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Summary
Initial studies on the biology of IL-27 provided evidence of a role for this cytokine in the initiation
of Th1 responses; however, subsequent work using models of pathogen-induced and autoimmune
inflammation have indicated that IL-27 has broad inhibitory effects on Th1, Th2 and Th17 subsets
of T cells as well as the expansion of inducible regulatory T cells. While, the aim of this review is
to highlight the functions of IL-27 in the context of inflammation it will also serve to elaborate on
the molecular mechanisms involved in the production of this cytokine. The initial description of
IL-27 indicated that classical antigen-presenting cells such as macrophages and dendritic cells
produce IL-27, however, the agonists and signaling pathways involved in activating transcription of
the two subunits of IL-27, p28 and EBV-induced gene 3 (EBI3) have only recently been described.
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Introduction
The IL-6 sub-family of type I cytokines, includes a number of immune modulators: IL-6, IL-12,
IL-23 and IL-27 that are defined based on similarities in the structural motifs of the ligands,
such as a common four-helix bundle, and their receptors, which contain a hematopoietin
receptor domain[1]. These cytokines are involved in the development and regulation of
immune responses, and they initiate their activity through membrane bound receptor
complexes that include either IL-12Rβ1 or gp130[1]. One of the defining members of this sub-
family is IL-6, which is a single subunit cytokine that binds a unique IL-6Rα chain and gp130.
The IL-6Rα chain can be found as a membrane bound form or as a soluble version, which can
bind IL-6 and this complex can signal in trans through gp130[2]. The existence of this
additional pathway for IL-6 signaling provides evidence for how the heterodimeric cytokines
of this sub-family may have evolved. The signature cytokine of this sub-family, IL-12, is a
heterodimer composed of p40 and p35, which is secreted by cells of the innate immune system.
It promotes the production of IFN-γ by CD4+ and CD8+ T cells, and NK cells. The biological
effects of IL-12 are mediated through its binding of a high affinity receptor composed of
IL-12Rβ1 and IL-12Rβ2, which activates the Jak/STAT signaling pathway, a common feature
of this class of cytokine receptors[3]. Consistent with a role in promoting inflammation IL-23,
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which is composed of p40 and a p35-like subunit p19, has been linked to the maintenance of
a population of T cells that secrete IL-17 and which have a protective role against a number of
extracellular pathogens[4–8]. Additionally, this Th17 population of T cells has been associated
with the development of a number of autoimmune diseases in mice and humans[9–13].

Similar to IL-12 and IL-23, IL-27 is a heterodimeric cytokine consisting of EBI3 (an IL-12p40
homologue originally described to be secreted by Epstein-Barr-Virus-transformed B cells
[14]) and p28, an IL-6 and p35 homologue[15]. IL-27 employs a unique receptor subunit
IL-27ra (also known as WSX-1 or TCCR) paired with gp130 for signaling[15–17]. While
activated T cells and NK cells express the highest levels of the IL-27R[18] there are a range
of cells that co-express IL-27ra and gp130, including naïve T cells, mast cells, endothelial cells,
activated B cells, monocytes, Langerhan’s cells and activated dendritic cells[15–17,19]. The
expression of the full IL-27 receptor complex by these cell types indicate that they should be
fully responsive to the effects of IL-27 as several studies have shown[20–22].

Produced primarily by antigen presenting cells (APCs) as well as neutrophils, IL-27 signaling
results in the phosphorylation of a number of Jak and STAT proteins including Jak1, Jak2,
Tyk2, STAT1, STAT3, STAT4 and STAT5 in T cells[23–26]. Other members of this cytokine
family activate many of these same proteins, yet each of these interleukins displays unique
properties with little functional overlap. Given the similarities in structure between this family
of cytokines and their receptors it is possible that additional heterodimeric complexes can form.
For example, an association between EBI3 and p35 has been documented[27], but until recently
no distinct function had been assigned to this cytokine pairing. However, two recently
published studies have provided evidence that CD4+CD25+Foxp3+ regulatory T cells secrete
this heterodimer of EBI3 and p35, which has been designated IL-35, and may mediate the
suppressive activity of this subset of T cells[28,29].

Regulation of IL-27 production
An understanding of the factors that trigger when, where and what cell types produce IL-27 is
critical to understanding when this cytokine is available to modulate T cell responses. As
mentioned previously, IL-27 is produced by APCs including dendritic cells (DCs) and
macrophages, which monitor their local environment for invading pathogens. Increased
expression of IL-27 has been associated with sites of inflammation during infection with
Mycobacteria tuberculosis, Trichuris muris, and Toxoplasma gondii[20,26,30,31]. Similarly
IL-27 expression is linked to auto-immune diseases such as patients with Crohn’s disease
[32] and in mouse models of uveitis and multiple sclerosis[13,33–36]. In addition, increases
in IL-27 production observed during experimental autoimmune encephalomyelitis (EAE) and
chronic T. gondii infection have been associated with CNS resident cells such as microglia and
astrocytes[31,34,35].

Consistent with the idea that the innate immune system regulates many aspects of the adaptive
immune system, EBI3 expression can be upregulated by pathogen and host-derived
inflammatory stimuli including LPS, CD40 ligation or exposure to inflammatory cytokines
[15,23,37–40]. Similar to IL-12p35, IL-27p28 is poorly secreted unless it is co-expressed with
its partner EBI3, thus creating a situation where expression of IL-27 can be tightly controlled
during an immune response. Enhanced expression of the subunits of IL-12 (p40 and p35) and
IL-23 (p40 and p19) are induced by binding of Toll-like receptor agonists (such as CpG,
PolyI:C and LPS) on APCs. Likewise, stimulation of human monocyte derived DCs (MoDC)
as well as murine bone marrow derived dendritic cells (BMDCs) and macrophages with TLR
agonists for TLR3 or TLR4, resulted in increased expression of the two subunits of IL-27
[15,23,40–46]. Moreover, binding of double-stranded DNA to TLR9 on murine BMDCs also
induced IL-27[47]. In contrast, stimulation with TLR2 and TLR7/8 agonists had only moderate
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effects on the expression of p28 and EBI3[43,45–47]. Additionally, human DCs upregulated
IL-27p28 following priming with commensal gram negative but not gram positive bacteria
[48]. However, incubation of human DCs with a pathogenic strain of gram positive bacteria,
Streptococcus pyogenes, did increase the expression of p28 and EBI3, while the non-
pathogenic gram positive Lactobacillus rhamnosus did not upregulate IL-27 mRNA. An
important question that remains is whether p35, p19 and p28 can be coexpressed by the same
APC or if the signaling events following TLR ligation lead to the expression of only one
particular cytokine whilst repressing transcription of the other cytokine subunits within the
same cell.

While the transcriptional regulation of IL-12 p40/p35 has been well studied, the signaling
pathways and transcription factors involved in the regulation of IL-27 gene expression have
only recently been defined. Thus, several groups have examined the molecular mechanisms
involved in the production of the individual subunits of IL-27 in macrophages or DCs[40,42,
43,45,46] (Figure 1). Consistent with the finding that the TLR4 agonist LPS upregulates
transcripts for p28 and EBI3, the adapter protein MyD88 was found to be required for these
events[40,42,43]. Similarly, the NF-κB family of transcription factors have been shown to play
a vital role in LPS-mediated production of pro-inflammatory cytokines, and c-Rel is required
for the transcription of IL-12 p35[49]. Liu and colleagues have also shown that c-Rel is required
for optimal LPS-induced IL-27 p28 protein and mRNA expression[42]. In addition, the NF-
κB family members p50 and p65 have also been linked to the expression of EBI3 as these
transcription factors bind the EBI3 promoter in BMDCs, and the absence of p50 results in
decreased EBI3 gene expression in response to LPS[40]. Moreover, Wirtz et al., showed that
NF-κB p50/p65 was able to synergize with the Ets transcription factor PU.1 to increase EBI3
transcription[40].

In addition to MyD88 there are other adaptor proteins linked to TLR signaling such as TRIF,
which is associated with TLR4 and TLR3, and serves to activate IFN regulatory factor (IRF)
3, an important transcription factor for the expression of IFN-β[50]. In the absence of TRIF,
Molle and colleagues showed that murine BMDCs stimulated with LPS are deficient in their
ability to upregulate p28 and EBI3 gene expression[43]. Similarly, LPS induced p28 synthesis,
but not EBI3 was significantly diminished in IRF3−/− BMDCs, thus, establishing a role for the
MyD88-independent TRIF/IRF3 signaling cascade in p28 expression[43]. Additionally, since
IRF3 activation leads to expression of IFN-β following TLR4 stimulation this suggested the
possibility that IFNs may mediate some of these effects. Consistent with this idea IFN-β was
found to upregulate IL-27 p28 synthesis by BMDCs. However, the addition of exogenous IFN-
β to LPS-stimulated IRF3−/− BMDCs did not restore the levels of p28 mRNA to those observed
in wild-type BMDCs stimulated with LPS alone. Furthermore, IFN-α and IFN-γ have also been
shown to enhance TLR-dependent expression of IL-27 p28 by APCs[23,42,45,46]. One of the
proteins that is activated by interferon signaling in APCs is IRF1, which is essential for many
IFN-γ mediated responses including upregulation of IL-12 p35 gene expression in
macrophages in response to IFN-γ [51,52]. Similar to IL-12 p35, IL-27 p28 expression can be
regulated by IRF1, as p28 protein secretion and mRNA synthesis are completely absent in
IRF1−/− macrophages stimulated with IFN-γ [42]. Furthermore, IRF1 has been shown to bind
an ISRE in the p28 promoter both in vitro and in vivo in response to not only IFN-α, IFN-β
and IFN-γ but also LPS[42,43,45,46] providing further evidence that IRF1 is important in the
transcriptional regulation of p28.

Anti-inflammatory properties of IL-27
Inhibition of Th1 responses

While IL-27 has also been ascribed pro-inflammatory activity, see references[53–57], the
remainder of this article will highlight the anti-inflammatory properties of IL-27. The initial
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data implicating IL-27 in the regulation of inflammation came from in vivo models of parasitic
infection using IL-27ra−/− mice. For example, studies from this laboratory revealed that
IL-27ra−/− mice infected with Toxoplasma gondii effectively generated an IFN-γ response to
control parasite replication, but subsequently developed a lethal CD4+ T cell mediated
inflammatory disease[26]. This pathological response was characterized by enhanced T cell
proliferation, increased production of IL-2 and IFN-γ and the maintenance of a population of
activated (CD25+, CD62Llow) CD4+ and CD8+ T cells. Similarly, additional groups have found
that infection of IL-27ra−/− mice with Trypanosoma cruzi or Leishmania donovani resulted in
exaggerated T cell responses coupled with enhanced pro-inflammatory cytokine production
[58,59]. This phenotype of immune-mediated pathology is not restricted to models of parasitic
infection as IL-27ra−/− mice infected with Mycobacterium tuberculosis displayed lower
bacterial burden, but more severe lung pathology and they succumbed to this inflammatory
disease[20,60]. Moreover, Yamanaka and colleagues have made a similar observation in a
noninfectious model in which the absence of IL-27 led to increased susceptibility to
concanavalin A-induced hepatitis characterized by elevated production of IFN-γ and IL-4 by
NKT cells[61]. Together, these findings redefined the role of IL-27 and identified it as a key
antagonist of T cell mediated inflammation.

Regulation of Th2 responses by IL-27
While the previous section highlights that IL-27 can regulate inflammation during a Th1
polarized response, it has also become evident that IL-27 can also influence additional T cell
subsets. Initial interpretations of IL-27ra−/− mice infected with Leishmania major or the
nematode parasite Trichuris muris indicated that these mice displayed a diminished Th1
response compared to wild-type mice leading to the conclusion that IL-27 was essential for the
development of Th1 immunity[19,62]. However, other reports using these pathogens indicated
that IL-27 was a potent inhibitor of Th2 responses. Thus, IL-27ra−/− mice challenged with T.
muris developed an accelerated Th2 response characterized by increased production of Th2
associated cytokines, exaggerated goblet cell hyperplasia and mastocytosis in the gut, and early
clearance of worm burden[30]. Furthermore, when the Th1 response was blocked in wild-type
mice this hyper-resistant phenotype was not observed indicating that the increased production
of Th2 cytokines was not the consequence of the inability of these mice to generate an effective
IFN-γ response in the absence of IL-27R signaling.

Indeed studies with other experimental systems confirmed that when IL-27ra−/− mice are
pretreated with antibody specific for IL-4 the early susceptibility to L. major is reversed[63].
In addition, even though IL-27ra−/− mice were susceptible to leishmaniasis in the early stages
of infection, at later time points mice that lack the IL-27ra chain or EBI3 developed leishmania-
specific Th1 cells and controlled the infection[63,64]. Moreover, in models of asthma and
glomerulonephritis the absence of IL-27 signaling led to an exacerbated Th2 response in both
cases[65,66]. The molecular basis for the ability of IL-27 to inhibit Th2 cell development may
in part be due to its capacity to inhibit expression of the Th2 lineage-specific transcription
factor GATA3[24].

Inhibitory effects of IL-27 on Th17 cells
The recent description of Th17 cells, which produce IL-17A, IL-17F, IL-6 and IL-22 upon
differentiation, and contribute to the development of autoimmune inflammation in mouse
models of multiple sclerosis and rheumatoid arthiritis[10,11], has sparked much attention in
defining the ontogeny of these pathological CD4+ T cells. In addition, there have been multiple
studies focused on determining the natural antagonists of Th17 cell activity. Two such reports
focused on the development of enhanced CNS inflammation in IL-27ra−/− mice chronically
infected with T. gondii or immunized with MOG peptide to induce EAE[31,33]. In these models
the lack of IL-27 signaling resulted in an increase in the number of IL-17 producing CD4+ T
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cells in the CNS, associated with exacerbated clinical disease. Both groups went on to show
that IL-27 was capable of inhibiting the development of Th17 cells in vitro, a result recently
confirmed by others[67–69]. Consistent with the ability of IL-27 to decrease Th17 responses
continual delivery of IL-27 significantly suppressed the establishment of clinical disease in
EAE, associated with a decreased proportion of Th17 cells in the CNS[34]. In addition,
upregulation of EBI3 and p28 transcripts have been observed in the retina of mice in an
experimental autoimmune uveoretinitis (EAU) model with the highest levels of IL-27
expression coinciding with the peak of disease[13]. However, as seen in the latter study the
endogenous production of IL-27 by cells in the retina served to inhibit Th17 cell expansion in
a co-culture system and neutralization of endogenous IL-27 increased the level of IL-17 in this
model. Together, these studies define a role for IL-27 in antagonizing the development of Th17
cells similar to its ability to modulate Th1 and Th2 differentiation.

IL-27 prevents the generation of inducible regulatory T cells (iTregs)
While the sections above highlight the inhibitory effects of IL-27 on Th cells, IL-27 can also
suppress the induction of a subset of regulatory T cells (iTregs), which differentiate and expand
upon stimulation with TGF-β[67,70]. Given the prominent role for Tregs in limiting
inflammation, this observation seems inconsistent with the anti-inflammatory activity of IL-27.
However, the significance of this suppression of iTreg development by IL-27 in the setting of
an inflammatory response in vivo remains an open question. In addition, IL-27 may also
influence the activity of other populations of Tregs as CD4+CD25+ “natural Tregs” express
high levels of the IL-27ra subunit[18], but to date no studies have assessed whether IL-27
promotes or inhibits this cell-type. Nevertheless, it is unlikely that IL-27 is essential for the
development of this subset of Tregs as IL-27ra−/− mice have normal numbers of
CD4+CD25+ Tregs[18].

Effects of IL-27 on T cell proliferation
It is apparent from the reports described above that IL-27 has a broad effect on the kinetics of
T cell responses that are not limited to a particular Th cell subset. One explanation for this wide
range of activity could be attributed to the effect of IL-27 on the regulation of T cell
proliferation. Specifically, in the absence of the IL-27R CD4+ T cells displayed an enhanced
proliferative capacity following activation in vitro[16,19,71]. Furthermore, as previously
stated, increased expansion of CD4+ T cells has been observed during acute infection with T.
gondii, which was also associated with exaggerated production of IL-2[26] suggesting a
potential role for IL-27 in limiting IL-2 production and thereby T cell proliferation. Support
for this idea come from a study in which survival of IL-27ra−/− mice infected with T. gondii
was improved upon neutralization of IL-2, which was associated with a reduction in IFN-γ
[71]. In addition, production of IL-2 by CD4+ T cells was shown to be directly regulated by
IL-27 in vitro[68,71,72]. In terms of CD4+ T cell expansion it was determined that
neutralization of IL-2 in vitro resulted in a modest but significant decrease in the proliferation
of CD4+ T cells from IL-27ra−/− and WT mice; however, the proliferative capacity of the
IL-27R deficient CD4+ T cells was still higher than that of the wild-type cells indicating that
enhanced IL-2 production was not solely responsible for the hyperproliferative phenotype
displayed by the IL-27ra−/− T cells[71]. Therefore, identification of additional mechanisms
that lead to the enhanced expansion of T cells in IL-27ra−/− mice remains an area that requires
further investigation.

Additional anti-inflammatory properties of IL-27
In the previous sections the anti-inflammatory activity of IL-27 has been attributed to its ability
to inhibit cytokine production by specific Th subsets. However based on the findings of three
recent reports, it has become apparent that IL-27 can also promote IL-10 synthesis by CD4+
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and CD8+ T cells[73–75]. In fact the most striking finding from a multiple analyte profile for
secreted immune products using supernatant from CD4+ T cells activated under non-polarizing
conditions in the presence or absence of IL-27, was that IL-27 induced a 1000-fold increase in
IL-10. This result was corroborated in vivo as T cells from IL-27ra−/− mice chronically infected
with T. gondii displayed a reduced capacity to produce IL-10[73]. Additionally, IL-27 was able
to suppress IL-2 production in the absence of IL-10[74], however, there were discrepancies in
the ability of IL-27 to inhibit IL-17 in the absence of IL-10. For example, using splenocytes
from IL-10−/− mice IL-27 was able to prevent Th17 differentiation driven by TGF-β and IL-6
[73] while it displayed a reduced ability to suppress IL-17 production under IL-23 containing
Th17 growth conditions indicating a partial role for IL-10 mediated suppression of IL-17
[74]. Despite these discrepancies, Fitzgerald et al. provided evidence that IL-27-mediated
inhibition of EAE was dependent on IL-10[74]. Thus, the capacity of IL-27 to induce IL-10
provides a new pathway that leads to the production of this key inhibitor of accessory cell
functions, which are required for T cell activation of inflammatory responses (Figure 2).
Additionally, the enhanced inflammation observed in IL-27ra−/− mice under various infectious
and inflammatory settings may, at least in part, be the consequence of defective IL-10
responses.

Concluding Remarks
Major advances in understanding the biology of IL-27 have been achieved since its discovery,
but many questions still remain in regards to its role in regulating immune responses. For
example, it is still unclear as to whether IL-27 is effective only during the initial phases of T
cell differentiation or if it can inhibit cytokine production by fully polarized Th cells. In a study
conducted by Yoshimura and colleagues they addressed these questions using various protocols
in which IL-27-containing medium was added to in vitro cultures of purified CD4+ T cells at
different times after activation[68]. This study indicated that IL-27 was only able to suppress
cytokine production (IL-4, IL-2, IL-17 and IFN-γ) when it was present from the start in the
cultures. Thus, addition of IL-27 as early as one day after T cell activation limited the anti-
inflammatory potential of this cytokine. These findings suggest a model in which IL-27 is only
capable of inhibiting cytokine production when CD4+ T cells are in an uncommitted state after
activation and before differentiation; however, this does not appear to be the case in vivo during
an active immune response. For instance, when T cells isolated from the brains of mice
chronically infected with T. gondii are restimulated in vitro with antigen the addition of IL-27
to these cultures results in a marked decrease in the production of pro-inflammatory cytokines
(IL-17 and IFN-γ) and an increase in IL-10 production[31,73] (J.S. Stumhofer and C.A. Hunter
unpublished findings). As all of the T cells isolated from the brain of infected mice displayed
an activated phenotype (CD44highCD62Llow) this result indicated that fully differentiated T
cells are responding to stimulation with IL-27 upon restimulation in vitro. Additionally, IL-27
when delivered continuously by a subcutaneous osmotic pump was shown to suppress active
EAE in vivo[34]. The interpretation of these findings is further complicated by evidence
showing that the IL-27ra subunit is upregulated upon T cell activation and T cells with a
memory phenotype express higher levels of the IL-27ra subunit than naïve T cells[18].
However there is additional information indicating that gp130, the other subunit required for
IL-27 signaling, is downregulated upon activation of T cells[68,76]. The impact of these
opposing changes in receptor subunit expression levels have on IL-27 signaling remains
unclear.

While the majority of the literature has focused on the effects of IL-27 on T cells, the IL-27
receptor complex is expressed by a number of innate immune cells including macrophages,
dendritic cells, mast cells, neutrophils, NK cells and B cells[15,18,21,22,30,61,77–79].
However, most of these reports only provide limited details on the effects of IL-27 on these
cell types, and a more in depth analysis on IL-27-signaling in these cell types is warranted.
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Specifically, the use of conditional knock mice in which the IL-27ra subunit or one of the
subunits of IL-27 (EBI3 or p28) is deleted in one of these cell populations will further aid in
delineating the cell specific effects of this cytokine during an immune response. Moreover, the
advent of transgenic reporter mice has provided a tool that allows the identification of cells
programmed for the expression of particular cytokines in the steady state and those that arise
in the course of an infection or the development of an autoimmune disease without affecting
the endogenous loci[80]. Thus, this technological approach offers a means to identify the
specific subsets of cells that produce IL-27 p28 and EBI3, but also to visualize in real-time the
spatial and temporal production of this cytokine in vivo.

Based on the pleiotropic nature of IL-27, the question that arises is whether IL-27 can be used
therapeutically to antagonize ongoing inflammatory responses or if it can be blocked in order
to augment anti-pathogen responses or vaccine-induced immunity. Indeed, a recent study
indicated that neutralization of IL-27 may serve as a potential therapy to treat sepsis as
administration of a soluble IL-27ra fusion protein to block IL-27 led to enhanced bacterial
clearance and a significant increase in survival in a mouse model of sepsis[79]. However, this
type of treatment may only be beneficial as a short-term option as neutralization of IL-27 for
any extended period of time may facilitate the development of autoimmunity. Alternatively,
treatment with IL-27 has the potential to suppress inappropriate inflammatory responses,
prevent the growth and dissemination of tumors or serve as an adjuvant to promote a Th1
response. While administration of IL-12 systemically resulted is severe side effects in humans
[81], IL-27 may prove to be safer than IL-12 as it induced less splenomegaly and lower liver
toxicity than IL-12 upon systemic administration in a comparative study in mice[82].
Additionally, local expression of IL-27 by tumor cells has been shown to provide protection
and in many cases resulted in immunological memory in the host[82–86], therefore, this
approach to antitumor therapy may offer a safer and more effective delivery of IL-27 than
systemic administration.

Whether these proposed therapies will have any efficacy in humans is dependent on the
importance of IL-27 in this setting and determining the significance of this cytokine in humans
may have to wait for the identification of individuals with primary genetic defects in the ability
to make or respond to IL-27. Recently, polymorphisms in the IL-27p28 gene were shown to
be associated with increased susceptibility to asthma in the Korean population; however, what
effects these polymorphisms had on the activity of IL-27 remain undefined[87]. Nevertheless,
this finding offers the first evidence that IL-27 may be important in limiting a Th2 response
associated with asthma in humans, but additional studies will be required to assess its ability
to inhibit other human T cell subsets.
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Fig. 1.
Transcriptional Regulation of IL-27p28 and EBI3. Expression of IL-27 p28 and EBI3 are
upregulated through a MyD88 or TRIF dependent signaling cascade in antigen presenting cells
following stimulation with the TLR4 agonist LPS. Additionally, type I and II interferons can
induce p28 transcription in an IRF1 dependent manner.
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Fig. 2.
IL-27 induces CD4+ T cells to produce IL-10. The release of IL-10 by T cells subsequently
serves as a broad inhibitor of accessory cell function by downregulating expression of MHC
and co-stimulatory molecules, and inhibiting the release of pro-inflammatory cytokines; thus,
diminishing T cell activation and an ongoing inflammatory response.
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