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ABSTRACT

We develop a new method for estimating effective population sizes, Ne, and selection coefficients, s,
from time-series data of allele frequencies sampled from a single diallelic locus. The method is based on
calculating transition probabilities, using a numerical solution of the diffusion process, and assuming
independent binomial sampling from this diffusion process at each time point. We apply the method in
two example applications. First, we estimate selection coefficients acting on the CCR5-D32 mutation on
the basis of published samples of contemporary and ancient human DNA. We show that the data are
compatible with the assumption of s ¼ 0, although moderate amounts of selection acting on this mutation
cannot be excluded. In our second example, we estimate the selection coefficient acting on a mutation
segregating in an experimental phage population. We show that the selection coefficient acting on this
mutation is �0.43.

THE vast majority of analyses of selection are based
on samples of molecular data obtained at a single

point in time. However, in a few cases, time series of
allele frequencies are available. Examples of such data
are ancient DNA (aDNA) data in humans (Hummel

et al. 2005), viral population data (Shankarappa et al.
1999), and data on experimentally evolved populations
such as Drosophila (Buri 1956), bacterial (Woods et al.
2006), or viral/phage populations (Wichman et al.
1999, 2005; Holder and Bull 2001; Bollback and
Huelsenbeck 2007). Time-series data contain much
more information regarding selection than samples
obtained at a single point in time, because the expected
changes in allele frequencies through time are closely
related to the strength of selection. The objective of this
article is to develop a statistical approach for estimating
selection coefficients, and testing hypotheses regarding
selection coefficients, that can take advantage of the
information from a time series of allele frequencies.

The method for estimating selection coefficients
from allele frequency data presented here is a natural
extension of existing methods for estimating the effec-
tive population size, Ne, from this type of data. A number
of methods for estimating Ne, in the absence of selec-
tion, have been developed. The first such methods were
moments-based estimators (Krimbas and Tsakas 1971;
Nei and Tajima 1981; Pollak 1983; Waples 1989).
Unfortunately, these methods suffer from a number of

biases, such as an upward bias in the estimate of Ne with
low-frequency alleles.

Williamson and Slatkin (1999) developed a maxi-
mum-likelihood approach for estimating Ne from
changes in allele frequencies using a hidden Markov
model (HMM). This approach assumes a Wright–Fisher
model of neutral evolution. We can think of the model
as an HMM with state space on the set of possible allele
frequencies, transition probabilities among states given
by the Wright–Fisher Markov chain, and with emission
probabilities obtained as the sampling probabilities
arising when taking a smaller sample of gene copies
from the population (Anderson et al. 2000). Given such
a model, the likelihood of Ne can be maximized with
respect to the observed allele frequencies sampled at a
number of different time points. This approach allows
for samples that are irregularly spaced in time (i.e.,
unsampled generations), but in its original form by
Williamson and Slatkin (1999), it was, for computa-
tional reasons, restricted to diallelic markers.

Anderson et al. (2000) extended the method to the
case of multiple alleles using a somewhat computa-
tionally intensive Monte Carlo approach that relies
on importance sampling to evaluate the likelihood.
Wang (2001) further developed this approach to in-
crease the speed of the likelihood estimation of Ne and
included a simulation study showing that the behavior
of likelihood-based methods is superior to that of the
moments-based estimators.

More recently, Berthier et al. (2002) developed a
method for estimating Ne from two time-point samples
that relies on an underlying coalescent model. This
method was extended to multiple time points by
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Beaumont (2003). This method is an improvement
over previous likelihood methods in that the computation
of the likelihood can be faster when many generations
separate the samples. The speed of these approaches was
improved considerably by Anderson (2005), who, rather
than using Markov chain Monte Carlo techniques, de-
veloped a Monte Carlo importance-sampling approach.
This method has the nice property that the accuracy of
the estimator can more easily be established, as was not
the case with the previous methods.

In this article we expand on these methods to esti-
mate both 2Ne and the selection coefficient, s, from tem-
poral samples of diallele frequency data. In contrast to
previous approaches, we use the diffusion process as the
underlying Markov process describing changes in allele
frequencies. This allows the method to be computa-
tionally efficient even for large population sizes. In the
following we present the theory and demonstrate the
method on two common types of data that are being col-
lected today, aDNA and experimental evolution studies.

MATERIALS AND METHODS

Theory: The trajectory of an allele through time can be
modeled as a Markov process (see, e.g., Ewens 2004). One set
of models assumes discrete time and overlapping (e.g., Moran
models) or nonoverlapping (e.g., Wright–Fisher models) gen-
erations. In the limit of large population sizes, all of these
models can be described by a common diffusion process, X(t)
2 ½0, 1�, with transition probabilities described by the backward
Kolmogorov equations
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where f(x; p, t) ¼ p(X(t) ¼ x j X(0) ¼ p) is the density of the
allele frequency t time units after it had frequency p, and
a(p) ¼ sNep(1 � p) and b(p) ¼ p(1 � p). The model is
parameterized in terms of the selection coefficient, s, acting on
the mutations (assuming codominance for a diploid popula-
tion) and Ne, the effective population size. Time is measured
in terms of 2Ne generations. Without recurrent mutation, the
diffusion process has exit barriers at X(t)¼ 0 and X(t)¼ 1, and
absorption probabilities

P1ðpÞ ¼ lim
t/‘

PrðX ðtÞ ¼ 1 jX ð0Þ ¼ pÞ ¼ 1� e�2Nesp

1� e�2Nes ð2Þ

and probability of loss given by P0(p) ¼ 1 � P1(p). In one
application of the model we consider only paths that have led
to fixation of the mutation ½absorption at X(t) ¼ 1� as the
mutation in this case reaches fixation and is known to be
beneficial. In practice this assumes that the mutation is
beneficial and will not be appropriate for data sets in which
the mutation is not, a priori, known to be beneficial and does
not reach fixation during the sampling period. The condi-
tional transition probabilities of the process are then, for 0 ,
X(t) , 1, redefined as

fcðx; p; tÞ ¼ f ðx; p; tÞ P1ðxÞ
P0ðxÞ

: ð3Þ

On the basis of this model we wish to calculate the joint
sampling probabilities of allele frequencies sampled at differ-
ent times. Conceptually, we can think of this as a hidden
Markov process (HMM) problem in continuous time and with
a continuous state space, where the hidden Markov process is
given by Equation 1. The emission probabilities of the process
are given by the binomial sampling probabilities

PrðY ðtÞ ¼ yðtÞ jX ðtÞ ¼ xðtÞÞ

¼
n

yðtÞ

� �
xðtÞyðtÞð1� xðtÞÞn�yðtÞ; ð4Þ

where Y(t) is the number of alleles of the mutant type in a
sample of size n, but n has been suppressed in the notation on
the left-hand side of the equation. Assume that samples have
been obtained at k time points, t1, t2, . . . , tk. The recursive
function

f
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xðtj Þ ¼ PrðY ðtjÞ ¼ yðtjÞ jX ðtjÞ ¼ xðtjÞÞ

3

ð1

0
f
ðtj�1Þ

xðtj�1Þf ðxðtjÞ; xðtj�1Þ; tj � tj�1Þdxðtj�1Þ ð5Þ

then gives the joint sampling distribution of x(tj) and the
observations before time tj and

pðY ðtjÞ ¼ yðtjÞ; . . . ;Y ðt1Þ ¼ yðt1Þ; X ðtÞ ¼ xðtÞÞ: ð6Þ

Equation 5 is the product of the transition probability along
the diffusion, integrated over all possible states at the previous
time, and multiplied by the sampling probability of the ob-
servation at the current time step. It is similar to the recursive
equation that is the basis for the dynamic programming
algorithm known as the forward algorithm for HMMs (see,
e.g., Durbin et al. 1998, p. 58). The only difference is that the
summation has been replaced by an integral due to the fact
that the hidden Markov process is defined on a continuous-
state space. Equations 5 and 6 imply that the joint sampling
probability is given by

ln L ¼ pðYnðtjÞ ¼ yðtjÞ; . . . Y ðt1Þ ¼ yðt1ÞÞ ¼
ð1

0
f
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xðtj ÞdxðtjÞ: ð7Þ

To fully specify the system, we use the initial condition
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This corresponds to using a uniform ½0, 1� prior for x(t0). An
alternative approach might have been to assume that x(t0) is
sampled from the stationary distribution under recurrent
mutation. In such an approach much of the information
regarding s would come from its initial frequency. If the allele
initially is common, that would provide evidence in favor of
large values of s. However, particularly in the example re-
garding experimental evolution, it is clear that assumptions of
initial stationarity are not met. We have, therefore, instead
chosen the use of a uniform prior, which has the effect that the
initial allele frequency does not enter into the calculation of
the likelihood function and that the only information re-
garding initial population frequency of the allele entering into
the calculations is its initial sample frequency.

Using this approach, the likelihood function for the pa-
rameters s and Ne can then be calculated for a time series in
linear time using standard dynamic programming algorithms,
if the integral on the right-hand side of Equation 5 can be
solved.
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Numerical approximations: We numerically evaluate f
ðtj Þ

xðtj Þ to
calculate the sampling probability (Figure 1). The numerical
approximation consists of two steps. First, the transition prob-
abilities of the process are evaluated by numerically solving
Equation 1 using the Crank–Nicolson method (Crank and
Nicolson 1947). Briefly, derivatives are approximated by
finite differencing, and implicit and explicit time steps are
alternated, leading to an easily soluble sparse linear system of
equations and giving both numerical stability and accuracy,
which is second order in the size of the time step. We then
evaluate the integral in Equation 6, using numerical integra-
tion based on quadrature using the midpoint rule. The same
grid of values used for the Crank–Nicolson approximation is
used for the numerical integration. To ensure a smooth
likelihood surface we use a fixed grid for all parameter values.

Grid size and spacing: The adequacy of the numerical
approximations to Equation 1 will depend on the grid sizes
used and the spacing between points—when the density is
concentrated at the exit barriers, X(t) ¼ 0 and X(t) ¼ 1, the

approximation may be poor. Therefore, we used exponentially
spaced grid points to increase the number of grid points near
the boundaries, while decreasing the number of central
points, when the numerical solutions did not converge. The
position of the n grid points can be computed in the following
way. First, the points from i¼ 1, i¼ 2, . . . , i¼ n/2, starting near
the boundary at zero, can be calculated as

xi ¼ l
eði�1Þðlnðn=2lÞ=ðn=2�1ÞÞ

n
; ð9Þ

where l is the spacing parameter. Second, the position of the
remaining points, [0.5, 1), is simply the reflection of the points
calculated in Equation 9. To avoid spurious differences in the
likelihood calculations, due to the choice of grid points, we
used a fixed grid for all time points and parameter values.

CCR5-D32: In the first application we use a data set con-
sisting of time-series allele frequency data for the CCR5-D32
locus (see Figure 2; Hummel et al. 2005). Briefly, Hummel et al.
(2005) determined the frequency of this mutation from an-
cient human remains and an extant representative population
of northern Europeans: samples were collected at five time
points dating back to 900 B.C. (Figure 2). In these analyses we
assume that a human generation is 20 years. We used 500 grid
points in the numerical approximations with an exponential
spacing (l ¼ 0.005) to determine the midpoints.

Bacteriophage MS2: In the second application we utilize
frequency trajectory data from a recent experimental study of
adaptation of the bacteriophage MS2 by Bollback and
Huelsenbeck (2007). Briefly, this study selected populations
of MS2 for growth at elevated temperatures. The authors
determined the frequency of a number of beneficial muta-
tions throughout the time course of the experiment (every
�10 passages). We apply our method to one of the non-
synonymous mutations in their experimental line 2: C206U
(Figure 3). We make the assumption that each selective
passage in their study consisted of 2.5 generations; C206U
was tracked for �100 generations, or 40 serial passages. We
used 500 grid points in the numerical approximation. Due to
the fairly small number of generations and little time spent at
the boundaries of the process, unequal spacing was not
needed and equal spacing on the grid was used.

RESULTS AND DISCUSSION

Numerical convergence and grid point spacing: De-
termining the number of grid points and the spacing of

Figure 1.—Graph of the hidden Markov process model
(HMM) showing the calculation of f

ðtj Þ
1ðtj Þ. Transition probabil-

ities, px,i ¼ f(x; p, t) from x to 1 are numerically solved using
the Crank–Nicholson method (Crank and Nicolson 1947)
on a grid of size n.

Figure 2.—Time-seriesdatafortheCCR5-D32data(Hummel

et al. 2005). Binomial confidence intervals are shown as shaded
bars.
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those points affects the precision of the numerical
approximations. To this end we have evaluated a simple
case in which we were able to analytically calculate the
log likelihood and compare this to the numerical ap-
proximation. We performed the check using a number
of different grid points (n ¼ 10, 100, 200, 500, 1000,
2000) and two methods of grid point spacing (equal and
unequal). Our evaluations of convergence under two
types of spacing (Figure 4) show that at low numbers of
grid points (n¼ 10 and n¼ 100) the difference between
the expected and the observed value is large regardless
of the method of spacing (7.1–9.4% and 0.7–1.1%, re-
spectively). As the number of grid points increases, the
difference declines dramatically to ,0.5% and reaches
an error rate of 0.04% at the largest number of points.
For the test data set little difference was observed for
different values of l. As the number of grid points in-
creases, the numerical routines for solving the set of dif-
ferential equations become burdensome so a choice of
grid points for a particular analysis will be a trade-off
between computational burden and precision. For these
reasons the applications of our method used values of
400 or 500 as the error rate was deemed to be sufficiently
small for these values.

CCR5-D32: The CCR5 protein is a chemokine re-
ceptor. This receptor is a coreceptor target for human
immunodeficiency virus (HIV) and simian immu-
nodeficiency virus, and possibly other related viruses
(Mummidi et al. 2000; Paterlini 2002). An allele with a
32-amino-acid deletion, named CCR5-D32, has been
determined to be at low frequency in the human popula-
tion and its origin has been estimated to be at least 700–
3500 years ago (Stephens et al. 1998) with empirical
observations of at least 2900 years ago (Hummel et al.
2005). Because of the age of the mutation it has been
argued that it is extremely unlikely to be a neutral muta-

tion. As a result, CCR5-D32 has been hypothesized to
have been under selection from the bubonic plague or
smallpox with the low frequency being explained by
intermittent temporal selection or balancing selection
(for reviews see De Silva and Stumpf 2004; Stumpf and
Wilkinson-Herbots 2004; Galvani and Novembre

2005). Recently, it has been demonstrated that homo-
zygous individuals are completely resistant to HIV infec-
tion (heterozygous individuals exhibit lower infection
rates and longer disease progressions) (McNicholl

et al. 1997). However, the recent origin of HIV is unlikely
to explain its persistence over such a long period of time
although the ongoing epidemic may affect the fre-
quency in the future. Novembre et al. (2005), using
the current allelic distribution of CCR5-D32 in Europe,
modeled the historical spread of this mutation to
determine its origin, rate of spread, and selective value.
They found that, depending on whether selection is
uniform or varying across Europe, the most likely origin
of the allele was in the north or northwest, the rate of
spread exceeded 100 km per generation, and the
intensity of selection was .10% (Novembre et al. 2005).

We have applied our method to estimate s from an
ancient DNA data set (Hummel et al. 2005) consisting of
samples gathered from multiple time points in Europe
dating from 2900 years ago to present. Our estimates of s
for CCR5-D32 had a 95% confidence interval of �0.09–
0.01 with a maximum value very close to zero (s �
�0.0005), suggesting that the mutation is either neu-
tral or at best slightly beneficial. The upper end of
the confidence interval is close to the lower end of the
confidence interval for previous estimates based on the
analysis of frequency data and linkage disequilibrium (s
� 0.05–0.35; Stephens et al. 1998; Slatkin 2001).
However, Novembre et al. (2005) found support for s
> 0.02 when the dispersal rate was ,75 km, which is

Figure 3.—Time-series data for the bacteriophage C206U
mutation (Bollback and Huelsenbeck 2007). Binomial con-
fidence intervals are shown as shaded bars. A predicted
smoothed (shaded) curve fitted projection is shown.

Figure 4.—Adequacy of the numerical approximations as a
function of the number of grid points. Two different grid
point spacings are used, equal (open circles) and exponential
(solid diamonds) with a spacing parameter of l ¼ 0.5.
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more consistent with studies of historical and modern
dispersal in Europe. These values are also consistent
with our estimates of s (Figure 5).

We should warn against a too strong interpretation of
our results because the samples are clearly not obtained
from an idealized panmictic population that has gene
flow with other populations. In addition, there are the
usual caveats regarding human aDNA data. A full
discussion of problems regarding human aDNA is
beyond the scope of this article (for review, see Gilbert

et al. 2005).
Bacteriophage MS2: Experimental evolution studies

of microbial populations typically follow the change in
beneficial mutations through time as a matter of course
(e.g., Wichman et al. 1999; Holder and Bull 2001;
Bollback and Huelsenbeck 2007). The data from
these types of studies are ideal for the method presented
here for a number of reasons. First, they are performed
in a controlled manner in which the population size is
known, kept fairly constant, and generally large. Sec-
ond, they are able to sample mutations throughout the
bout of selection with relative ease. Third, the mutations
are more often than not known to be under selection.
Finally, the selective conditions are kept constant
through time.

We apply our method to the experimental MS2 bac-
teriophage data of Bollback and Huelsenbeck (2007).
Using the trajectory for the mutation C206U (Figure 3)
we evaluate 2Nes. We performed the numerical HMM
integration over a reasonable set of population sizes
(N ¼ 1 3 107–2 3 108) that included the experimental
value (5 3 107; Bollback and Huelsenbeck 2007) and
selection coefficients (2Nes� 0–1 3 109; s� 0–5). Figure
6 shows the likelihood surface for C206U, plotting the
log of the population size, 2N, against the log of 2Ns.
The maximum observed value (shown as a plus sign in
Figure 6) indicates a population size of 3.89 3 107 and a
selection coefficient of 0.427 (95% C.I.: 0.386–0.819).
The best supported population size estimate is very close
to the experimental values (N¼ 5 3 107; Bollback and
Huelsenbeck 2007). However, because of the extremely

large population sizes and strong selection, the muta-
tion’s trajectory is strongly deterministic and little in-
formation exists to estimate the population effective
size; the 95% confidence interval spans all of the values
evaluated as expected. The estimate of s is reasonable
considering the fitness gains (w� 1¼ 3) and number of
beneficial mutations (n ¼ 4) observed in the experi-
mental population (Bollback and Huelsenbeck

2007): our estimate of s suggests that C206U accounts
for 13–27% of the total fitness gain in the population.

Practical limitations and assumptions: Two assump-
tions of our method merit discussion. First, in the
applications presented, we ignore recurrent mutation.
However, recurrent mutation is not likely to significantly
affect allele frequencies in most cases, except those with
weak selection, a high mutation rate, and large pop-
ulations. The MS2 populations, for example, meet two
of these conditions (Bollback and Huelsenbeck

2007)—high mutation rate and large population size—
but the strong selection experienced is expected to
overwhelm any input from mutation. Second, our
method assumes that the samples are taken from a
panmictic population; highly structured populations
will clearly have an effect on the estimation of 2Nes,
particularly for recessive mutations. Unfortunately,
sampling from structured populations cannot easily be
accommodated in the current framework and merits
future work.

Conclusions: We show here that estimation of 2Nes is
possible from time series of allele frequency data. The
nature of the data naturally presents some limitations.
The estimates of 2Ne and s will in many cases be very
correlated. Additionally, as Ne becomes large, the tra-

Figure 5.—Profile likelihood of the selection coefficient
for CCR5-D32 (Hummel et al. 2005).

Figure 6.—Likelihood surface for the bacteriophage C206U
mutation (Bollback and Huelsenbeck 2007). The 95% con-
fidence interval is shown in black with the maximum point on
the surface depicted by a plus (1) sign.
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jectory of the allele frequency through time becomes
approximately deterministic and there should be little
or no power to estimate Ne (see Figure 6). Nonetheless,
even in such cases the method will provide estimates of s
that take into account the uncertainty associated with
the estimation of population allele frequencies from
sample allele frequencies. The greatest strength of the
method, however, is in the cases where 2Nes is moderate
and joint estimates of Ne and s can be done. In such
cases, the method can also be used to test the hypothesis
of s¼ 0. An example of such an application was given for
the CCR5-D32 data.
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