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ABSTRACT

Several tests have been proposed to detect departures of nucleotide variability patterns from neutral
expectations. However, very different kinds of evolutionary processes, such as selective events or
demographic changes, can produce similar deviations from these tests, thus making interpretation
difficult when a significant departure of neutrality is detected. Here we study the effects of demography
and recombination upon neutrality tests by analyzing their power under sudden population expansions,
sudden contractions, and bottlenecks. We evaluate tests based on the frequency spectrum of mutations
and the distribution of haplotypes and explore the consequences of using incorrect estimates of the rates
of recombination when testing for neutrality. We show that tests that rely on haplotype frequencies—
especially Fs and ZnS, which are based, respectively, on the number of different haplotypes and on the r 2

values between all pairs of polymorphic sites—are the most powerful for detecting expansions on
nonrecombining genomic regions. Nevertheless, they are strongly affected by misestimations of recom-
bination, so they should not be used when recombination levels are unknown. Instead, class I tests,
particularly Tajima’s D or R2, are recommended.

AN increasing number of statistical tests (Tajima

1989a; Fu and Li 1993; Fu 1997; Fay and Wu

2000; Ramos-Onsins and Rozas 2002) have been de-
veloped to detect departures of DNA sequence var-
iability from the expectations of the neutral theory of
evolution (Kimura 1968). Most of the research in this
area is based upon the Wright–Fisher model (Fisher

1930; Wright 1931; Hein et al. 2005), which assumes
populations of constant size that are panmictic and
nonrecombining. Moreover, the Wright–Fisher model
provided the founding of coalescent theory (Kingman

1982a,b, 2000; Hudson 1990; Donnelly and Tavare

1995; Fu and Li 1999), which was fundamental for
developing neutrality tests and furthering their study.
Even if these models are quite prone to mathematical
treatment, analytic derivations are often unreachable
and the significance of departures from neutrality and
the statistical power of the tests are estimated by com-
puter simulations based on the coalescent process (Wall

1999; Ramos-Onsins and Rozas 2002; Depaulis et al.
2003).

The detection of departures from the null hypothesis
of neutrality points to the violation of one or more of
its assumptions. These deviations can be due to selec-
tive and/or demographic events. For example, selec-
tive sweeps or population growth can produce longer
external branches in the genealogy that result in an
excess of recent mutations over neutral predictions.
In contrast, population subdivision or balancing selec-
tion will result in longer internal branches and, conse-
quently, in an excess of old over recent mutations. In
summary, different kinds of processes can produce sim-
ilar genealogies and therefore confound the interpre-
tation of tests.

Much effort has been devoted to ascertaining the
power of different statistical tests to reject the null
hypothesis of neutrality when it is actually false, as well as
to defining properly which tests perform best in each
scenario. Ramos-Onsins and Rozas (2002) studied the
power of 17 statistical tests under sudden or logistic
population-expansion models. The tests were classified
in three categories on the basis of the information they
used. Class I tests are based on the frequency spectrum
of mutations, class II on the haplotype distribution, and
class III on the distribution of pairwise differences.
Depaulis et al. (2003) studied the power of seven
statistics under bottlenecks (both severe and moderate)
and hitchhiking with positively selected mutations.
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More recently, the power of several tests has been stud-
ied under exponential population growth and bottle-
necks (Sano and Tachida 2005) and population
structure and hitchhiking (Jensen et al. 2005). However,
the effect of intragenic recombination has been con-
sidered in only a limited number of studies, and, in par-
ticular, the joint effect of recombination and population
expansions on the statistical power of neutrality tests has
not, to the best of our knowledge, been explored.

The neutral model with no recombination, which is
commonly used as the null hypothesis, has larger var-
iance in genealogy length than the same model in-
cluding recombination (Hein et al. 2005). Such larger
variance makes the assumption of no recombination a
conservative assumption for many statistical tests. In
particular, tests based on the frequency spectrum of
mutations are likely to be conservative on recombining
regions (Tajima 1989a; Fu and Li 1993; Fu 1996). On the
other hand, tests based on haplotype or linkage disequi-
librium (LD) are expected to be strongly affected by
recombination, since it will break down existing haplo-
types and generate new ones, thus decreasing LD. More-
over, as recombination can also smooth the mismatch
distribution, it is likely that statistical tests based on this
distribution will have little power (Ramos-Onsins and
Rozas 2002). Finally, recombination can mimic the
effect of some demographic models, such as population
growth. It is therefore of general interest to distinguish
the individual effects of recombination and population
growth on DNA sequence variation and on neutrality
tests (Schierup and Hein 2000).

The study of population expansions is also of great
interest since their effects on genealogies (and, thus, on
many neutrality statistics) are similar to those of other
selective or demographic events. Among the former,
selective sweeps caused by positively selected variants, as
well as background selection against deleterious muta-
tions, lead to an excess of low-frequency variants
(Charlesworth et al. 1993; Przeworski 2002). On
the other hand, recent bottlenecks can also mimic the
effects of an expansion (Tajima 1989a,b), so these phe-
nomena can be quite difficult to disentangle. In spite of
such difficulty, considerable progress is being made to
distinguish between expansions and selective sweeps
(Jensen et al. 2005; Williamson et al. 2005) or between
bottlenecks and positive selection (Haddrill et al. 2005).

Here we use coalescent simulations to test the power
of 16 statistical tests to detect population expansions,
contractions, and bottlenecks under different recombi-
nation levels. The selected tests belong to the first two
categories described by Ramos-Onsins and Rozas (2002).
We pay special attention to the problem of misestima-
tion of recombination rates and study how the use of in-
correct recombination rates when simulating neutral
samples can affect the power and the false-positive rates
of tests. We have found that statistics based on haplotype
diversity are the most powerful tests for detecting pop-

ulation expansions on nonrecombining regions. In con-
trast, since they are very sensitive to recombination, their
use should be avoided when there is recombination.

MATERIALS AND METHODS

Statistics: We have considered two classes of statistics:
statistics based on the frequency spectrum of mutation (class
I) and statistics based on linkage disequilibrium and haplotype
distribution (class II). No statistics based on the distribution of
pairwise differences (e.g., the mismatch distribution) have
been used, as they were shown to perform very poorly in the
study by Ramos-Onsins and Rozas (2002). A summary of all
statistics can be found in Table 1.

Class I statistics: Class I statistics use information on the
frequency of mutations and are based on the differences
between estimators of the population mutation rate u ¼ 4Nm,
where N is the effective population size and m is the mutation
rate. From this class, we present results for Tajima’s D (Tajima

1989a), Fu and Li’s D, F, D*, and F* (Fu and Li 1993), and Fay
and Wu’s H (Fay and Wu 2000). We have also included the R2

statistic (Ramos-Onsins and Rozas 2002), which is based on
the difference between the number of singletons per sequence
and the average number of nucleotide differences.

Class II statistics: Class II includes statistics based on the
haplotype distribution. They are expected to be the most
affected by recombination. Within this class, we have studied
the following statistics: Fu’s Fs (Fu 1997), the unbiased haplo-
type diversity estimate Dh (Nei 1987, Equation 8.5), Wall’s B
and Q (Wall 1999), Kelly’s ZnS (Kelly 1997), Rozas’ ZA and ZZ
(Rozas et al. 2001), and two statistics based on the extended
haplotype homozygosity (EHH) (Sabeti et al. 2002).

EHH statistics are a complex family of heuristic methods for
which no consensus summary statistic has yet been developed.
We have computed two EHH-based statistics by taking the first
three SNPs of each sequence as a core haplotype (that is, as the
locus of interest) and then considering the distance from each
core at which EHH decays to #0.5. Two values are given: (1)
the EHH average, corresponding to the weighted average for
all core haplotypes of the distance at which EHH decays to
#0.5 and (2) the EHH maximum, the distance corresponding
to the core haplotype that decays to #0.5 at a greater distance.
If a simulated segment finishes without EHH reaching a value
#0.5, taking the chromosome length as L, we arbitrarily con-
sider that the position will be at 2L.

Coalescent simulations: We tested the statistical power of
the statistics under different demographic models by running
neutral coalescent simulations using the algorithm described
by Hudson (1990) and implemented in the ms package
(Hudson 2002). This program generates coalescent trees for
a given sample size, recombination rate, and a demographic
scenario, implementing an infinite-sites mutation model that
leads to biallelic sites.

There is an intense debate on how to best perform
simulations and, specifically, on the suitability of running
coalescent simulations by fixing either the number of segre-
gating sites (S) or the population mutation rate u ¼ 4Nm
(Hudson 1993; Wall and Hudson 2001; Depaulis et al. 2001,
2005). Conditioning on u has the disadvantage that its value
has to be estimated. Furthermore, even if its true value could
be known, it produces broader confidence intervals, thus
reducing the power of tests (Depaulis et al. 2005). On the
other hand, although forcing a given number of segregating
sites in all trees without considering their particularities
(such as branch length) is also unrealistic, conditioning on
the number of segregating sites has the advantage that S is a
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parameter that can be observed in the sample. To solve this
problem, several strategies have been proposed to obtain
realistic samples conditioning on both u and S (Hudson 1993;
Depaulis et al. 2001, 2003, 2005; Wall and Hudson 2001;
Przeworski 2002). Different authors agree that simulated
parameters are more accurate if the simulations are condi-
tioned on S taking into account the uncertainty of u (Tavare

et al. 1997; Pritchard et al. 1999).
However, obtaining neutral models fixing the number of

segregating sites—which can be directly obtained from the
sample—or estimating u from S are still widely used by
researchers (Macdonald and Long 2005; Soejima et al. 2005;
Stajich and Hahn 2005; Tarazona-Santos and Tishkoff

2005). Taking into account this popularity, we have conditioned
our simulations on S and the u estimator uW after proper
validation of this approach (see below). For simulations con-
ditioned on the number of segregating sites, S values were set to
10, 100, and 400. This corresponds to the rounded minimum,
average, and maximum segregating sites found in the genes
resequenced by SeattleSNPs (http://pga.gs.washington.edu/;
Crawford et al. 2005), the largest ongoing human resequenc-
ing project, which currently contains sequences of a length
of 3.5–71 kb for .300 genes obtained from 23 European–-
American and 24 African–American individuals. For simulations

conditioned on uW (Watterson 1975), uW values correspond to
the S values used in the previous simulations. All the values have
been fixed assuming a panmictic and stationary neutral popula-
tion, which could cause incorrect power estimations for statistics,
depending on the number of segregating sites.

To ascertain the validity of our approach, results for
simulations fixing S in expansions have been compared with
results obtained considering the uncertainty of u and using the
rejection algorithm (Tavare et al. 1997). Comparisons have
been performed for all S values studied and for the minimum
(0) and maximum (10�7) recombination values. Comparison
shows that the differences in estimates of nominal rejection
level between the two methods are very small. In fact, in 96% of
the cases they are ,5%, and in no case do they reach values
.15%. Moreover, these differences become even smaller with
increasing recombination rates (results not shown). In sum-
mary, we use a methodology that is accurate for neutral
simulations (Depaulis et al. 2001; Wall and Hudson 2001;
Ramos-Onsins et al. 2007) and for all our expansion models
(Ramos-Onsins et al. 2007; materials and methods). How-
ever, our approximate method can produce deviations when
computing statistical power under other alternative models,
such as the contraction and bottleneck models (Ramos-Onsins

et al. 2007). The magnitude of these deviations depends on the

TABLE 1

Definition of the neutrality statistics used

Test Definition Reference

Class I
Tajima’s D Comparison of estimates of the no. of segregating sites and the

mean pairwise difference between sequences
Tajima (1989a)

Fu and Li’s D (D F) and D* Comparison of the number of derived singleton mutations and
the total number of derived nucleotide variants (the asterisk
indicates ‘‘without an outgroup’’)

Fu and Li (1993)

Fu and Li’s F and F* Comparison of the number of derived singleton mutations and
the mean pairwise difference between sequences (the asterisk
indicates ‘‘without an outgroup’’)

Fu and Li (1993)

Fay and Wu’s H Comparison of the number of derived segregating sites at low
and high frequencies and the number of variants at
intermediate frequencies

Fay and Wu (2000)

R2 Comparison of the difference between the number of singleton
mutations and the average number of nucleotide differences

Ramos-Onsins and
Rozas (2002)

Class II
Fu’s Fs Based on Ewens’ sampling distribution, taking into account

the number of different haplotypes in the sample
Fu (1997)

Dh Based on the number of different haplotypes in the sample Nei (1987)
EHH average Weighted average for all core haplotypes of the position at

which the haplotype homozygosity decays to #0.5
Based on Sabeti et al.

(2002)
EHH maximum The position corresponding to the core haplotype that decays

to #0.5 at a greater distance
Based on Sabeti et al.

(2002)
Wall’s B Counts the number of pairs of adjacent segregating sites that

are congruent (if the subset of the data consisting of the two
sites contains only two different haplotypes)

Wall (1999)

Wall’s Q Adds the number of partitions (two disjoint subsets whose
union is the set of individuals in the sample) induced by
congruent pairs to Wall’s B

Wall (2000)

Kelly’s ZnS Average of the squared correlation of the allelic identity between
two loci over all pairwise comparisons

Kelly (1997)

Rozas’ ZA Average of the squared correlation of the allelic identity between
two loci over adjacent pairwise comparisons

Rozas et al. (2001)

Rozas’ ZZ Comparison between ZnS and ZA Rozas et al. (2001)
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particular statistic and the parameters of the model. Deviation
from the exact strategy has been evaluated partially, and our
results indicate that, in the studied cases, the deviation in the
statistical power is not large.

Recombination: Recombination rates were set to r ¼ 10�10,
r ¼ 10�8, and r ¼ 10�7 per nucleotide pair; as simulations are
scaled in units as 4N generations, assuming Ne ¼ 10,000 for
humans (Takahata et al. 1995), this would correspond to
population recombination rates of R ¼ 4Nr equal to 4 3 10�6,
4 3 10�4, and 4 3 10�3 per nucleotide, respectively. These
values correspond to the rounded minimum, average, and
maximum values estimated by Kong et al. (2002) for the hu-
man genome. Simulations without recombination were also
performed. To calculate the crossover probability, we have
assumed sequence lengths of 3000, 21,000, and 72,000 bp, as
these lengths correspond to the minimum, average, and max-
imum rounded lengths of the resequenced human genes in
SeattleSNPs, and Ne ¼ 10,000.

Demography: We have simulated four basic demographic
models: stationarity, sudden population growth, sudden pop-
ulation contraction, and population bottleneck, with empha-
sis on the two first cases. All scenarios consider different
recombination rates. For each scenario, we ran 10,000 simu-
lations. The significance level was set to 0.05, and the critical
value for each statistic was obtained from the empirical
distribution of the corresponding neutral model. As muta-
tions were simulated under an infinite-sites model (which
implies no recurrent mutation), the outgroup (for those
statistics that require it) was set to a string of 0’s, where 0 is
the ancestral state as coded by ms.

The sudden population growth model (Rogers and
Harpending 1992) assumes that a population of size N0 in
equilibrium experienced a sudden growth and reached maxi-
mum size (Nmax) Te generations before present. In the simula-
tions, time is scaled in units of 4Ne generations. Changes in
population size are performed according to the standard
procedures in the ms program. Expansion times have been set
to range from 0.0075 to 0.2. In humans, taking again Ne ¼
10,000 and a generation time of 20 years, the simulated ex-
pansion times would range from 6000 to 160,000 years ago.
The latter can be taken as the earliest estimate for a hu-
man expansion (Jobling et al. 2004). Since some statistics
showed significant power at that earlier expansion time, and to
produce results applying to other species, some additional
expansion times were added at Te¼ 0.4, Te¼ 0.6, Te¼ 0.8, and
Te ¼ 1 (equivalent, respectively, to 16,000, 24,000, 32,000, and
40,000 generations and, in human terms, 320,000, 480,000,
640,000, and 800,000 years ago). The degree of expansion
(De ¼ Nmax/N0) has been set to De ¼ 10 and De ¼ 100.

The sudden contraction model considers a population of
constant size N0, which has instantaneously contracted to a size
Nmin; the contraction degree is defined as De ¼ Nmin/N0. This
model has been simulated as the opposite of our expansion
model and thus the same Ne and Te have been used.
Contraction degree has been set to Dc ¼ 0.1 and Dc ¼ 0.01.
We have performed simulations for S ¼ 10 and S ¼ 100.

The bottleneck model has been simulated as in Voight et al.
(2005). It assumes a population of size NA, which has been
suddenly reduced to a second size, b � NA for Tdur generations
Tstart generations ago, where b is the bottleneck severity.
Immediately afterward, the population has instantaneously
recovered its original size, NA. As in the expansion model, NA

has been set to 10,000. According to the results by Voight et al.
(2005), we have simulated five bottleneck severities (b): 0.4,
0.1, 0.05, 0.01, and 0.005, and for each we have simulated
durations of 0.01, 0.02, 0.03, and 0.04 (400, 800, 1200, and
1600 generations). Tstart has been set to 0.02, 0.04, 0.08, and
0.12 (800, 1600, 3200, and 4800 generations, respectively).

Additional points have been simulated to better illustrate this
model in figures.

RESULTS

Exploring parameter space: We have tested the power
of 16 statistics under the different conditions of sample
size (n), number of segregating sites (S), neutral
mutation parameter (u), demography, and recombina-
tion rates. Although a wide range of parameters have
been studied, only the most interesting cases are shown.
Full results are provided as supplemental data A–D.
Supplemental data A and B show all results with correct
recombination rates in the neutral model for the
expansion model (A) and the contraction and bottle-
neck (B). Supplemental data C and D show results for
mispecified recombination rates in the neutral model
for expansions (C) and contractions and bottlenecks
(D). As expected, larger sample sizes improve the power
of the statistics, so we have plotted all power curves with
n ¼ 100; curves for other sample sizes can be found in
the supplemental data files. Also, we have fixed the
degree of expansion, De, to 10 in all expansion figures,
as De ¼ 100 produced uniformly maximal power for all
statistics. For figures involving contraction, the degree
of contraction, Dc, has been fixed to 0.1, and bottlenecks
are shown with a severity of b ¼ 0.01. Other parameter
values fixed in some figures have also been chosen to
avoid saturation.

The power of statistics has been shown for the tail for
which each statistic shows power under its correspond-
ing model. Since a population-growth event will cause
an excess of derived low-frequency nucleotide variants
and of the number of haplotypes and a reduction of
linkage disequilibrium values, this tail corresponds in
expansions to the left one for all statistics except for Dh
(in the simulations fixing S) and Fay and Wu’s H. The
same happens for most bottlenecks, but not for pop-
ulation contractions or recently finished bottlenecks
where tests show power at the right tail of the distribu-
tion (except Dh and H). Only some of the statistics have
been represented to make graphs clearer. Of all Fu and
Li’s statistics, only F* is shown, as it is the one with
greatest power (although for simulations based on S, it
has the same power as F). However, considering that in
the contraction model D and D* are more powerful, D
has been chosen for these simulations. Of Wall’s B and
Q, we represent only the statistic that shows more power
under each circumstance, as with the EHH average and
EHH maximum. We also leave ZZ out, as it is simply the
difference between ZnS and ZA and therefore can be
easily inferred from them. In expansions, only Te from
0.0075 to 0.2 and Te ¼ 1 has been represented, as in
general at Te ¼ 0.4 tests have reached a power of �0.5.

Statistical power for different demographic events:
Figure 1 shows the statistical power of the tests under
study in the absence of recombination and for different
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times since the expansion. Expansion ages range from
Te ¼ 0.0075 (300 generations) to Te ¼ 1 (40,000 gen-
erations). Our results reproduce those from Ramos-
Onsins and Rozas (2002). For all statistics, power
increases with the number of segregating sites (Figure
1, A–C), especially in class II statistics, which are based
on haplotype structure. In fact, as shown in Ramos-
Onsins and Rozas (2002), Fu’s Fs is the best-performing
statistic for large sample sizes; however, ZnS and ZA

statistics become more powerful when considering 100
or more segregating sites, especially to detect expan-
sions older than Te ¼ 0.05 (2000 human generations).
This can be explained by a saturation effect, such as the
saturation of the number of haplotypes due to a high
number of segregating sites with respect to n (Nei

1987). Figure 1, D–F, shows the effect of increasing u

upon statistical power. Simulations based on u show the
same patterns as when conditioning on S; the main
differences reside in the behavior of Dh, which does not
show power at the right tail of the distribution (as we
would expect; see Table 2), but rather at the left tail.
Moreover, the pattern of Dh’s power is also particular, as
it has its maximum at very recent times and a decay that
becomes more pronounced as u increases. For very low
values of u, most genealogical trees have zero or only
one mutation, which greatly affects the power of any

haplotype-based statistic. In both kinds of simulations
(fixing either S or u), the lowest values (S ¼ 10 and u ¼
1.93) show power curves that are different from those
obtained for a higher polymorphism level, the reason
for this behavior being that low polymorphism leads to
imprecise statistics.

As for the effect of the elapsed time since the expan-
sion, in both normal and high-polymorphism scenarios
most well-performing statistics (statistics with powers that
are normally .0.4, which excludes EHH estimators and
Fay and Wu’s H) reach their maximum power between
Te ¼ 0.04 and Te ¼ 0.05. Exceptions to this rule are Fu
and Li’s tests (D, F, D*, and F*; only F* is shown in Figure
1), which have maximum power at shorter times (Te ¼
0.01–0.02), and ZnS, which does not reach its maximum
power until Te ¼ 0.1. Power decays with time since the
expansion, but does it differently for class I and class II
statistics: while class I statistics decay rapidly after reach-
ing their maximum power, class II statistics have gentler
slopes (again considering only well-performing statistics
in medium and high-polymorphism scenarios). However,
Fu’s Fs and R2 always decay in a very similar way. At Te¼ 1
all statistics tend to 0.05 for simulations based on S, thus
reaching the nominal type I error rate.

As expected (see Table 2), in the sudden contraction
model the power of the neutrality tests behaves oppo-

Figure 1.—Power of the test depending on the time elapsed since the expansion, without recombination. N¼ 100, De¼ 10. (A)
S ¼ 10. (B) S ¼ 100. (C) S ¼ 400. (D) u ¼ 1.93. (E) u ¼ 19.31. (F) u ¼ 77.26.
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site than in expansions. The most powerful tests are
Fu and Li’s D* and Fs. Maximum power to detect
population contractions is influenced mainly by the
number of segregating sites and can be found between
Tc ¼ 0.1 (S ¼ 100) and Tc ¼ 0.4 (S ¼ 10). More details
can be found in the supplemental Results and supple-
mental Figure 1.

Bottlenecks have different outcomes depending on
whether or not several lineages have survived the
bottleneck stage without coalescing. Thus, the effects
of severity and the age of the perturbation are non-
monotonic and tests have power at both tails of the
distribution (see Table 2). For old (Tstart ¼ 0.04–0.08),
strong (b ¼ 0.05 or stronger), and long-lasting bottle-
necks (after which most lineages will have coalesced),
the most powerful statistics are R2, Fs, and ZnS. However,

they lack the power to detect bottlenecks that have just
finished; as in this case, the fact that all sequences have
coalesced during the bottleneck produces a very shallow
genealogy and thus the statistics will behave similarly.
On the contrary, in the case of weak, recent (Tstart ¼
0.02–0.04) and recently finished bottlenecks, the most
powerful tests are class I tests and Fu’s Fs. More details
can be found in the supplemental Results and in
supplemental Figure 2.

The very different genealogy shapes that can be
produced by bottlenecks (Table 2) dramatically affect
the variance of the power of certain tests, especially in
intermediate bottlenecks, which, depending on the
run, can lead to either shallow or deep genealogies.
To study this effect, we have calculated the variance of
the statistics for each set of bottleneck parameters. We

TABLE 2

Description of tree topologies in different demographic scenarios

Scenario Characteristics Tree topology

Neutrality Trees have regular neutral topologies.

Expansion Trees have a star-like topology, with long external
branches which accumulate a greater number of
low-frequency mutations than expected. This leads
to a deficit of (a) most class I statistics and (b) LD
structure, including en excess of haplotypes. In this
case, most statistics are expected to show power at
the right tail of the distribution.

Contraction Trees have long internal branches, which results in a
greater number of intermediate-frequency mutations than
expected. This leads to an excess of (a) most class I
statistics and (b) LD structure that produces a deficit of
haplotypes. In this case, most statistics are expected to
show power at the left tail of the distribution.

Weak bottleneck Several lineages can escape the bottleneck without
coalescing and thus provide trees with long internal
branches. This produces an excess of (a) most class I
statistics and (b) LD structure. Most tests how power
at the left tail of the distribution.

Strong bottleneck It is most likely that no lineages survive the bottleneck
without coalescing, resulting in star-like trees. This leads
to a deficit of (a) most class I statistics and (b) LD
structure. Most statistics will show power at the right tail
of the distribution.
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focused on bottleneck severity and studied how it
modifies variance when other parameters are equal
(supplemental data E). Variance patterns are quite
similar for all n and S simulated values, and in general
take maximum values around severities of b ¼ 0.05,
ranging from b ¼ 0.01 to b ¼ 0.1. This moment of
maximum variance depends mainly on the time of onset
and duration of the bottleneck, approaching b¼ 0.01 in
recent and short bottlenecks and b¼ 0.1 in old and long-
lasting ones. Moreover, some tests are more sensitive to
changes in the bottleneck parameters Tstart and Tdur. Fu
and Li’s tests and Fs tend to reach maximum variance
values for less severe bottlenecks later than other tests
(that is, for older and more long-lasting bottlenecks),
while R2 and Fay and Wu’s H behave in an opposite
way. Variance patterns seem to correlate inversely to the
power of the statistics seen for the different bottleneck
severities, as tests show maximum powers for severities
$0.05 while maximum variances correspond to severi-
ties #0.05. This could be due to the fact that less severe
bottlenecks leave a much weaker signature.

Recombination: Figure 2 shows the effects of re-
combination rate on statistical power in population
expansions. While for S ¼ 10 recombination has hardly
any effect, for higher values of S the power increases
dramatically between low recombination levels (0 and
10�10) and high recombination levels (10�8 and 10�7).
For low recombination values (Figure 2), in most cases

power is not affected, although under some circum-
stances (e.g., Fu and Li’s D and D* for S ¼ 100; data not
shown) power can be lower for r ¼ 10�10. In contrast,
most statistics improve their power under high recom-
bination, with the exceptions of Dh, EHH, and, for
ancient expansions, of Fs and ZnS, which have a tendency
to decrease their power in the interval between r ¼ 10�8

to r¼ 10�7. It is noteworthy that, for ancient expansions
and high recombination values, Fay and Wu’s H shows
increased power, reaching values .0.9 for S ¼ 400
(results not shown). Simulations based on u show
similar patterns to those based on S (results not shown).
As for population contractions and bottlenecks, the
changes in the power of the tests in the presence
of recombination are very similar to those found in
expansions (more details in the supplemental Results
and supplemental Figures 3 and 4, respectively).

Recombination shuffles nucleotide variation, increas-
ing the number of haplotypes through the creation of
new recombinant ones. Thus, it is expected to strongly
affect the mean of haplotype-based tests and also to
reduce the variance of both kinds of statistics (Figure
3A). Changes in the power curve reflected in Figure 2
may therefore be due to two nonmutually exclusive
factors: (i) an actual increase in the amount of infor-
mation in the sequence that detects population ex-
pansions when recombination is acting and (ii)
recombination shifting the distribution of neutrality

Figure 2.—Power of the test in the expansion model depending on recombination rates. N ¼ 100, De ¼ 10. (A) S ¼ 10, Te ¼
0.02. (B) S ¼ 100, Te ¼ 0.02. (C) S ¼ 10, Te ¼ 0.15. (D) S ¼ 100, Te ¼ 0.15.
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statistics. To assess the relative weights of these two
explanations, we have compared the constant-popula-
tion model without recombination with the constant-
population model with high recombination. As shown
in Figure 3B (see also supplemental data F), Fs and ZnS

are very sensitive to recombination (left tail of the

distribution), while Dh and ZZ are sensitive at the right
tail. Both EHH estimators are also able to detect
recombination (left tail) but with less power (,0.3).
Thus, these statistics are liberal for detecting a popula-
tion expansion acting on a recombining sequence and
may often produce false positives.

Figure 3.—(A) distribution of the values of Tajima’s D, Fu and Li’s F, R2, and Kelly’s ZnS under the neutral model and the
expansion model at Te ¼ 0.02 without recombination and with r ¼ 10�7. (B) Power of the tests to detect recombination in
the null model for the right and left tails of the distribution. (A and B) S ¼ 100, n ¼ 100.
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Unknown or misspecified recombination: Under
some circumstances, recombination rates cannot be
taken into account when testing for demographic or
selective events. Indeed, the default option in Arlequin
3.0 (Excoffier et al. 2005) or DnaSP (Rozas et al. 2003),
the two standard software packages for genetic analysis,
is to compute the significance of neutrality tests without
recombination, although DnaSP will also produce null
distributions with any population recombination rate
supplied by the user. When estimates of recombination
rates are available, it is important to consider that they
may be over- or underestimates. For example, Kong

et al. (2002) measured recombination rates in human
pedigrees at intervals of median length �350 kb.
Considering that it has been estimated that there is a
hotspot every 50 kb (Myers et al. 2005), such intervals
will most likely contain recombination hotspots, and
therefore the recombination rate estimated for the
whole interval will be much greater than the real one
for most parts of the region. On the other hand,
hotspots may also result in a recombination reaching
saturation and thus to an underestimate of the average
recombination rate in the region.

To investigate the potential errors caused by over-
or underestimation of recombination, we compared the
statistical power of tests when true recombination val-
ues were assumed vs. the power of the same tests as-
suming erroneous rates. Figure 4A shows the difference

between the apparent power of a test (that is, comparing
the constant-size null hypothesis without recombination
with the population-expansion alternative hypothesis
using the true recombination value) and its real power
(that is, comparing the null hypothesis and the alterna-
tive hypotheses using the true recombination value).
When actual recombination rates are small (10�10) and
thus underestimation is not too serious (e.g., using as a
null hypothesis the constant nonrecombining model
when the actual rate is r ¼ 10�10), the true and the
apparent statistical power are not appreciably different.
However, for larger underestimates (when the real rates
are r ¼ 10�8 or 10�7), class I statistical tests become con-
servative (with an increase in type II error) whereas
some class II statistics (Dh, Fu’s Fs, EHH, and ZnS)
become liberal (with an increase in type I error). In
population contractions, class I statistics behave as in
expansions, while most class II statistics are liberal. As
expected, strong bottlenecks tend to behave as expan-
sions while weak ones tend to behave as contractions
(see Table 2; more details are in the supplemental
Results and supplemental Figures 5 and 6 for contrac-
tions and bottlenecks, respectively).

Figure 4B shows the difference between the apparent
power of the tests when assuming an overestimated
recombination of 10�7 on the constant-size null hypoth-
esis and their true power (that is, using true recombi-
nation values to compare the null hypothesis and

Figure 4.—Error made
by statistics when testing
for expansions when recom-
bination is under- or overes-
timated in the null model.
S ¼ 100, n ¼ 100, De ¼ 10,
Te ¼ 0.15. The cartoon
shows how this error is cal-
culated: first, we calculated
the real power of the statis-
tic, comparing the null
hypothesis with the alterna-
tive hypothesis with the
same recombination values.
Afterward, we calculated
the probability of rejecting
the null hypothesis when re-
combination has been erro-
neously estimated, that is,
when the recombination
rate used to generate the
null hypothesis is different
from that of the alternative
hypothesis. The error made
is the latter (apparent power)
minus the real power. (A)
The apparent power of the
null hypothesis was pro-
duced without recombina-
tion. (B) The apparent
power of the null hypothesis
has a recombination rate of
10�7.
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alternative hypotheses). The effect of recombination
overestimation shows the opposite pattern, and there-
fore all tests are liberal with the exception of Dh, Fu’s
Fs, EHH, and ZnS, which become conservative. The

difference in behavior between these class II and class
I statistics (Figure 3) can be due to the fact that the
former are highly dependent on the actual recombi-
nation rates (Wall 2000). As in the case of under-

TABLE 3

Sudden expansion model decision table

No recombination Recombination (108)

Te Strong (De ¼ 0.01) Weak (De ¼ 0.1) Strong (De ¼ 0.01) Weak (De ¼ 0.1)

Small S (�10), small n (�20)
#0.01 Fs, R2, D* Fs, R2, ZnS, D* R2, F, D*, F* R2

0.01–0.15 R2, Fs Fs, R2, ZnS R2 R2

$0.15 Fs, R2, ZnS Fs, R2, ZnS R2 R2

Small S (�10), large n (�100)
#0.01 Fs, R2, D, F, F* F and F* R2, D, F, D*, F* DF

0.01–0.05 Fs, R2, D Fs R2, D DF

$0.05 Fs Fs R2, D DF

Large S (�100 or more), small n (�20)
#0.01 Fs, R2, D, DF, F, D*, F*, ZnS, ZA, Dha Fs, Dha R2, D, DF, F, D*, F* R2

0.01–0.03 Fs, R2, D, DF, F, D*, F*, ZnS, ZA Fs R2, D, DF, F, D*, F* R2

0.03–0.05 R2, D, ZnS R2, ZnS R2, D, DF, F, D*, F* R2

.0.05 ZnS ZnS R2 R2

Large S (�100 or more), large n (�100)
#0.02 Fs, R2, D, DF, F, D*, F*, ZnS, ZA Fs, DF, F, D*, and F* R2, D, DF, F, D*, F* DF, F, D*, F*
0.02–0.05 Fs, R2, D, DF, F, D*, F*, ZnS Fs R2, D, DF, F, D*, F* DF, F, D*, F*
0.02–0.15 Fs, R2, D, ZnS Fs, ZnS R2, D R2, D
$0.15 ZnS ZnS R2, D R2, D

Power is at the left tail of the distribution unless otherwise indicated. DF, Fu and Li’s D.
a Power is at the right tail of the distribution.

TABLE 4

Sudden contraction model decision table

No recombination Recombination (108)

Tc Strong (Dc ¼ 0.01) Weak (Dc ¼ 0.1) Strong (Dc ¼ 0.01) Weak (Dc ¼ 0.1)

Small S (�10), small n (�20)
#0.10 D* D* D* D*
0.10–0.40 Fs, D* Fs, D* D* D*
0.40–0.80 Fs, ZnS, ZA Fs, ZnS, ZA D* D*
.0.80 Fs, ZnS, ZA, B, Q Fs, ZnS, ZA, B, Q, Dha D* D*

Small S (�10), large n (�100)
#0.20 D F D F D F D F

0.20–0.60 ZnS ZnS, B D F D F

$0.60 ZnS, ZA, B, Q, Fs, D F ZnS, ZA, B, Q, Fs, D F D F D F

Large S (�100 or more), small n (�20)
#0.10 Fs, Dha Fs, Dha D F D F

0.10–0.40 Fs, Dha Fs, Dha D F, F, F* D F, F, F*
$0.40 Dha Dha D F, D* D*

Large S (�100 or more), large n (�100)
#0.02 D F, D* D F, D* D F, D* D F, D*
0.02–0.10 Fs Fs F, F* F, F*
0.10–0.40 Fs, Dha Fs F, F*, R2, D F, F*
0.40–0.80 Fs, ZnS, ZA, B, Q, Dha ZnS, ZA D F, D* D F

.0.80 Fs, D F, D*, ZnS, ZA, B, Q ZnS, ZA, B, Q D F, D* F, F*

Power is at the right tail of the distribution unless otherwise indicated. D F, Fu and Li’s D.
a Power is at the left tail of the distribution.
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estimation of recombination, when recombination is
overestimated in a scenario of population contraction,
class I tests behave similarly than in expansions. This is
not the case for class II tests, which became liberal.
Again, strong bottlenecks behave similarly to expan-
sions while weak ones behave more like contractions
(Table 2; more details are in the supplemental Results
and supplemental Figures 5 and 6 for contractions and
bottlenecks, respectively).

DISCUSSION

Power of neutrality tests: We have examined statis-
tical power in detecting a sudden population expan-
sion, a sudden contraction, or a bottleneck analyzing
DNA polymorphism data by means of a wide range of
statistics. The most powerful tests are those belong-
ing to class II, that is, those based on haplotype
frequencies. Within those, Fu’s Fs and ZnS perform
best although, for small sample sizes, R2 is also
recommended. Class II tests, however, are strongly
affected by recombination, particularly Fs and ZnS,
which not only lose power under high recombination
rates, but also become significant with recombina-
tion events when no expansion has taken place and
the population has remained constant. For this rea-
son, when recombination is suspected to be acting
on a sample, and especially if there is risk of over-

or underestimating it, it is not advisable to use class II
tests and, thus, R2, Tajima’s D or Fu and Li’s tests
should be used instead. A similar situation, with class
II statistics being more powerful than class I, can be
found for contractions, although tests have power at
the opposite tail of the distribution and they start to
perform well at larger times and for longer S. However,
in the case of bottlenecks, class I tests are best as a
general rule, with the exception of Fs and ZnS in some
particular cases.

Combinations of the different tests and the tail at
which they show power can therefore provide a rough
idea about the demographic event acting over a pop-
ulation and about the time and strength of this event, as
well as about other factors such as recombination.

The effect of recombination on the power of the
tests: As discussed above, recombination is expected to
have some effects on the power of statistical tests based on
the allele frequency spectrum and to reduce the power of
tests that rely on haplotype-based statistics (see, for ex-
ample, Quesada et al. 2006 and references therein). We
performed a detailed series of simulations suggesting
that high recombination rates generally improve the
power of most statistical tests, although some class II tests
(Dh, EHH, Fs, and ZnS) lose power for the maximum
recombination rates considered in this study, especially
for old expansions. Furthermore, even when recombi-
nation is considered in the null constant-population

TABLE 5

Bottleneck decision table

No recombination Recombination (r8)

Tstart Strong (b ¼ 0.01) Weak (b ¼ 0.1) Strong (b ¼ 0.01) Weak (b ¼ 0.1)

Small S (�10), small n (�20)
0.02 D, F, D*, F*, R2, Fs D*a, Fs

a Da, Fa, D*a, F*a, R2
a Da, Fa, D*a, F*a, R2

a

0.04 D, R2, Fs Fs
a, ZnS

a, ZA
a Da, R2

a Da, Fa, D*a, F*a, R2
a

0.08–0.12 R2, Fs D, D*, F*, R2, Fs, ZnS R2 D, R2

Small S (�10), large n (�100)
0.02 D, F, F*, R2, Fs, Dh Da, D Fa, Fs

a D*, Dh Da, D Fa, R2
a

0.04 D, R2, Fs Fs
a, Ba, ZnS

a, ZA
a D, D*, R2 Da, D Fa,b, R2

a

0.08 D, R2, Fs D, F, R2, Fs, Dh D, R2 D F

0.12 Fs D, R2, Fs D, R2 D F

Large S (�100 or more), small n (�20)
0.02 D, D F, F, D*, F*, R2, Fs D*a, Fs

a Da, D Fa, Fa, D*a, F*a, R2
a D Fa, Fa, D*a, F*a

0.04 D, D F, F, D*, F*, R2, Fs, ZnS, ZA Fs
a,b, Ba, Qa, ZnS

a, ZA
a Da, D Fa, Fa, D*a, F*a, R2

a Da, D Fa, Fa, F*a, R2
a

0.08 D, R2, ZnS, ZA R2, Fs D, D F, F, D*, F*, R2 D, R2

0.12 R2, ZnS R2 D, R2 D, R2

Large S (�100 or more), large n (�100)
0.02 D, F, D*, F*, R2 D*a, Fs

a D Fa, D*a Da, D Fa,b, Fa,b, D*a,b, F*a,b, R2
a

0.04 D, D F, F, D*, F*, R2, Fs, ZnS, ZA Fs
a, Ba, Qa, ZnS

a, ZA
a Da, D Fa, Fa, D*a, F*a, R2

a Da, D Fa,b, Fa,b, D*a,b, F*a,b, R2
a

0.08 D, D F, F, D*, F*, R2, ZnS, ZA Fs D, D F, F, D*, F*, R2 D F, F, D*, F*, R2

0.12 D, R2, ZnS Fs D, F, F*, R2 D, F, F*, R2

Power is at the left tail of the distribution unless otherwise indicated. D F, Fu and Li’s D.
a Power is at the right tail of the distribution.
b Only for finished bottlenecks.
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models, those tests have great power to ‘‘detect recombi-
nation’’ in a sample. This efficiency in recognizing re-
combination can be easily explained as recombination
modifies the mean and reduces the width of the distribu-
tion of class II statistics. Therefore, careful attention
should be paid to the interpretation of those tests when
recombination is suspected to have shaped the genealogy
of the sampled sequences. We have also examined the
effect of using mistaken recombination rates, because
their estimation can be a problem for most organisms. In
the case of humans, actual recombination maps made
through the genotyping of 5136 microsatellite markers
for 146 families, with a total of 1257 meiotic events, are
available at an �350-kb resolution (Kong et al. 2002).
Beyond that level, current efforts are aimed at pinpoint-
ing hotspots and recombination deserts as inferred from
linkage disequilibrium patterns (McVean et al. 2004;
Fearnhead and Smith 2005; Myers et al. 2005). Wall

(1999) observed that larger sequence sizes with high re-
combination decreased the power of tests and suggested
that this was due to the difference between the recom-
bination rates of the null and the alternative hypotheses.
Our results show that severe over- or underestimations of
recombination have large impacts onpower.Whenrecom-
bination is underestimated, the power of tests decreases in
expansion and bottlenecks, supporting the results in
Wall (1999). In contrast, when recombination is over-
estimated, type I errors increase, leading to a spurious
gain in the power of the tests. Since class II ZnS, Fu’s Fs,
Dh, and EHH statistics are very sensitive to recombina-
tion, they have an opposite behavior. Considering all
recombination results together, a conservative recom-
bination rate should be used in the null hypothesis when
using class II statistics—if recombination could be acting
over the sample, for example, it would be recommended to
use a lower bound or no recombination if there is a deficit
of haplotypes or an upper bound if there is an excess.

Recommendations for test usage arising from our
results are summarized in Tables 3–5.We hope that they
help to produce guidelines for a rational choice among
the wide variety of neutrality tests available.
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