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Abstract
Global use of erythropoietin (EPO) continues to increase as a proven agent for the treatment of
anemia. Yet, EPO is no longer believed to have exclusive biological activity in the hematopoietic
system and is now considered applicable for a variety of disorders such as diabetes, Alzheimer’s
disease, and cardiovascular disease. Treatment with EPO is considered to be robust and can prevent
metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. On
the converse side, observations that EPO administration is not without risk have fueled controversy.
Here we present recent advances that have elucidated a number of novel cellular pathways governed
by EPO to open new therapeutic avenues for this agent and avert its potential deleterious effects.
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1. Historical Background for Erythropoietin
Initially termed “hemopoietine”, erythropoietin (EPO) became evident as a factor that could
stimulate new red blood cell development through the pioneering studies of Carnot and
Deflandre in 1906 [1]. This team of investigators demonstrated that plasma removed from
rabbits following a bleeding stimulus that was later injected into control untreated rabbits would
lead to the development of immature red blood cells, or reticulocytosis. A number of other
investigators followed these studies that demonstrated similar findings that plasma from
animals that were bled would yield a significant reticulocytosis. Interestingly, more elegant
experiments later demonstrated that a rise in hemoglobin levels with reticulocytosis occurred
in parabiotic rats when only one partner was exposed to hypoxia, illustrating that depressed
oxygen tensions could stimulate EPO production. Eventually, human EPO protein was purified
that paved the way for the cloning of the EPO gene and the development of recombinant EPO
for clinical use [2,3].
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2. Structural and Molecular Determinants of Erythropoietin Activity
EPO is a 30.4 kDa glycoprotein with approximately half of its molecular weight derived from
carbohydrates that can vary among species [3]. EPO contains four glycosylated chains
including three N-linked and one O-linked acidic oligosaccharide side chains. The glycosylated
chains are important for the biological activity of EPO and can protect EPO from oxygen radical
degradation. The presence of the carbohydrates also are important in the control of the
metabolism of EPO, since EPO molecules with high sialic acid content can be easily cleared
by the body through specific binding in the liver. In addition, the biological activity of EPO
also relies upon two disulfide bonds formed between cysteines at positions 7 and 160 and at
positions 29 and 33 [2].

The production and secretion of the mature EPO also relies upon the integrity of the N- and
O-linked chains. The EPO gene is located on chromosome 7, exists as a single copy in a 5.4
kb region of the genomic DNA, and encodes a polypeptide chain containing 193 amino acids.
During the production and secretion of EPO, a 166 amino acid peptide is initially generated
following the cleavage of a 27 amino acid hydrophobic secretory leader at the amino-terminal.
In addition, a carboxy-terminal arginine in position 166 is removed both in the mature human
and recombinant human EPO (rhEPO) resulting in a circulatory mature protein of 165 amino
acids [2,3].

3. Cellular Expression and Signaling for Erythropoietin and its Receptor
EPO is considered to be ubiquitous in the body, since this trophic factor can be detected in the
breath of healthy individuals [4,5]. In addition, it has been suggested that EPO may provide
developmental cognitive support in humans with the recent observation that elevated EPO
concentrations during infant maturation have been correlated with increased Mental
Development Index scores [6]. The primary organs of EPO production and secretion are the
kidney, liver, brain, and uterus (Table 1). EPO production and secretion occurs foremost in the
kidney [7]. Secondary sites of EPO production and secretion involve the liver and the uterus.
Hepatocytes, hepatoma cells, and Kupffer cells of the liver can produce EPO and, in turn, EPO
may provide a protective environment for these cells [8]. In regards to the uterine production
of EPO, it is believed that the hypoproliferative neonatal anemia that invariably occurs in the
early weeks after birth may partly result from the loss of EPO production and secretion by the
placenta.

Further work has revealed several other organs as secretory tissues for EPO that include
peripheral endothelial cells (ECs), muscle, and insulin-producing cells [2]. However, it is the
discovery of EPO and its receptor in the nervous and vascular systems that has resulted in a
heightened level of interest and enthusiasm for the potential clinical applications of EPO, such
as in Alzheimer’s disease and cardiac insufficiency [9,10]. In the nervous system, the major
sites of EPO production and secretion are in the hippocampus, internal capsule, cortex,
midbrain, cerebral ECs, and astrocytes [2,3]. Additional sites in the vascular system also
continue to surface as secretory tissues for EPO that include peripheral ECs, enterocytes, and
skeletal, smooth, and cardiac muscle [3,7].

EPO must bind to a target cell surface receptor to bring into play its biological function. Once
the EPO gene was cloned, work was initiated to identify a receptor for EPO. EPO regulates
bone marrow erythroid cell proliferation, differentiation, and survival through its binding to
an erythroid progenitor cell surface EPO receptor (EPOR). The EPOR also is expressed in
numerous non-erythroid blood lines that include neurons, microglia, astrocytes, and in cerebral
ECs as well as on myelin sheaths of radicular nerves in human peripheral nerves [2,3,7],
suggesting both a developmental and potential protective role for EPO not only in the central
nervous system, but also in disease entities that involve the peripheral nervous system.
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During the development of an organism, production of EPO and the expression of its receptor
are altered. Elevated expression of the EPOR occurs in early embryonic neuronal tissues at
levels similar to that observed in the adult spleen and bone marrow. However, the level of
endogenous EPOR expression is significantly reduced following the maturation of the brain.
During gestation, EPO production is increased, but later becomes suppressed following birth
to be regulated by the tissue oxygen supply. A deficiency in tissue oxygen results in the
production of EPO and an increase in the expression of the EPOR not only in peripheral organs
[2,3,7], but also in the brain [11] that may be responsible for hypoxic tolerance in some species
[12]. EPO secretion in the brain appears to be more sustained than in peripheral organs such
as the kidney, suggesting that EPO production may originate in the brain and possibly cross
the blood-brain barrier to reach the blood and peripheral organs [2,3]. Furthermore, both
primary neurons and neuronal cell lines have been found to retain the capacity to express EPO
in an oxygen-dependent manner [4].

Although EPO is recognized as a critical modulator of erythropoiesis, a low concentration of
red blood cells alone does not directly stimulate EPO production, but requires the presence of
a diminished oxygen tension. Once a hypoxic stimulus is received, EPO is subsequently
released into the peripheral blood circulation and upon arrival in the bone marrow, EPO binds
to its receptor expressed on the surface of erythroid progenitor cells and leads to erythropoiesis.
This results in an elevation in the number of mature erythrocytes and the improvement of
oxygen supply. EPO also functions to stimulate colony-forming erythroid cells to induce these
cells to proliferate, mature into erythrocytes, and possibly assist with reticulocyte release to
the blood [13].

In most tissues including the brain, hypoxia-dependent expression of EPO and EPOR are
controlled by hypoxia-inducible factor 1 (HIF-1). HIF-1 is essential for the production and
secretion of EPO in response to hypoxia. At the transcriptional level, the hypoxia- dependent
gene transcription of EPO and EPOR directly results from the activation of the HIF-1 pathway
under hypoxic conditions. Gene transcription of EPO is mediated by the transcription enhancer
located in the 3′-flanking region of the EPO gene that specifically binds to HIF-1 [2,3].

HIF-1 is a basic helix-loop-helix heterodimeric transcription factor containing two subunits,
HIF-1α and HIF-1β. HIF-1β is a constitutively expressed 91–94 kDa subunit that was
characterized previously as aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1α
is a 120 kDa oxygen-labile subunit that undergoes rapid degradation via the ubiquitin-
proteasome pathway under normoxic conditions. Upon hypoxic exposure, degradation of
HIF-1α is impaired by blocking its association with von Hippel-Lindau protein that targets
HIF-1α for proteasome destruction. HIF-1α subsequently translocates to the nucleus and
heterodimerizes with HIF-1β to form a stable HIF-1 complex. The HIF complex binds to the
conserved sequence (5′RCGTG3′) near the 5′ end of the hypoxia-responsive enhancer of the
EPO gene to up-regulate EPO gene transcription. It is important to note that each of the HIF
family members HIF-1α, HIF-1β, and HIF-3α play important roles in regulating the expression
of EPO and the EPOR to foster protection against hypoxic cell injury [2,3].

Hypoxia is not the only factor responsible for the expression of EPO and the EPOR. The
production and secretion of EPO in female reproductive organs is estrogen-dependent.
Administration of 17β-estradiol, which controls the cyclic development of the uterine
endometrium, can lead to a rapid and transient increase in EPO mRNA in the uterus. Hypoxic
induced EPO mRNA expression in uterine tissue occurs only in the presence of 17β-estradiol.
Oviduct and ovary production of EPO is also 17β-estradiol dependent. Interestingly, a variety
of stimulants may lead to increased EPO expression through activation of HIF, such as
hypoglycemia, raised intracellular calcium, or intense neuronal depolarizations generated by
mitochondrial reactive oxygen species. Anemic stress, insulin release, and several cytokines,
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including insulin-like growth factor, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
and interleukin-6 (IL-6), also can lead to increased expression of EPO and the EPOR [2,3].

4. Erythropoietin during Cellular Metabolism, Function, and Injury
4.1 Diabetes and EPO

Diabetes mellitus (DM) is found in at least 16 million individuals in the United States and more
than 165 million individuals worldwide [5]. Furthermore, by the year 2030, it is predicted that
more than 360 million individuals will be afflicted with DM and its debilitating conditions
[4]. Type 2 DM represents at least 80 percent of all diabetics and is dramatically increasing in
incidence as a result of changes in human behavior and increased body mass index. Type 1
insulin-dependent diabetes mellitus accounts for only 5–10 percent of all diabetics. Both type
1 and type 2 DM represent important health concerns whether they begin early or later in life,
since each can result in long-term complications throughout the body. In regards to the vascular
and nervous systems, patients with DM can develop severe neurological and vascular disease
that can lead to an increased risk for cognitive decline [4,5]. Disease of the nervous system can
become the most debilitating complications for DM and affect sensitive cognitive regions of
the brain, such as the hippocampus that modulates memory function, resulting in significant
functional impairment and dementia. In a prospective population based study of 6,370 elderly
individuals, patients with DM had an approximate double risk for the development of dementia
[4,5]. DM also has been found to increase the risk for vascular dementia in elderly subjects
[4,5].

In clinical studies involving patients with DM, plasma EPO is often low in diabetic individuals
whether or not anemia exists [4,5]. Furthermore, the failure of these individuals to produce
EPO in response to a declining hemoglobin level suggests an impaired EPO response in diabetic
patients [4,5]. Yet, increased EPO secretion during diabetic pregnancies may represent the
body’s attempt at endogenous protection against the complications of DM [14]. EPO
administration has been shown both in diabetics as well as non-diabetics with severe, resistant
congestive heart failure to decrease fatigue, increase left ventricular ejection fraction, and
significantly decrease the number of hospitalization days [15] (Table 2). In vitro studies with
vascular cells exposed to elevated glucose also have elucidated a strong cytoprotective effect
of EPO. Administration of EPO can significantly improve EC survival in a 1.0 ng/ml range
[16]. Interestingly, EPO administration in patients also can significantly increase plasma levels
of EPO well above this range of 1.0 ng/ml, suggesting that the effects of EPO observed during
in vitro studies may parallel the cellular processes altered by EPO in patients with DM [6].
Furthermore, EPO can block apoptotic DNA degradation in ECs during elevated glucose
similar to other models of oxidative stress in cardiac and vascular cell models [16–19].

4.2 Neurodegeneration, Inflammatory Cell Activation, and EPO
As a robust cytoprotectant, EPO can enhance the survival of cells in the nervous system during
toxic insults [2,3,20]. In neuronal cells of the brain or retina, EPO can prevent injury from
hypoxic ischemia [11,21–25], excitotoxicity [2,3], free radical exposure [23,26], amyloid
toxicity [27], and dopaminergic cell injury [28] (Table 2). More specifically, administration of
EPO also represents a viable option for the prevention of retinal cell injury during glaucoma
[29]. Systemic application of EPO also can improve functional outcome and reduce cell loss
during spinal cord injury [30,31], cerebral edema, [32], cortical trauma [33], and epileptic
activity [34,35].

Yet, of equal importance to the functional preservation of cells is the role of EPO during cellular
inflammation. EPO can reduce cytokine gene expression in endothelial cells exposed to TNF-
α [3], can decrease ulcer progression in cases of scleroderma [36], and can block primary
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microglial activation and proliferation during oxidative stress [22,27]. Furthermore, EPO can
inhibit microglial cell activation and proliferation to prevent phagocytosis of injured cells
through pathways that involve cellular membrane phosphatidylserine (PS) exposure, protein
kinase B [37], and the regulation of caspases [22,26,38]. EPO can directly inhibit several pro-
inflammatory cytokines, such as IL-6, TNF-α, and monocyte chemoattractant protein 1 [2,3],
as well as reduce leukocyte inflammation [39]. In addition, EPO may foster the preservation
of microglial cells for neuronal and vascular restructuring by preventing apoptotic injury in
microglia [25].

4.3 Cardiovascular-Renal Protection, Angiogenesis, and EPO
Clinical studies have suggested an additional role for EPO in the cardiovascular system [2,3]
and in the renal system [10]. For example, patients with acute myocardial infarction have
increased plasma EPO levels within seven days of the cardiac insult, suggesting a possible
protective response from the body [40]. In addition, EPO administration in patients with anemia
and congestive heart failure can improve exercise tolerance and renal function [10].
Randomized control studies with EPO administration in patients with congestive heart failure
or diabetes combined with congestive heart failure also demonstrate an improved cardiac
output and a decrease in medical resource utilization [3,15]. Closely integrated with cardiac
performance, pulmonary function also is believed to be enhanced during EPO administration,
especially in the setting of ischemic reperfusion injury of the lung [41]. Serum levels of EPO
also may function as a biomarker for cardiovascular injury [42]. At the cellular level, EPO
plays a critical role in the vascular and renal systems. EPO can maintain erythrocyte [13] and
podocyte [43] integrity, regulate the survival of ECs [21,26], and function as a powerful
endogenous protectant during cardiac injury [44].

It is important to note that as a large molecule, EPO may maintain the establishment of EC
communication and function that could become crucial in a number of scenarios, such as repair
of the blood-brain barrier during injury [16,17]. In addition, by assuring EC integrity, EPO
prevents ischemic cardiac demise by reducing myocardial injury and cardiomyocyte apoptosis
[18,19,45], modulating cardiac remodeling [19], and improving cardiac function [18,45] (Table
2). Overall, EPO can protect against myocardial cell apoptosis and decrease infarct size,
resulting in improved left ventricular contractility. In isolated rat heart preparations following
ischemia/reperfusion experiments, beneficial effects of treatment with EPO have been shown
to significantly improve post-ischemic recovery of left ventricular pressure [2,3].

Some of the results from experimental studies with EPO have correlated well with a number
of positive clinical observations for EPO in cardiac patients. Early clinical studies in patients
with anemia or on chronic hemodialysis have indicated that administration of EPO can increase
left ventricular ejection fraction, stroke volume, and cardiac output, suggesting improved
cardiac function secondary to the correction of anemia [2,3,15]. Other clinical randomized
control studies in patients with mild anemia and severe or resistant congestive heart failure
have demonstrated that EPO in combination with intravenous iron can lead to increased left
ventricular ejection fraction and a reduction in hospitalization days by almost eighty percent.
In addition to the correction of anemia, EPO can promote microvascular growth in the heart,
suggesting that functional cardiac recovery with EPO may ensue also from the generation of
new blood vessels [45].

Interestingly, EPO independently leads to angiogenesis for new cell growth such as capillary
formation from pre-existing vessels into an avascular area [11,46]. EPO has both a mitogenic
and chemotactic effect that can lead to matrix metalloproteinase-2 production, cell
proliferation, and new vessel formation [2,3]. EPO also can stimulate postnatal
neovascularization by increasing endothelial progenitor cell mobilization from the bone
marrow. Angiogenesis has been observed in rat aortic rings four days following incubation

Maiese et al. Page 5

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with EPO in reconstituted basement membrane matrix and in ECs derived from human adult
myocardial tissue treated by EPO [2,3].

5. Erythropoietin and the Oversight of Novel Intrinsic Cellular Pathways
5.1 Oxidative Stress, Apoptosis, and EPO

EPO modulates a variety of signal transduction pathways for cytoprotection that can involve
protein kinase B, signal transducer and activator of transcription pathways, forkhead
transcription factors, caspases, and nuclear factor κB (Figure 1). Intimately linked to these cell
longevity pathways with EPO are the injury mechanisms associated with oxidative stress and
apoptosis. Oxidative stress represents a significant mechanism for the destruction of cells that
can involve apoptotic cell injury. Apoptotic induced oxidative stress in conjunction with
processes of mitochondrial dysfunction can contribute to a variety of disease states such as
diabetes, ischemia, general cognitive loss, Alzheimer’s disease, and trauma [47–49]. As an
early event in the dynamics of cellular apoptosis, membrane PS externalization can become a
signal for the phagocytosis of cells. Cells expressing externalized PS may be removed by
microglia [50]. In addition, membrane PS externalization on platelets has been associated with
clot formation in the vascular cell system. In contrast to the early externalization of membrane
PS residues, the cleavage of genomic DNA into fragments is considered to be a delayed event
that occurs late during apoptosis [51,52]. Several enzymes responsible for DNA degradation
have been differentiated and include the acidic, cation independent endonuclease (DNase II),
cyclophilins, and the 97 kDa magnesium - dependent endonuclease [47]. Three separate
endonuclease activities are present in neurons that include a constitutive acidic cation-
independent endonuclease, a constitutive calcium/magnesium-dependent endonuclease, and
an inducible magnesium dependent endonuclease. EPO offers a unique opportunity to prevent
the exposure of membrane PS residues, inhibit the committed stages of genomic DNA
destruction, and the subsequent apoptotic cascades that may involve caspase activation [21–
23,26,31].

5.2 Jak2, STATS, and EPO
Cellular signal transduction with EPO requires the activation of the EPOR which specifically
binds to and activates Janus-tyrosine kinase 2 (Jak2) through phosphorylation. Jak2 is a
member of a family of Janus-type protein-tyrosine kinases including Jak1, Jak2, Jak3, and
Tyk2 that are characterized by a kinase domain in the carboxyl portion, a kinase-like domain,
and a large amino-terminal domain. The amino-terminal domain of Jak2 is responsible for the
binding of Jak2 with the β-subunit of the EPOR at a region proximal to the membrane that
contains the Box 1 sequence. The signal transducer and activator of transcription (STAT)
proteins are direct substrates of Janus kinases. Activation of Janus kinases results in tyrosine
phosphorylation and dimerization of STATs. Once activated, STATs translocate to the nucleus
and bind to specific DNA sequences in the promoter regions of responsive genes to lead to
gene transcription. Closely linked to these transcription pathways are the mitogen-activated
protein kinases that include the extracellular signal-related kinases (ERKs), the c-Jun-amino
terminal kinases, and p38 MAP kinase that can oversee erythroid proliferation and
differentiation [3,47]. Yet, in regards to cytoprotection, EPO has been shown to not only
activate STAT 3 [17,44], STAT 5 [13,17], and ERK 1/2 [17], but also to employ these pathways
for cell development and cell protection. For example, EPO significantly activates STAT3,
STAT5, and ERK 1/2 in primary cerebral vascular cells, suggesting that EPO may require these
cellular pathways to confer EC cytoprotection during oxidative stress [17].

5.3 PI 3-K, Akt, FOXO3a, and EPO
The ability of EPO to enhance cell survival during injury also directly relies upon the
phosphatidylinositol 3-kinase (PI 3-K) pathway through protein kinase B (Akt1).
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Phosphorylation of Akt leads to its activation and protects against genomic DNA degradation
and membrane PS exposure [47]. Up-regulation of Akt activity during injury paradigms, such
as vascular and cardiomyocyte ischemia [2,3], hypoxia [21,53], β-amyloid toxicity [27], and
oxidative stress [37,51,52] is vital for EPO protection, since inhibition of Akt activity blocks
cellular protection and anti-inflammatory mechanisms by EPO [22,23,26]. EPO employs the
PI 3-K/Akt pathway to prevent cellular apoptosis through several pathways that involve
transcription factor regulation [17], maintenance of mitochondrial membrane potential
(ΔΨm), prevention of cytochrome c release, and blockade of caspase activity [21,22,26].

Interestingly, a number of novel pathways that may mediate the ability of EPO to prevent
cellular apoptosis are intimately tied to Akt. For example, Akt is a central regulatory element
for the mammalian forkhead transcription factor family that oversees processes ranging from
cell longevity to cell apoptosis [17,54]. Of the forkhead transcription factors, FOXO3a is one
member that has emerged as a versatile target for a number of disorders [55]. Akt controls the
“pro-apoptotic” forkhead transcription factor FOXO3a by inhibiting the nuclear translocation
of FOXO3a that would normally activate the transcription of apoptotic nuclear genes. As a
result, control of FOXO3a is considered to be a viable therapeutic target for agents such as
metabotropic glutamate receptors [56] and NAD+ precursors [25,54,57] to increase cell
survival. In addition, FOXO3a interfaces with several pathways that regulate cellular lifespan
[58] and function to control neoplastic growth [59]. In a similar manner, EPO controls the
phosphorylation and degradation of FOXO3a to retain it in the cytoplasm through binding to
14-3-3 protein and foster vascular cell protection during oxidative stress [17] (Figure 2).

5.4 Wnt, GSK-3β, NF-κB, and EPO
Wnt proteins, derived from the Drosophila Wingless (Wg) and the mouse Int-1 genes, have
been shown to play a role in both cell development and cell demise with recent recognition
that the Wnt pathway also is dependent upon Akt signaling [16,47,60,61]. Current experimental
work suggests that some Wnt family members may offer glucose tolerance and increased
insulin sensitivity [4], suggesting a potential protective cellular mechanism for EPO to improve
clinical cardiac function in diabetic patients [15] and decrease complications in woman with
diabetic pregnancies [14]. New in vitro studies demonstrate that the Wnt1 protein is necessary
and sufficient to impart cellular protection during elevated glucose exposure [16].
Administration of exogenous Wnt1 protein can significantly prevent apoptotic EC injury
during elevated glucose exposure. Interestingly, EPO maintains the expression of Wnt1 during
elevated glucose exposure and prevents loss of Wnt1 expression that would occur in the absence
of EPO during elevated glucose. More importantly, blockade of Wnt1 with a Wnt1Ab can
neutralize the protective capacity of EPO, illustrating that Wnt1 is a critical component in the
cytoprotection of EPO during elevated glucose exposure [16]. Furthermore, EPO also blocks
glycogen synthase kinase-3β (GSK-3β), a downstream pathway of Wnt, that can influence cell
survival and inflammation. As a result, EPO and GSK-3β are both considered to be therapeutic
targets for a number of disorders [38,47,62,63].

Expression and cytoprotection of EPO also is dependent, in part, upon Akt and the activation
of nuclear factor-κB (NF-κB). NF-κB itself can be cytoprotective and lead to the induction of
several anti-apoptotic genes, such as inhibitors of apoptotic protein that can specifically inhibit
caspases 3, 7, and 9. NF-κB also plays a key role in the expression of EPO during HIF-1
induction. Akt can significantly increase NF-κB and HIF-1 activation resulting in the
enhancement of EPO expression. Although in instances that involve some EPO receptor-
positive tumors or specific ischemia-reperfusion cardiac injury models, EPO under most
conditions uses NF-κB to prevent apoptosis through the enhanced expression and translocation
of NF-κB to the nucleus to elicit anti-apoptotic gene activation [25,27,64].
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6. Future Directions for Clinical Efficacy, Safety, and Toxicity of
Erythropoietin

In light of the multiple cytoprotective pathways that are governed by EPO, it may come as no
surprise that EPO has been identified as a possible candidate for a number of disease entities
that involve cardiac, nervous, and vascular system diseases. At present, there are at least 100
trials with the National Institutes of Health website (clinicaltrials.gov) that are either recruiting
or in preparation to examine the clinical effects of EPO in patients with a variety of disorders
that include anemia, cancer, cardiac ischemia, or spinal cord trauma. Although some cardiac
injury experimental models do not consistently demonstrate a benefit with EPO [65], initial
studies in patients with anemia or on chronic hemodialysis have suggested a direct cardiac
benefit from EPO administration [2,3]. Subsequent work has demonstrated that EPO
administration can improve exercise tolerance and renal function in patients with anemia and
congestive heart failure [10] and that this may be tied to improved pulmonary function [41].
Of significant interest is a recent randomized, concealed, multicenter trail of 1460 patients who
received 40,000 U of epoetin alfa up to a 3 week maximum following intensive care unit
admission and demonstrated a reduced mortality in patients with trauma [66].

Unfortunately, agents such as EPO may not be tolerated by all individuals, especially those
with co-morbid conditions such as congestive heart failure, hypertension, and neoplasms. Some
studies suggest that EPO may contribute to vascular stenosis with intima hyperplasia [67].
Furthermore, adverse effects during treatment with EPO are not uncommon, such as an
increased incidence of thrombotic vascular effects [66]. In addition, the use of EPO in patients
with hypertension must proceed with caution, since both acute and long-term administration
of EPO can significantly elevate mean arterial pressure [68].

The potential progression of cancer has been another significant concern raised with EPO
administration [69,70]. Not only has both EPO and its receptor been demonstrated in tumor
specimens, but under some conditions EPO expression has been suggested to block tumor cell
apoptosis through Akt [3,70], enhance tumor progression, increase metastatic disease, and
negate the effects of radiotherapy by assisting with tumor angiogenesis [71]. It should be noted
though that the potential risk of EPO administration to either initiate tumor growth or lead to
tumor progression is not entirely understood. In regards to the possible tumor promoting ability
of EPO [72], a number of competing factors must be considered that include the possible
benefits of EPO administration in patients with cancer that involve the synergistic effects of
EPO with chemotherapeutic modalities [73] and the treatment of cancer-related anemia. The
deployment of further large scale prospective trials that can more clearly examine the attributes
and contraindications for EPO, especially in patients with neoplastic disease, are required.

However, in addition to the concerns outlined in patients with cancer, other important
considerations for EPO exist. Irrespective of the problems associated with EPO abuse and gene
doping [74], EPO has been correlated with the alteration of red cell membrane properties
leading to a cognitive decrement in rodent animal models [2,3]. In addition, development of
potentially detrimental side-effects during EPO therapy, such as for cerebral ischemia with
increased metabolic rate and blood viscosity [75], could severely limit or halt the use of EPO
for neurovascular diseases. As a result, alternate strategies have been suggested. New
investigations are studying the role of targeted bioavailability for EPO such as in bone marrow
stromal cells genetically engineered to secrete EPO [76] and controlled release of EPO from
encapsulated cells [77,78]. Enhancement of EPO entry into the central nervous system
continues to attract significant interest as well as does the use of novel intranasal routes for
EPO administration [79]. Other avenues of study are directed to the development of derivations
of EPO to reduce erythropoietic activity and the potential associated vascular complications
[30]. Yet, these lines of investigation are not without limitations, since chemical derivatives
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of EPO can become absent of clinical efficacy [2,3] as well as possibly loose the ability to
promote sustainable cytoprotective effects, such as neurogenesis [80] and angiogenesis [11,
46].

As both basic experimental studies and clinical trials continue to outline the advantageous
effects of EPO, raves for this unique cytoprotective agent will continue to unfold at a
surprisingly rapid pace. EPO is now well accepted as an agent not only necessary for the
induction of erythropoiesis, but also required for cellular maintenance, survival, and the control
of inflammatory pathways. As a therapeutic entity, EPO appears to have applicability for a
broad range of disorders that may extend from chronic organ failure to fragile cognitive loss.
Yet, it is the further elucidation of the primary cellular pathways that are governed by EPO
that should guide us in designing clinical applications for this agent and assist us in eliminating,
or at the very least, reducing the risks of EPO that may be closely intertwined with its substantial
benefits for patient care.
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Figure 1. Cytoprotection by erythropoietin (EPO) requires multiple signal transduction pathways
EPO and the EPO receptor (EPOR) can increase cell survival, promote progenitor cell
development, and control inflammatory cell activation through pathways that involve the
Janus-tyrosine kinase 2 (Jak2) protein, protein kinase B (Akt), and signal transducer and
activator of transcription (STAT) proteins. Subsequent downstream signaling governs
extracellular signal-related kinases (ERKs), the forkhead family member FOXO3a, glycogen
synthase kinase-3β (GSK-3β), and nuclear factor-κB (NF-κB). Intimately linked to the ability
of EPO to maintain cellular integrity and prevent inflammatory activation that ultimately can
lead to cellular apoptosis are the maintenance of mitochondrial membrane potential (ΔΨm),
the release of cytochrome c, (Cyto-c), and the prevention of caspase activation.
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Figure 2. Erythropoietin (EPO) sequesters FOXO3a in the cytoplasm during oxygen-glucose
deprivation (OGD)
Administration of EPO (10 ng/ml) with an 8 hour period of OGD, OGD alone, or untreated
cells (Control) was followed at 6 hours with immunofluorescent staining for FOXO3a (Texas-
red) in endothelial cells (ECs). Nuclei of ECs were counterstained with DAPI. In merged
images, cells with combined EPO and OGD show EC nuclei with minimal FOXO3a staining
(blue/white) and show EC cytoplasm with significant FOXO3a staining (red) in contrast to
cells with OGD alone with significant FOXO3a staining in both the cytoplasm and the nuclei
of ECs, demonstrating the ability of EPO to sequester FOXO3a in the cytoplasm.
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Table 1
Tissue Sites of Erythropoietin (EPO) and its Biological Functions

EPO Production and Expression Sites Biological Function

Kidney Erythropoiesis
Liver Protection and Erythropoiesis
 Kupfer cells
 Hepatocytes
Uterus Proliferation
Brain
 Neurons Neuroprotection
 Astrocytes Neuroprotection
 Microvascular endothelial cells Protection and proliferation
Peripheral Endothelial cells Angiogenesis and migration
Muscle cells Proliferation
 Skeletal
 Smooth
 Cardiac
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Table 2
Erythropoietin (EPO) Cellular Response in Disease

Diseases modalities Cellular response to EPO References
Diabetes
 Clinical studies Complications decreased, cardiac function improved 15
 In vitro elevated high glucose EC survival increased, apoptotic DNA fragmentation Decreased 16
Neurodegeneration and inflammatory cell
activation
 Hypoxia and Free radical exposure Neuronal and cerebrovascular EC survival increased, apoptotic DNA

fragmentation and PS exposure decreased
21,22,23

 Alzheimer’s disease Aβ toxicity reduced, translocation of NF-κB, neuronal apoptotic injury reduced 27
 Parkinson’s disease Dopaminergic graft survival, striatal regeneration, and functional recovery

enhanced
28

 Neurotrauma Lesion size decreased, caspase 3 activity and apoptotic DNA fragmentation
decreased, neuronal function preserved

30,31,33

 Epilepsy Duration of epilepsy decreased, hippocampal neuron survival following status
epileptics increased

34,35

 Inflammatory disease Cytokine gene expression decreased, inflammatory function of cytokines
inhibited

2,3

 Microglia Microglial activation inhibited, microglial integrity preserved 17,22,23,25
Cardiovascular and renal systems
 Ischemic cardiac disease Cardiac function improved, cardiomyocyte apoptosis inhibited, cardiac

remodeling increased
18,19,44,45

 Renal protection Podocyte injury induced reduced, actin cytoskeletal reorganization corrected 43
 Angiogenesis EC apoptosis inhibited, new capillary formation, endothelial progenitor cell

mobilization increased
11,46

Abbreviations: EC: endothelial cell; NF-κB: nuclear factor-κB; NMDA: N-methyl-D-aspartate; PS: phosphatidylserine
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