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Two variables define the topological state of closed double-
stranded DNA: the knot type, K, and DLk, the linking number
difference from relaxed DNA. The equilibrium distribution of
probabilities of these states, P(DLk, K), is related to two conditional
distributions: P(DLkzK), the distribution of DLk for a particular K,
and P(KzDLk) and also to two simple distributions: P(DLk), the
distribution of DLk irrespective of K, and P(K). We explored the
relationships between these distributions. P(DLk, K), P(DLk), and
P(KzDLk) were calculated from the simulated distributions of
P(DLkzK) and of P(K). The calculated distributions agreed with
previous experimental and theoretical results and greatly ad-
vanced on them. Our major focus was on P(KzDLk), the distribution
of knot types for a particular value of DLk, which had not been
evaluated previously. We found that unknotted circular DNA is not
the most probable state beyond small values of DLk. Highly chiral
knotted DNA has a lower free energy because it has less torsional
deformation. Surprisingly, even at zDLkz > 12, only one or two knot
types dominate the P(KzDLk) distribution despite the huge number
of knots of comparable complexity. A large fraction of the knots
found belong to the small family of torus knots. The relationship
between supercoiling and knotting in vivo is discussed.

Topological properties of DNA are essential for life. It is
simplest to consider the topological properties of circular

DNA in which both strands are intact, called closed circular
DNA, but linear DNA in vivo is also topologically constrained (1,
2). The topological state of closed circular DNA can be described
by two variables. One is the knot type, K, formed by the double
helix axis. In particular, a molecule may be unknotted (unknot,
trivial knot) or form a non-trivial knot. The second variable, the
linking number of the complementary strands, Lk, describes the
winding of the strands of the double helix about each other. It
is more convenient to use the difference between Lk and that of
relaxed DNA (Lko), DLk 5 Lk 2 Lko, than Lk itself. Circular
DNA extracted from cells has negative DLk (3).

Random cyclization of linear DNA molecules results in an
equilibrium distribution of topological states, P(DLk, K). Studies of
the components of this distribution have greatly advanced our
understanding of DNA conformational properties. The measure-
ment in 1975 of the equilibrium distribution of DLk for unknotted
circular DNAs, the conditional distribution P(DLkuUnknot), led to
elegant determinations of the free energy of supercoiling (4, 5).
These textbook experiments were elaborated later to include the
effect of DNA length, solvent, temperature, and ionic conditions
(6–10). A theoretical analysis of P(DLkuUnknot) allowed the de-
termination of the torsional rigidity of DNA (11–15). The condi-
tional distribution for the simplest knot, P(DLkuTrefoil), has also
been studied theoretically (16) and experimentally (17).

The value of Lk is not defined in nicked circular DNA, whose
topological state is specified by knot type only. The corresponding
equilibrium distribution of knots in torsionally unstressed mole-
cules, P(K), has been the subject of many theoretical studies (16,
18–23). Experimental measurements of P(K) for different DNA
lengths were performed for the first time in 1993 and allowed an
accurate determination of the electrostatic repulsion between DNA
segments under different ionic conditions (10, 17, 24).

To provide a more complete description of DNA topology, we
evaluated the general relationships between P(DLk, K) and the four
derivative distributions, P(DLkuK), P(KuDLk), P(K), and P(DLk).
There is no known method for measuring P(DLk, K) directly, but
it can be calculated from a pair of derivative distributions that can
be measured or simulated, P(K) and P(DLkuK). P(DLk, K) can also
be simulated directly.

We focused particularly on the conditional distribution
P(KuDLk), the equilibrium distribution of knot types in DNA
molecules with a particular value of DLk. We computed P(KuDLk)
in two different ways and obtained the same distributions. These
computations showed, in agreement with (25), that beyond very
small values of DLk, the lowest energy form of DNA for a particular
DLk is knotted and not plectonemically supercoiled. This prefer-
ence arises because formation of highly chiral knots minimizes
torsional deformation of DNA. Unexpectedly, we found that only
a few knots dominated the distribution for a particular DLk value
and a large fraction of these knots belongs to the small family of
torus knots. We discuss the relationship between supercoiling and
knot formation inside the cell.

Methods of Calculations
DNA Model. We modeled DNA as a discrete analog of a worm-like
chain and accounted for intersegment electrostatic repulsion. A
DNA molecule composed of n Kuhn statistical lengths is modeled
as a closed chain of kn rigid cylinders of equal length. Replacement
of a continuous worm-like chain with kn hinged rigid segments is an
approximation that improves as k increases. The bending energy of
the chain, Eb, is given by

Eb 5 akBT O
i51

kn

ui
2, [1]

where the summation extends over all the joints between the
elementary segments, ui is the angular displacement of segment
i relative to segment i 2 1, a is the bending rigidity constant, kB
is the Boltzmann constant, and T is the absolute temperature.
The value of a is defined so that the Kuhn statistical length
corresponds to k rigid segments (12). We used k 5 10, which has
been shown to be large enough to obtain accurate results for
supercoiled DNA (26). The Kuhn length was set equal to 100 nm
(27).

In the simulation of closed circular DNA, we also accounted for
the energy of torsional deformation, Et:

Et 5 ~2p2C/L!~DTw!2, [2]

where C is the torsional rigidity constant of DNA, L is the length
of the DNA chain, and DTw is the difference in double helical
twist from relaxed DNA (26). The value of DTw was not
specified in the model directly but was calculated for each
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conformation using White’s equation (28–30), which connects
DLk and writhe of the DNA axis, Wr, to DTw:

DTw 5 DLk 2 Wr. [3]

Eq. 3 allows us to use our DNA model to simulate the properties
of closed circular DNA with a specified value of DLk. The
calculation of Wr for a particular conformation was based on Le
Bret’s algorithm (16).

The excluded volume effect and the electrostatic interactions
between DNA segments are taken into account in the model via the
concept of effective diameter, d. This is the actual diameter of the
impenetrable cylindrical segments of the model chain. We used d 5
5 nm throughout this work, which corresponds to a NaCl concen-
tration of 0.2 M (24, 31).

Monte Carlo Simulation Procedure. We used the Metropolis Monte
Carlo procedure (32) to generate an equilibrium set of conforma-
tions as described in detail elsewhere (33).

Control of Topological Variables. Since the chain segments are
allowed to pass through each other during successive deformations
in the Metropolis procedure, the knot type of the chain can change.
The constructed equilibrium set of chain conformations specifies
the equilibrium distributions of knots, P(K). To calculate P(K), one
needs only to know the topology of each conformation. In the
simulations, this is done by calculating the value of the Alexander
polynomial, D(t) at t 5 21 and t 5 22 (18). Although the values of
D(21) and D(22) distinguish all knots obtained in this work, to
identify complex knots, we also calculated the more powerful
invariant, the Jones polynomial (see ref. 34, for example), using a
program written by Jenkins (35).

To calculate P(DLkuK), we prevented a change of knot type
during the simulation by rejecting trial conformations for which the
values of D(21) or D(22) had changed. We calculated first P(WruK),
the distribution of Wr for a particular knot type. The torsional and
bending deformations of DNA are independent to a good approx-
imation (36). This allowed us to calculate P(DLkuK) as a convolution
of P(WruK) and the distribution of the torsional fluctuations,
P(DTw). Namely,

P~DLkuK! 5 E P~WruK!P~DTw!dWr

5 E P~WruK!P~DLk 2 Wr!dWr. [4]

We assumed that P(DTw) is specified by a Gaussian distribution
with variance ^(DTw)2& given by ref. 15:

^~DTw!2& 5 kBTL/4p2C. [5]

We used a value of 3z10219 ergzcm (1 erg 5 0.1 mJ) for C (10, 15,
27). This way of calculating P(DLkuK) was first suggested by
Benham (37) and was realized in ref. 11.

Results
Definitions of Lk and DLk, and the Classification of Knots. We
consider here the equilibrium probability distributions of the link-
ing number difference, DLk, and knot type, K. The value of Lk for
two closed contours C1 and C2 can be defined as (30, 38):

Lk 5
1

4p R
C1

R
C2

@dr1 3 dr2#r12

r12
3 , [6]

where r1 and r2 are vectors that start at a point O and move, upon
integration, over C1 and C2, respectively; r12 5 r1 2 r2. This
definition using the Gauss integral can be applied equally to
knotted and unknotted contours. DLk can be calculated as

DLk 5 Lk 2 N/g, [7]

where N is the number of base pairs in the DNA and g is the
number of base pairs per turn of the unstressed double helix.
Because the value of N/g is not integral, it is more convenient
to consider DLk as a continuous variable even though for any
particular DNA its value can differ only in integral amounts. The
distribution of discrete values of DLk is obtained from the
corresponding continuous distribution by simple renormaliza-
tion. Although most of our calculations were for negative DLk,
there is no internal chirality in the DNA model used in the
simulations, and thus the results can be easily generalized to
positive values of DLk.

Knots are classified according to the minimum number of
intersections in their plane projection. We will refer to such
presentation of knots as standard forms. The simplest knot has
three intersections in standard form, and there are only four
different types of knots with less than six intersections (Fig. 1A). As
the number of intersections in the standard form increases, the
number of knot types grows very fast: there are 1,701,936 knots with
less than 17 crossings (39). A knot and its mirror image are rarely
topologically equivalent (only the knot 41 is equivalent to its mirror
image among the four simplest knots shown in Fig. 1A), but only
one representative of a pair is accounted in the classification (see
ref. 34, for example, for more details).

Fig. 1. Simple knots. (A) Shown are the standard forms of knots that can be
presented with less than six crossings in plane projection. The chiral knots 31, 51,
and 52 are represented by only one mirror image. (B) Typical simulated knotted
conformations of nicked circular DNA, 4 kb in length.
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General Relationships Between P(DLk, K) and the Derivative Distri-
butions. We use in our calculations four general relationships
among P(DLk, K) and the derivative distributions P(DLkuK),
P(KuDLk), P(K), and P(DLk). These relationships, valid for any
two-dimensional distribution, are:

P~DLk, K! 5 P~DLkuK!P~K!; [8]

P~DLk, K! 5 P~KuDLk!P~DLk!; [9]

P~K! 5 O
Lk

P~DLk, K!; [10]

P~DLk! 5 O
K

P~DLk, K!. [11]

The Distribution of Knots and DLk, P(DLk, K). Fig. 1B illustrates typical
conformations of the simplest knots obtained in the simulation of
DNA molecules 4 kb in length. We calculated the equilibrium
distribution, P(DLk, K), using Eq. 8 and simulated distributions of
P(DLkuK) and P(K) (Fig. 2). Because P(K) decreases sharply as knot
complexity grows, we were able to calculate P(K) with reasonable
accuracy only for the four simplest knots, 31, 41, 51, and 52. Knots

31, 51, and 52 are chiral, and therefore both of their mirror images
are presented in Fig. 2; knot 41 is achiral. The values of P(K) are
shown in Table 1. In agreement with experimental data (4, 5, 17),
we found that for all these knots P(DLkuK) is approximated well by
the Gaussian distribution:

P~DLkuK! 5
1

sKÎ2p
exp@2~DLk 2 cK!2/2sK

2 #. [12]

The values of the distribution variance, sK
2 , and of cK are shown

in Table 1. The simulation data did not deviate by more than
15% from the best fitted Gaussian curve in the interval (24sK,
4sK). The values of cK correspond to the average values of
writhe, ^Wr&, over the distribution of equilibrium conformations
of nicked circular DNA forming a knot K. Our values of cK are
in full agreement with those calculated by Katritch et al. (40).

The Distribution P(KzDLk). Without extra simulation, two other
derivative distributions, P(KuDLk) and P(DLk), can be obtained
from P(DLk, K) by using Eqs. 9 and 11. P(KuDLk), the calculated
distribution of knots as a function of DLk, is shown in Fig. 3.
Although only unknotted circular molecules (01) and four knots, 31,
41, 51, and 52, were taken into account during the calculation,
further results showed (see Fig. 4) that only these knots compete for
appearance in the range of DLk between 0 and 27.5. It is easy to
understand why the knot 41 does not appear in this distribution. The
average value of Wr for the amphichiral 41 equals zero, and thus it
competes for appearance with the trivial knot in the range of DLk
around zero but loses out because P(DLk, 01) .. P(DLk, 41). It is
more interesting that there is a very small amount of the knot 52 in
Fig. 3. This is because P(DLk, 31) .. P(DLk, 52), even though the
absolute value of ^Wr& is lower for 31 than for 52 (see Fig. 2), for all
values of 2DLk less than 8. For 2DLk . 7.2, knot 51 makes a major
contribution to the conditional distribution.

It is difficult to obtain P(KuDLk) for larger values of DLk using
Eqs. 9 and 11, because we are not able to calculate P(K) for more
complex knots. We can, however, simulate P(KuDLk) directly for a
range of values of DLk. The algorithm we use allows us to restrict
the equilibrium set of conformations to certain values of K or DLk
or to remove one or both of these restrictions (see Methods of
Calculations). To calculate P(KuDLk), we constructed equilibrium
sets of conformations for particular values of DLk but allowed any
change of knot type during the simulation.

The distributions P(KuDLk) obtained by direct simulation for two
DNA lengths, 2.4 and 4 kb, are shown in Fig. 4. The distribution for
4-kb DNA in Fig. 4B is nearly identical with the calculated
distribution in Fig. 3 over the same range of DLk and for DNA of
the same size. This agreement demonstrates the consistency of the
computations. A remarkable feature of the distribution is readily

Fig. 2. Simulated distributions of P(DLk, K) and P(DLk). The distribution P(DLk,
K) is represented by separate peaks that correspond to different knots: 01 (un-
knotted circles) (red), 31 (blue), 41 (pink), 51 (light green), and 52 (turquoise).
Contributions from both mirror images of the chiral knots 31, 51, and 52 are
shown. Each peak is a Gaussian distribution over DLk. The distribution P(DLk), the
sum of P(DLk, K) over K, is shown by the black line. The simulations were
performed for DNA molecules 4 kb in length.

Fig. 3. Simulated distribution of P(KuDLk) for 4-kb DNA. The distribution was
obtainedbyusingEqs.9and10andthedatafromTable1.Eachcurvecorresponds
to a particular knot: 01 (red), 31 (blue), 51 (light green), and 52 (turquoise).

Table 1. Properties of the simplest knots

Knot type, K cK sK
2 P(K)

01 0 1.59 0.995324
31 23.42 1.21 0.002210
41 0 1.08 0.000204
51 26.23 1.00 0.000008
52 24.59 0.99 0.000012

The parameters of the distribution P(DLkuK), specified by Eq. 12, were
computed for DNA molecules 4 kb in length. cK equals the average value of
writhe, ^Wr&, of a torsionally unstressed DNA molecule forming the knot K. For
chiral knots, the values of cK for negative knots are shown.
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seen in Fig. 4: for any particular value of DLk, only very few knots
dominate. Indeed, there are 1,701,936 different knots with less than
17 crossings in their standard form (39), but only 12 of them appear
in the conditional distributions with probability more than 0.1! Four
other knots that appear in Fig. 4 have more than 16 crossings in the
standard form and therefore are not among these 1,701,936.
Comparison of the distributions calculated for the two DNA lengths
shows that the same knots make the major contributions in both
cases, although they appear at slightly different values of DLk. Also

slightly more knots contribute to the distribution for longer DNA.
This weak dependence of P(KuDLk) on DNA length is due to the
fact that the average Wr of knotted molecules is nearly length-
independent (16, 40). The knots that make the major contribution
to P(KuDLk) are shown in Fig. 5A in standard form. Typical
conformations for some of these knots are shown in Fig. 5B; they
are quite similar to the standard presentations and contain barely
any extraneous crossings.

Why do so few knots make the major contribution to P(KuDLk)?
To address this question, we calculated the average Wr for these
knots in the absence of the torsional stress. The results presented
in Table 2 show that the values of u^Wr&u of the represented knots are
very large and exceed the number of crossings in their standard

Fig. 4. Simulated distribution of P(KuDLk) for 2.4-kb (A) and 4-kb (B) DNAs. The
data were obtained by direct simulation of this conditional distribution. Each
curve corresponds to a particular knot. Curves are shown only for those knots for
which P(KuDLk) exceeds 0.1 (with the exception of knot 52). The standard form of
these knots is shown in Fig. 5, and some of their features are listed in Table 2.

Fig. 5. Knots that make the
major contributions to
P(KuDLk). Shownarethestan-
dard forms of these knots (A)
and four examples of simu-
latedconformationsofknots
(B). Knot notations are ex-
plained in the legend to
Table 2.

Table 2. Knots that make the major contributions to P(KzDLk)

Knot type
Alexander polynomial,

uD(21)u, uD(22)u ^Wr&
p, q for

torus knots

31 3, 7 23.42 23,2
51 5, 31 26.23 22,5
71 7, 127 29.03 22,7
819 3, 91 28.59 23,4
10124 1, 331 211.17 23,5
10139 3, 259 211.38
12242

n 1, 1291 213.57
12725

n 5, 1147 213.68
1541185

n 5, 6355 215.74 24,5
1421881

n 1, 5419 215.93 23,7
146022

n 3, 5131 216.14
K1 11, 26611 218.07
K2 19, 29059 218.24
16783154

n 3, 21931 218.39 23,8
K3 13, 106483 220.37
K4 21, 115843 220.50

Notations for knots 31, 51, 71, 819, 10124, and 10139 are explained in ref. 42;
those for 12242

n , 12725
n , 1541185

n , 146022
n , 1421881

n , and 16783154
n are presented in ref.

39. Knots K1–K4 have more crossings than knots in any tables available to us;
their structure is shown in Fig. 5. The largest odd numbers that divide uD(22)u
rather than the values of uD(22)u themselves are shown in the table.
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form. When ^Wr& is near DLk, the torsional deformation, DTw, of
the double helix is minimized. This in turn decreases the free energy
of torsionally stressed DNA and makes the appearance of the knots
thermodynamically favorable. We monitored the average values of
DTw during the calculation of P(KuDLk) and found that it does not
increase over a wide range of DLk (Fig. 6). This is very different
from the properties of unknotted supercoiled DNA, for which
torsional deformation grows linearly with DLk (Fig. 6 and ref. 41).
Thus, it seems clear that high chirality, that is a high value of u^Wr&u
in the torsionally unstressed state, is a necessary condition for the
appearance of a knot in the distribution. This high chirality is
manifested for the knots shown in Fig. 5 by the fact that all the
crossings in standard form have the same sign. High chirality is not
sufficient, however. For example, knot 91 is not present in the
distribution, although the absolute value of its average writhe equals
12.07 (40), and all nine of its crossings have the same sign. There
are at least two other chiral knots, 10124 (in the notation of ref. 42)
and 12242

n (in the notation of ref. 39), for which P(KuDLk) is larger
in the corresponding range of DLk (Fig. 4).

Another surprising result is that a large fraction of these knots
belong to the family of torus knots (see Table 2). These knots can
be drawn without intersection on the surface of a torus and can be
specified by two integer variables, p and q, the numbers of inter-
sections of the torus meridian and longitude (34). Torus knots can
be readily identified by their Jones polynomial (43), V(t), since, for
these knots,

V~t!~1 2 t2! 5 t~p21!~q21!/2~1 2 tp11 2 tq11 1 tp1q!. [13]

We calculated V(t) for the knots appearing in P(KuDLk) and
identified torus knots by trying to fit V(t) to Eq. 13. The values
of p and q for the obtained torus knots are shown in Table 2. The
majority of torus knots with less than 17 crossings are in the
table. Only the knots with p 5 22 and q 5 9, 11, 13, or 15 are
absent. Certainly, all torus knots are highly chiral, and this is why
they appear so prominently in the distribution. It seems that, in
the interval of DLk studied, there are few other knots with
similar values of ^Wr& to compete for appearance in P(KuDLk)
with the tiny group of torus knots. It is possible that the other
knots presented in P(KuDLk) can be obtained from correspond-
ing torus knots by only a few stand-passages (44).

Discussion
We considered the equilibrium distribution of DLk and K that
define the topological state of closed circular DNA. Using
computer simulation, we calculated P(DLk, K) and four deriv-
ative distributions: P(DLkuK), P(KuDLk), P(K), and P(DLk).
We found that P(DLkuK) is approximated well by a Gaussian
distribution. This fact has a simple explanation. We can express
the free energy of a knot K, GK(DLk), as the Taylor expansion:

GK~DLk! 5 GK~DLk0! 1 a~DLk 2 DLk0!
2 1 · · · , [14]

where DLk0 is the value of DLk when GK(DLk) has its minimum
value. P(DLkuK) will have a Gaussian distribution if the terms in
Eq. 14 after the quadratic term are small in comparison with the
quadratic one. The simulation results show that this is the case.
The variance of the distribution diminishes as knot complexity
grows (Table 1). For achiral knots, the distribution maximum is
at a DLk 5 0. For the two mirror image forms of a chiral knot,
the distributions of P(DLkuK) are symmetrical, and their maxima
are well separated (Fig. 2). We found that, for DNA molecules
a few kilobases in length, P(K) decreases very rapidly with
increasing knot complexity. Our results for P(DLkuK) and P(K)
extend the data obtained in earlier studies (15, 16, 24).

The most interesting and most unexpected results were obtained
for the conditional distribution P(KuDLk). The simulations showed
that only a few highly chiral knots make a major contribution to the
distribution at any particular value of DLk. Only 12 of more than 1.7
million knots with fewer then 17 crossings in standard form appear
in the distribution with probability larger than 0.1, but for these
knots the probability approaches 1 at particular values of DLk (Fig.
4). The major feature of these knots is a high value of average Wr
when torsionally unstressed. A large fraction of the knots belongs
to the torus family, although not all torus knots contribute to the
distribution. Increasing the DNA length from 2.4 to 4 kb does not
change P(KuDLk) substantially.

In the simulations, we used only one particular value of DNA
torsional rigidity, C, but a wide range of values for C have been
reported (8, 15, 25, 45–47). The effect of the torsional rigidity on
the distributions studied is rather simple, as long as the torsional and
bending deformations in DNA are energetically independent. In
this case, P(DLk, K) can be expressed as a convolution of the twist
distribution, P(DTw) and the distribution of writhe and knot types,
P(Wr, K), similar to Eq. 4. Since P(Wr, K) gives the distribution for
nicked circular DNA, it does not depend on C. Thus, the depen-
dence of P(DLk, K) on C depends only on P(DTw). P(DTw) is a
Gaussian distribution centered at DTw 5 0 that broadens as C
decreases (see Eq. 5). The conclusion of this analysis is that lowering
C will not change the knots that appear in P(KuDLk), but particular
knots will be found at higher values of DLk (see Fig. 4) and the
peaks will be broader. We confirmed this. In a special simulation in
which C 5 1z10219 ergzcm, P(KuDLk) was shifted by 2 in comparison
with the results in Fig. 4B, which was calculated by using C 5 3z10219

ergzcm.
It is important to emphasize that the distributions P(DLkuK) and

P(K) can be measured experimentally and that all other distribu-
tions, P(DLk, K), P(KuDLk), and P(DLk), can be calculated from the
measured ones. The distribution P(K) can be generated by cycliza-
tion of linear DNA molecules via cohesive ends (17, 24). Separation
of knots by gel electrophoresis and measurement of their relative
amounts allows the evaluation of P(K). The equilibrium distribution
of DLk for a particular knot P(DLkuK) can be obtained by ligation
of nicks in these knots (17) and measurement of the distribution of
DLk topoisomers by gel electrophoresis. Recombinases, topoisom-
erases, and DNA replication can also be used to obtain specific knot
types for similar analyses (48).

The distribution P(DLkuK) has been studied in great detail for
unknotted molecules (4–10), and there is very good agreement
between these measurements and the results of computer simula-

Fig. 6. Dependence of the average torsional deformation, DTw, of DNA on DLk.
Points connected by the solid line are derived from the knot distributions shown
in Fig. 4B. The dependence of DTw on DLk for unknotted supercoiled DNA is
shown by the dashed line for comparison (41).
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tion for all DNA lengths and ionic conditions studied (10, 15).
P(DLkuK) was also measured for trefoils (17) and is in good
agreement with our simulation results (Table 1). Both the experi-
mental data and simulation indicate that the distribution variance,
sK

2 , for trefoils is 1.33 smaller than for unknotted DNA of the same
length. There is also very good agreement between measured and
simulated results for P(K) (17, 24). We conclude that the simula-
tions reliably describe the equilibrium distributions of topological
variables in circular DNA. The simulated results have the advan-
tages over experimental measurements covering a much greater
range of DNA size, DLk, and topological complexity, and some of
the distributions cannot as yet be measured at all.

It has been observed that, under certain conditions, supercoiling
strongly promotes knot formation by type II topoisomerases (49,
50). All these experiments, however, used very high concentrations
of enzyme, so that DNA-bound enzyme molecules promote knot-
ting. Does supercoiling promote knot formation at low enzyme
concentrations, where DNA conformations are minimally dis-
turbed by enzyme binding? This question is important for under-
standing knotting inside the cell, and it is interesting to analyze it in
terms of the current study.

Let us consider the free energy of circular DNA, which is a
function of its topological state, G(DLk, K). This energy can be
calculated as

G~DLk, K! 5 2RT ln P~DLk, K!. [15]

Since P(DLk, K) has a global maximum at unknotted DNA with
DLk 5 0 (this is the most probable state for DNA molecules
,100 kb in length), G(DLk, K) reaches the global minimum for
DNA in this topological state. Therefore, a circular DNA must
relax to this or close to this state when at equilibrium. Very often,
however, topological equilibrium cannot be reached. If DNA is
in closed form and no topoisomerases are present, its topology
cannot be changed at all.

If a type I topoisomerase is added, DLk but not knot type can
change. The result will be an equilibrium distribution over DLk for
each knot present. The molecules relax to the states that correspond
to the minimum G(DLk, K) under the condition that K is constant.
This minimum is not, in general, a local minimum of G(DLk, K).

Relaxation is restricted by a particular value of K due to the
topological constraint.

In our computation of P(KuDLk), we restricted topological re-
laxation in a reciprocal fashion and kept the value of DLk constant
but allowed K to change. The most probable states found in this
computer experiment correspond to the minima of G(DLk, K),
under the condition that DLk is constant. Again, these minima are
not, in general, the local minima of G(DLk, K).

What would happen if we added a type II topoisomerase to
closed circular DNA? These enzymes can change both topological
variables, DLk and K, by catalyzing the passages of one double-
stranded segment through another. We might expect that these
enzymes will yield unknotted molecules with DLk ' 0, correspond-
ing to the global minimum of G(DLk, K). The situation is more
complex, however. DNA gyrase introduces negative supercoils in
circular DNA (51), and other type II topoisomerases untie knots in
DNA molecules below equilibrium level (52). This is possible
because the strand passage reactions catalyzed by the enzymes are
coupled to ATP hydrolysis, which serves as a source of energy.
Thus, it is difficult to predict the distribution of topological states
of circular DNA in the presence of type II topoisomerases. The
presence of type I topoisomerases inside prokaryotic cells, which
relax negative supercoils, makes this dynamic picture even more
complex.

We know that DNA molecules inside of cells adopt plectonemi-
cally supercoiled unknotted conformations [see review (41) and
references therein]. This is certainly the desired result for the cell
because plectonemic (2) supercoils perform essential work in
promoting double-helix opening and DNA compaction. The equi-
librium distribution of topological states studied in this work shows
that this result is far from obvious, because for DNA with even a
modest DLk the free energy of highly chiral knots is lower than that
of an unknotted plectonemic superhelix. It is possible that changing
the amounts and/or activity of topoisomerases or other DNA
ligands could result in knotting of circular DNA in vivo.
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