂O evolution from coniferous forest soil because urea can stimulate nitrification for many years (18). It recently has been discussed how lime applied to forest soil to neutralize acid deposition affects tree growth (26) and soil microbes (24, 36). It is known that the addition of lime can stimulate nitrification in acid forest soil (24). The results of this study indicate that the addition of lime may be environmentally harmful because of an increase in N₂O evolution, especially when nitrification is stimulated by lime but the soil pH remains below 5.

LITERATURE CITED

- 1. Anderson, J. H. 1964. The metabolism of hydroxylamine to nitrite by *Nitrosomonas*. Biochem. J. 91:8–17.
- 2. Aulakh, M. S., D. A. Rennie, and E. A. Paul. 1984. Acetylene and N-serve effects upon N_2O emission from NH_4^+ and NO_3^- treated soils under aerobic and anaerobic conditions. Soil Biol. Biochem. 16:351–356.
- Blackmer, A. M., J. M. Bremner, and E. L. Schmidt. 1980. Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil. Appl. Environ. Microbiol. 40:1060-1066.
- 4. Bollag, J.-M., S. Drzymala, and L. T. Kardos. 1973. Biological versus chemical nitrite decomposition in soil. Soil Sci. 116:44-50.
- Breitenbeck, G. A., A. M. Blackmer, and J. M. Bremner. 1980. Effects of different nitrogen fertilizers on emission of nitrous oxide from soil. Geophys. Res. Lett. 7:85–88.
- Bremner, J. M. 1965. Inorganic forms of nitrogen, p. 1179–1237. In C. A. Black (ed.), Methods of soil analysis, part II. American Society of Agronomy, Madison, Wis.
- 7. Bremner, J. M. 1965. Total nitrogen, p. 1149–1178. In C. A. Black (ed.), Methods of soil analysis, part II. American Society of Agronomy, Madison, Wis.
- Bremner, J. M., and A. M. Blackmer. 1979. Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature (London) 280:380-381.
- Chalk, P. M., and C. J. Smith. 1983. Chemodenitrification, p. 65–89. In J. R. Freney and J. R. Simson (ed.), Gaseous loss of nitrogen. Martinus Nijhoff/Dr W. Junk Publishers, The Hague.
- 10. Crutzen, P. J., and D. W. Ehalt. 1977. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6:112-117.
- 11. Focht, D. D., and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Adv. Microb. Ecol. 1:135-214.

- Goodroad, L. L., and D. R. Keeney. 1984. Nitrous oxide emission from marsh and prairie ecosystems. J. Environ. Qual. 13:448–452.
- Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980. Production of NO₂⁻ and N₂O by nitrifying bacteria at reduced concentration of oxygen. Appl. Environ. Microbiol. 40:526-532.
- 14. Henninger, N. M., and J.-M. Bollag. 1976. Effect of chemicals used as nitrification inhibitors on the denitrification process. Can. J. Microbiol. 22:668-672.
- Hynes, R. K., and R. Knowles. 1982. Effect of acetylene on autotrophic and heterotrophic nitrification. Can. J. Microbiol. 28:334–340.
- Hynes, R. K., and R. Knowles. 1984. Production of nitrous oxide by *Nitrosomonas europaea*: effects of acetylene, pH, and oxygen. Can. J. Microbiol. 30:1397-1404.
- Lipschultz, F., O. C. Zafiriou, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1981. Production of NO and N₂O by soil nitrifying bacteria. Nature (London) 294:641-643.
- Martikainen, P. J. 1984. Nitrification in two coniferous forest soils after different fertilization treatments. Soil Biol. Biochem. 16:577-582.
- 19. Martikainen, P. J. 1985. Nitrification in forest soil of different pH as affected by urea, ammonium sulphate and potassium sulphate. Soil Biol. Biochem. 17:363-367.
- Martikainen, P. J., and E.-L. Nurmiaho-Lassila. 1985. Nitrosospira, an important ammonium-oxidizing bacterium in fertilized coniferous forest soil. Can. J. Microbiol. 31:190–197.
- Montgomery, H. A. C., and J. F. Dymock. 1961. The determination of nitrite in water. Analyst 86:414–416.
- 22. Nelson, D. W., and J. M. Bremner. 1969. Factors affecting chemical transformations of nitrite in soils. Soil Biol. Biochem. 1:229-239.
- Nelson, D. W., and J. M. Bremner. 1970. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem. 2:203-215.
- Nihlgård, B., and B. Popovic. 1984. Effects of different liming agencies in forest—a literature review. Statens Natursvårdsverk PM 1851, p. 1–85. Statens Naturvårdsverk, Informationsenheten, Solna, Sweden.
- Pang, P. C.-K., and C. M. Cho. 1984. Oxygen consumption and denitrification activity of a conifer forest soil profile. Soil Sci. Soc. Am. J. 48:393–399.
- Popovic, B., and F. Andersson. 1984. Liming and forest production—literature review and revision of Swedish liming experiments. Statens Naturvårdsverk PM 1792, p. 1–107. Statens Naturvårdsverk, Informationsenheten, Solna, Sweden.
- 27. Poth, M., and D. D. Focht. 1985. ¹⁵N kinetic analysis of N₂O

production by *Nitrosomonas europaea*: an examination of nitrifier denitrification. Appl. Environ. Microbiol. **49**:1134–1141.

- Reuss, J. O., and R. L. Smith. 1965. Chemical reactions of nitrites in acid soils. Soil Sci. Soc. Am. Proc. 29:267–270.
- Ritchie, G. A. F., and D. J. D. Nicholas. 1972. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in *Nitrosomonas europaea*. Biochem. J. 126:1181-1191.
- Robertson, G. P., and J. M. Tiedje. 1984. Denitrification and nitrous oxide production in successional and old-growth Michigan forests. Soil Sci. Soc. Am. J. 48:383-389.
- Shattuck, G. E., and M. Alexander. 1963. A differential inhibitor of nitrifying microorganisms. Soil Sci. Soc. Am. Proc. 27: 600-601.
- Smith, C. J., and P. M. Chalk. 1980. Fixation and loss of nitrogen during transformations of nitrite in soils. Soil Sci. Soc. Am. J. 44:288-291.
- Smith, C. J., and P. M. Chalk. 1980. Gaseous nitrogen evolution during nitrification of ammonia fertilizer and nitrite transformations in soils. Soil Sci. Soc. Am. J. 44:277–282.
- 34. Sokal, R. R., and F. J. Rohlf. 1981. Biometry, 2nd ed. W. H. Freeman and Co., San Francisco.
- 35. Stevenson, F. J., R. M. Harrison, R. Wetselaar, and R. A. Leeper. 1970. Nitrosation of soil organic matter. III. Nature of gases produced by reaction of nitrite with lignins, humic substances, and phenolic constituents under neutral and slightly acidic conditions. Soil Sci. Soc. Am. Proc. 34:430-435.
- 36. Söderström, B. 1984. Some microbial data on acidification and liming of forest soils—a literature review. Statens Naturvårdsverk PM 1860, p. 1–15. Statens Naturvårdsverk, Informationsenheten, Solna, Sweden.
- Tiedje, J. M. 1982. Denitrification, p. 1011–1026. In A. L. Page (ed.), Methods of soil analysis, part II. American Society of Agronomy, Madison, Wis.
- 38. Uomala, P., P. Martikainen, L. Sköld, and K. Kari. 1982. Effect of fertilization on forest soil denitrification potential, p. 329–336. *In* The Second National Symposium on Biological Nitrogen Fixation, Helsinki, 8–10 June 1982. The Finnish National Fund for Research and Development.
- Vangnai, S., and D. A. Klein. 1974. A study of nitrite-dependent dissimilatory micro-organisms isolated from Oregon soils. Soil Biol. Biochem. 6:335-339.
- 40. Weiss, R. F. 1981. The temporal and spatial distribution of tropospheric nitrous oxide. J. Geophys. Res. 86:7185-7195.
- Yoshida, T., and M. Alexander. 1970. Nitrous oxide formation by *Nitrosomonas europaea* and heterotrophic microbes. Soil Sci. Soc. Am. Proc. 34:880-882.