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A coarse-grained model for protein-folding dynamics is introduced
based on a discretized representation of torsional modes. The
model, based on the Ramachandran map of the local torsional
potential surface and the class (hydrophobicypolaryneutral) of
each residue, recognizes patterns of both torsional conformations
and hydrophobic-polar contacts, with tolerance for imperfect pat-
terns. It incorporates empirical rates for formation of secondary
and tertiary structure. The method yields a topological represen-
tation of the evolving local torsional configuration of the folding
protein, modulo the basins of the Ramachandran map. The folding
process is modeled as a sequence of transitions from one contact
pattern to another, as the torsional patterns evolve. We test the
model by applying it to the folding process of bovine pancreatic
trypsin inhibitor, obtaining a kinetic description of the transitions
between the contact patterns visited by the protein along the
dominant folding pathway. The kinetics and detailed balance make
it possible to invert the result to obtain a coarse topographic
description of the potential energy surface along the dominant
folding pathway, in effect to go backward or forward between a
topological representation of the chain conformation and a topo-
graphical description of the potential energy surface governing the
folding process. As a result, the strong structure-seeking character
of bovine pancreatic trypsin inhibitor and the principal features of
its folding pathway are reproduced in a reasonably quantitative
way.

folding pathways u pattern recognition

The discretized folding model we introduce here is a compu-
tational tool based on topology, pattern recognition, and

general characteristics of protein folding kinetics. Topology here
implies information about pattern but not about specific geo-
metric structure. Only the minimum-energy locations of the
backbone torsion angles F and C, the hydrophobic-hydrophilic
natures of the residues, and the conformational constraints of
the type of side group of each residue on the backbone confor-
mation enter into this description. We construct a local topo-
logical matrix (LTM), a time-dependent, 2 3 N matrix for an
N-residue protein, in which the first row denotes the class of a
residue, hydrophobic, hydrophilic (polar), or neutral. The sec-
ond row specifies the torsional configuration at a specific time,
discretized according to the basins of the Ramachandran map
(R-map) of the torsional energy associated with the two angles
F and C that may assume wide ranges of values during the
folding process. [The R-map is a representation of the potential
energy surface (PES) of the residues, as a function of only the
two dihedral angles C, torsion around the carboxyl-Ca bond, and
F, torsion about the Ca-N bond.] We introduce an integer
variable R(y,n) appropriate for residue n, and a variable y whose
values specify the residue’s configuration in the overall chain
configuration y; R(y,n) has allowable values determined by which
of four kinds of discretized R-maps (1) corresponds to that
residue. The four types are: L-alanine-like, glycine, proline, and
any residue preceding proline. The first, L-alanyl-like residues,

may lie in any of three basins in its R-map so R(1,n) may be 1,
2, or 3. Glycyl residues may be in any of the (maximum of) four
basins, so for glycine, R(1,n) may be 1, 2, 3, or 4. Proline may lie
in only basins 1 or 3, and any residue preceding proline, in basins
1 or 2. The description of the system’s torsional dynamics follows
from the fact that R(y,n) 5 1 is compatible with the incorpora-
tion of the yth residue into a b-sheet, R(y,n) 5 2 with either a
b-bend or a left-handed helix, and R(y,n) 5 3 with a b-bend or
with a right-handed a-helix.

Within such a coarse local description, which gives consider-
able latitude to the values that the dihedral angles may take
within any given Ramachandran basin, the precise, instanta-
neous geometry of the chain becomes immaterial; the descrip-
tion becomes topological, rather than geometric. Thus, for
example, a b-turn with zero pitch becomes indistinguishable
from a turn of an a-helix, until we introduce other information,
such as the pattern of hydrophobic-hydrophobic contacts, to
resolve the ambiguity, yet both correspond to formation of a
pattern implying secondary structure. This discrete codification
of the local torsional states for the peptide chain requires that the
principal topological features of the R-maps, as we may call the
representations based on the allowed values of R(y,n), remain
invariant during the folding process, all the way to the fully folded
state. That this is valid with at least 92% probability has been
established by the (F,C) plots of more than 163 protein struc-
tures resolved to 2 Å or better (2), and by theoretical calculations
that show that the type of R-map for each residue is determined
primarily by local interactions. These data imply that long-range
interactions contributing to the potential energy only mildly
perturb locally optimized geometries and do not have a major
effect on the topology of the chain, which is governed primarily
by the R-map. Hence we may have confidence in the level of
coarse graining introduced here.

The LTM at each new time step is shaken or transformed by
imposition of torsional transitions between the discrete basins of
the R-map. The likelihood of such transitions is governed by a
set of fixed Gaussian distributions of transition probabilities,
including some determined by structures already established.
Then, at fixed intervals, we examine the full structure of the LTM
to identify sequences or windows of sequences of torsional states
that exhibit consensus patterns that we can identify with partic-
ular structures, secondary or tertiary. When any such pattern
appears, the interbasin transition rates drop for the residues in
that pattern, to reflect the formation and stability of the
structure associated with that pattern. This is tantamount to
assuming that if a structure-forming pattern of dihedrals occurs,
the corresponding structure will form as soon as the pattern is
recognized. The emerging pattern may be encoded in the form

Abbreviations: BPTI, bovine pancreatic trypsin inhibitor; LTM, local topological matrix;
R-map, Ramachandran map; CP, contact pattern; PES, potential energy surface.
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of a contact matrix as soon as any of the above-mentioned
structural ambiguity has been removed by the evolving partici-
pants in the pattern and their neighbors. If an ambiguity is not
resolved soon after it occurs, the information about its topology
is stored and later retrieved as further structural compatibilities
are established, at which time the ambiguities can be resolved.

Denaturation or dismantling of stable structural elements
occurs when a consecutive set of residues constituting at least
30% of a previous consensus window or structured pattern no
longer match the pattern required for that structural motif.
When dismantling occurs, the transition rates return from the
slower to the faster range of values. This percentage criterion
implies that the larger is the consensus window or assembled
structure, the less likely it is to dismantle. Regions of disassem-
bling residues are bubbles in ordered regions. The size of the
critical bubbles that lead to dismantling of an entire consensus
window has been established in computer simulations mimicking
the kinetics of this process (3).

The time evolution of the contact matrix not only allows us to
track the emerging patterns; it also reveals the renormalization
of the time scales of the chain dynamics by exhibiting the regimes
of flipping rates of the residues. Residues involved in no sec-
ondary structure move among the Ramachandran basins at a
mean rate of 1011 sec21 (4); we call these class I residues.
Residues engaged in a-helical or b-sheet patterns have mean
jump rates of 107 sec21 (5–8) and are called class II residues.
Class III residues are those in tertiary structures; these are
assigned rates centered about 103 s21 (3, 9, 10). The widths of the
Gaussian distributions of these rates are temperature dependent.
For class II residues, this width is estimated empirically as 108

s21. For a typical, experimentally determined denaturation
temperature of 313 K, the dispersion should be sufficiently broad
that from one reading of the LTM to the next, i.e., within 64 ps,
we should find a 50% probability that a 30% nonconforming
bubble forms in a preexisting pattern. Thus the width to be used
to represent the Gaussian distribution of interbasin hopping
rates should become broad enough to produce this denaturation,
as expressed by roughly 50% likelihood of appearance of a 30%
nonconforming bubble, at 313 K. With this premise, we estimate
the proportionality constant for the temperature dependence of
the Gaussian SD to be 3.2 3 10219 s2zK21.

Each step in the discretized evolution of the protein requires
a new set of assignments of the Ramachandran basins of all of
the residues, not only those in secondary or tertiary structures.
The minimum time for such a transition in a single residue at 298
K is t9 5 6 ps (4). Hence, because each search that invokes a
change in conformation of a class I residue has two possible new
assignments, and six such residues is the minimum number to
form the pattern of a stable helix turn or b-bend, the appropriate
time between scans of the LTM for appearance of new patterns
is 26y6 3 6 ps or 64 ps (6, 9, 11). The time or rate associated with
secondary and tertiary structures are the times that govern the
rates at which these may dismantle, once formed. This value is
obtained from the Gaussian width required to form consensus
bubbles of at least 30% of the consensus length of a pattern. Such
bubbles or sequences of consecutive, out-of-pattern residues
have been determined empirically to be sufficient to trigger
dismantling of existing patterns. Hence, above a critical temper-
ature (or temperature range, because they are small, finite
systems), such bubbles should form frequently within two suc-
cessive evaluations of the LTM.

Frustration or Mismatch Tolerance
If the requirements for pattern formation apply strictly, then, as
the example below illustrates, the system can never find its way
to a stable, organized structure, much less a native structure.
Consequently there must be some tolerance for error in estab-
lishing contact patterns (CPs). In particular, tolerance is neces-

sary toward uncorrectible mismatches of neighboring hydropho-
bic, polar, and neutral residues, mismatches that constitute a
form of frustration (4, 10, 12). However this tolerance cannot be
too high; if it is, then again, the system floats among a wide range
of structures and never finds a native structure as a well-
organized resting place.

The rates of movement among Ramachandran basins depend
on the extent of the recognized contact patterns and the
determination of what constitutes a contact pattern depends on
the tolerance level. From forward and backward rates of motion,
we may establish the conditions for microscopic reversibility and,
from these, infer the local topography of the potential surface for
adjoining minima and the saddles linking them. These two
together imply that a semiquantitative link can be made, for each
level of frustration tolerance, between topology as revealed
through the evolution of CPs and topography, at least of an
average dominant folding pathway. The topography so inferred
is by no means a complete, detailed topography. The pathway
found this way may be considered representative of a vast
number of specific pathways from crater rims to native struc-
tures.

From Topology to Topography: The Dominant Folding Pathway
The kinetic data from the coarse dynamical model described
above can be inverted by using the detailed balance principle to
obtain topographic information about the PES of bovine pan-
creatic trypsin inhibitor (BPTI), at least along a kind of mean
dominant folding pathway. The topography is represented as a
sequence of minima, with energies Ui, Uj, . . . , connected by
effective saddle points k with energies Uij

k. If there is more than
one saddle between minima i and j, their combined effect may
be represented as a single effective, temperature-dependent
saddle. It is more convenient and precise to retain the full
description until aggregation of the information becomes man-
datory; in the process we describe here, of moving from a
topological pattern to an effective topography, only an effective
surface can be constructed. Inferring the topography from the
topological data is achievable by application of the principle of
detailed balance, which dictates that forward and backward
rates, scaled by the corresponding equilibrium probabilities,
must be equal across any barrier or set of barriers, for a system
in equilibrium. At the level of coarse graining of this approach,
the rate coefficients for pattern formation may be taken as
mean-first-passage rate coefficients (11). This presumption is the
basis for our inferences of the coarse topography of the PES.

The specifics of this process of inference are as follows: We let
the function P(i, j, F, X) represent the tolerance to mismatches
by giving the probability that CPi forms in the presence of F
torsional mismatches and X hydrophobicypolar mismatches; this
probability is 1 if F 5 X 5 0. Then the forward rate for formation
of CPi from a predecessor CPj is

Wij 5 O
F50

Lij O
X50

Mij

22~Lij2F!SLij

F DSMij

X Dtij
21P~i , j, F, X!, [1]

where Lij is the number of residues that must make an interbasin
transition to take the system from CPj to CPi, tij

21 is the rate of
hopping for the residues that take the system from CPj to CPi,
and 22(Lij2F) is the probability that there be Lij 2 F residues
whose Ramachandran patterns are compatible with CPi. The
first binomial factor gives the number of available distributions
of F residues torsionally incompatible with the contact pattern,
among Lij residues; the second is the number of ways of having
X mismatches of the hydrophobic and polar contacts among Mij
total contacts. Initial simulations used the logistic function to
model P(i, j, F, X). One natural course of investigation described
in the next section is the dependence of Wij and the topography
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on the form of P(i, j, F, X). For our chosen critical size of a
dismantling bubble of a sequence of 30% of the residues in the
CP, the rate of the reverse transition, that of the dismantling
process from CPj to CPi, is

Wji 5 22~1/3!Lij~2y3!Lijtji
21, [2]

if the frustration tolerance is zero. (The factor of 2Lijy3 arises
because this is the number of positions of the critical sequence
of size Lijy3 along the window of length Lij.) In practice, we have
found it most practical to estimate the dismantling rate from
simulations. Detailed balance requires that at equilibrium,

Wij Pj
eq 5 WjiPi

eq, [3]

where the equilibrium probability is the Boltzmann value, in-
corporating the degeneracy Di, the partition function Z 5
SjDje2bUj, and the inverse temperature b 5 1ykT:

Pi
eq 5

Die2bUi

Z
. [4]

The degeneracy Di is the number of Ramachandran basins qn(i)
available to Nf free residues in the contact pattern CPi, just the
product

Di 5 P
n51

Nf

qn~i!. [5]

From these, we infer the energy difference between contact
patterns CPi and CPj as

Ui 2 Uj 5
1
b

lnSDiWji

DjWij
D . [6]

The effective barriers DU*ij then can be inferred by assuming that
the rate coefficients for inter-well passages have Arrhenius
forms, kij 5 Aexp(2b DU*ij), and finding these rates from
simulations.

Fig. 1 presents the topography implied by the topological
simulation for the dominant folding pathway of BPTI as it
evolves from a random coil initial state. This particular pathway
is derived from a tolerance level of 22%. This topography is
significantly more conducive to folding than one based on a
lower or zero tolerance level. A much higher tolerance level
yields a topography that is too flat and not conducive to structure

seeking. The effective pathway shown in Fig. 1 displays an overall
monotonic decrease in energy with a large number of staircase-
like steps, a clear signature of a good structure seeker. Initially
a series of misfolded states is formed and dismantled with no
discernible pattern. Subsequently, a series of staircase-like tran-
sitions lead to a native-like intermediate with low energy. This
intermediate exists for an appreciable amount of time as it
undergoes structural refinements, which eventually result in the
formation of the native structure of BPTI accompanied by a
large drop in energy.

A more complete understanding of the folding process re-
quires knowledge of the alternative folding pathways accessible
to a protein. One measure of the availability of alternative
pathways as folding proceeds is the Shannon entropy, s(t),
associated with the time-dependent probability distribution over
the ensemble of CPs (3, 8). Such entropy s(t) is maximum if there
is equal probability for the occurrence of all CPs, and zero if only
one state is populated. This information-dependent criterion
reinforces the importance of a multipath or funnel conceptual-
ization of protein folding, which has largely replaced the earlier
paradigm of unique folding pathways.

The complementary analysis of the PES topography and the
Shannon entropy suggest that the folding of this BPTI model
proceeds in several stages. Initially s(t) is very large, indicating
that the multitude of the possible folding pathways may domi-
nate over the most probable one. Fig. 2 shows the time evolution
of the Shannon entropy for a tolerance level for mismatches of
22%. Fig. 2 was generated from an ensemble of 98 pathways that
led to pattern formation, following the digitized feedback algo-
rithm (3, 7, 8). Fig. 2 shows that even on the coarse-grained scale
of these time intervals, the folding process requires a multiplicity
of pathways. In the next stage, the dismantling of misfolded
states and consequent formation of structure is accompanied by
a large reduction of s(t). Eventually the protein finds its way
downhill through a series of staircase transitions on the PES,
forming in the process a native-like intermediate with constant
s(t). In the last stage, the structure of the intermediate is refined
to form the native structure while the Shannon entropy drops to
zero, consistent with a convergence of alternative folding path-
ways.

Frustration Dependence of the Folding Pathways
Two types of mismatches may lead to frustration: torsional
mismatches in which the torsional state of a residue differs from
the consensus of the contact pattern and contact mismatches of

Fig. 1. The effective PES inferred from the topological pattern formation
process for BPTI, with a tolerance level of 22%.

Fig. 2. The time dependence of the Shannon entropy during the topologi-
cally simulated folding process of BPTI, for a contact mismatch tolerance level
of 22%.
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the hydrophobic and polar residues. Here, for BPTI, we study
only the influence of the latter type of frustration. As discussed
above, the limit of zero-frustration tolerance requires perfect
matching of all hydrophobicyhydrophobic contacts to allow the
formation of a CP and the corresponding renormalization of the
transition frequencies of its residues. The simulations carried out
with this model fail to reach the native state of BPTI. Instead,
partially folded states form and dismantle periodically as evi-
denced by periodic high-lying minima in the energy and s(t).
Clearly, imposition of overly rigid requirements for CP forma-
tion leads to a dramatic reduction in the number of correct
pathways available to the protein. Making correct downhill steps
toward the native structure requires exhaustive conformational
searches and any secondary structure motifs that may form have
a high probability of dismantling before they can grow or
combine with other motifs to form tertiary structure.

The other limit of allowing an arbitrary amount of frustration
is equally unacceptable because too many states are accessible
and every conformation becomes equally likely. The amount of
frustration that represents the behavior of a real protein must lie
between these two limits. We have studied the folding properties

of BPTI under our coarse-grained model at several intermediate
levels of frustration tolerance to hydrophobicypolar contact
mismatches. Two important conclusions emerge from these
studies. First, the folding behavior of BPTI is insensitive to the
specific functional expression for the frustration-dependent
probability for a transition between two contact patterns as long
as this probability is set to zero at some threshold level of
frustration. Second, the folding of BPTI is reproducible and
expeditious only within a narrow interval of frustration tolerance
as expressed by the fraction of total contacts that represent
hydrophobicypolar mismatches. Simulations with less than 20%
tolerance show behavior qualitatively similar to that exhibited by
the zero-frustration algorithm. Efficient and robust folding is
achieved only if the frustration level is between approximately
20% and 30%.

Fig. 3 shows a typical sequence of contact patterns, Fig. 4
shows the corresponding structures of intermediates along the
dominant folding pathway of BPTI, for a tolerance level of 22%.
All the patterns shown persisted for at least 100 pattern-
recognition steps. The times at which these were taken, mea-
sured from initiation of folding, were 3.2 3 1024 s, 1.3 3 1023

Fig. 3. A typical sequence of contact patterns of structures along the dominant folding pathway of BPTI, at times given in the text, 3.2 3 1024 s, 1.3 3 1023 s,
1.3 3 1023 1 3.2 3 1027 s, and 1.3 3 1023 1 3.2 3 1027 1 5 3 1023 s. This sequence was constructed with a tolerance level of 22%.
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s, 1.3 3 1023 1 3.2 3 1027 s, and 1.3 3 1023 1 3.2 3 1027 1 5 3
1023 s. The structures shown were determined from local
optimization, i.e., adoption of the local minima of the Ram-
achandran basins but without consideration of long-range non-
bonded interactions. Although these structures, members of the
class represented by the corresponding contact pattern, are
made unique by local energy minimization, full global optimi-
zation, including all the long-range interactions, may yield
multiple solutions. For example, basin 3, with a single minimum
deriving from the local interactions, still is consistent with both
a right-handed a-helical turn and a b-turn. The energetic
distinction between these local motifs can be made only when the
long-range interactions are included. The final contact pattern,
the last in Fig. 3 (Lower Right), reproduces all the important
features of the native folded structure, when it is compared with
the structures retrieved from the Protein Data Bank.

Increasing the hydrophobicypolar mismatch tolerance dra-
matically transforms the PES landscape. On one hand, the choice
of the tolerance limit affects to a different extent the forward and
backward rates for transitions between the CPs and hence
through the detailed balance principle affects the energy differ-
ences between the states on the landscape. On the other hand,
the number of possible CPs greatly increases as new structural
motifs with imperfect contact matching become possible. There-

fore, the CP energies of runs with different levels of frustration
are not directly comparable.

In the range of 30% to 40% hydrophobicypolar contact
mismatches the active structure of BPTI is reached, but at a
substantially slower rate because of the longer initial period of
formation of misfolded structures. For tolerance levels higher
than 40% no single final state can be reached reproducibly.
Different runs reach different final states, frequently with
energies lower than that of the native structure. Preliminary
results of a detailed analysis of the compact states reached at
high frustration levels suggest that some of these states are
characterized by the formation of a non-native (5,30) disulfide
bond with the concurrent breaking of the (30,51) and (5,55)
disulfide bonds (made possible by the reducing solvent condi-
tions implicit in this study). This f lexibility allows the movement
of the C-terminal helix, which then forms a tertiary interaction
with the b-sheet region. The oblate native state thus is trans-
formed into a globular structure, although the lower energy of
the latter is likely an artifact of the model, and particularly of the
topography implicit in the level of tolerance to frustrated
hydrophobicypolar matches.

Thus, too low a tolerance level implies a topography with
barriers so high that the system cannot move toward its native
structure. Too high a tolerance level implies a topography too

Fig. 4. Representations of the structures of BPTI at the four stages shown in Fig. 3. (A) Completely unfolded. (B) One b-sheet (represented by the strong
counter-diagonal of Fig. 3, Upper Right) and a helical region (the upper right thick pattern in Fig. 3, Upper Right). (C) A nearly assembled structure. (D) The native
structure, with the (5,55) disulfide bond formed.
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f lat to focus the system toward a native structure. Between these
limits lies a tolerance band within which the implicit topography
has enough staircase character, with low enough barriers, to
bring the system successfully to a native structure, and in fact at
a rate consistent with those found from experiment.

The concept of a band or range of tolerance levels consistent
with successful folding, and an associated range of topographies,
carries with it a suggestion, possibly even an implication, regard-
ing the relation between structure and function of proteins. The
suggestion, by no means new here (13, 14), is that real proteins,
by analogy with the model, have a range of structures that all can
function adequately in an organism, albeit in ref. 13 on a finer
scale of energies than here. This inference is entirely consistent
with experiments that show a range of rates of activity for

different samples of an enzyme (15, 16) and with variations
among samples of myoglobin. It does caution us to avoid
becoming locked to any concept of uniqueness of native struc-
tures.

This combination of methods will be described in full detail,
with algorithms for their execution, in subsequent publica-
tions.
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