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Abstract
A new cell-vortex unstructured finite volume method for structural dynamics is assessed for
simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping
method is employed to obtain time accurate solutions. The resulting system of algebraic equations
is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses
for accurate predictions of structural responses and stress distributions. The method is coupled with
a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite
element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite
volume method is at least of second-order accuracy. The method is validated by the problem of
vortex-induced vibration of an elastic plate with different initial conditions and material properties.
The results are in good agreement with existing numerical data and analytical solutions. The method
is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural
stresses on the fluid flow are investigated.
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1. Introduction
In terms of numerical simulation, the finite element (FE) method is the most popular tool for
computational structural dynamics (CSD) problems, whereas traditionally the finite volume
(FV) method is widely used in computational fluid dynamics (CFD). Both techniques solve
the integral governing equations by means of weighted residual methods where they differ in
the selected weighting functions. The FV method may be considered as a particular case of the
FE method with non-Galerkin weighting [1]. However, their different properties, applications,
and directions of development have resulted in numerical software tools for CFD and CSD
that are different in almost every aspect. The efforts to bridge the differences between them
have been attempted. In particular, Bathe et al. [2–5] proposed a flow-condition-based
interpolation (FCBI) finite element scheme for incompressible fluid flows to achieve local
mass and momentum conservation which was considered the unique property of the FV
method. The FCBI finite element procedure was applied to solve multi-physics problems in a

1Corresponding author: Tel: +1-319-335-5673 Email: ching-long-lin@uiowa.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Comput Struct. Author manuscript; available in PMC 2009 April 1.

Published in final edited form as:
Comput Struct. 2008 April ; 86(7-8): 684–701. doi:10.1016/j.compstruc.2007.07.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consistent FE framework and its accuracy was assessed by the goal-oriented error estimation
technique [6,7]. The current effort also attempts to bridge the gap between FE and FV by
developing an unstructured-grid FV structural dynamic solver and by integrating the structural
solver with a baseline fluid solver for fluid-structure interaction (FSI) simulation. The proposed
method in this work can assist FV-based CFD researchers with applying FV-based structural
dynamics for FSI problems.

Generally speaking, the essential difference between FE and FV in the numerical discretization
of second-order partial differential equations is negligible and for many cases the two methods
are almost equivalent [8]. In recent years, the FV methods have been applied to a number of
problems in various aspects of CSD. For example, the plate bending analysis has been
performed using FV methods by Demirtzic et al. [9], Wheel [10], and Fallah [11]; the solutions
of different solid mechanics problems [12,13], the stress analysis of elasto-plastic solids by
Demirtzic et al. [14], the analysis of dynamic solid mechanics [15], and the application to FSI
by Slone et al. [16] have also been reported. These works prove that for CSD problems the FV
methods are competitive with the FE methods in terms of numerical accuracy and
computational efficiency. Wheel [17] even showed that the FV method achieves greater
accuracy than the FE method for a benchmark problem in selected test cases. The
implementation of FV methods for CSD computations can be classified into two categories:
the cell-centered approach [9,10,12,14,17] and the cell-vertex approach [1,13,15,16,18]. Both
approaches are locally and globally conservative. In the cell-vertex approach, the displacement
and stress variables are stored at the vertices of the mesh which are themselves enclosed by
control volumes formed by the median duals of the mesh. In the cell-centered approach, the
variables are stored at the centroids of cells which are also used as control volumes themselves.
Thus the cell-vertex approach needs considerably less computational effort and memory for a
given mesh. And the cell-vertex approach is better suited to compute stresses, especially when
the meshes become highly skewed; it is therefore chosen in this work to develop the structural
solver. With the implementation of FV methods for structural dynamics, the numerical
solutions satisfy both local and global conservations. And unlike other FV methods, the cell-
vertex FV method employed in this work does not use shape functions for spatial discretizations
and it is the matrix-free, thus reducing the computational efforts and storage requirements.

The FSI simulation has recently been an intensively researched area of CFD and CSD. It has
widespread applications in diverse fields such as deformation of artificial lung [6], analyses of
industrial applications [19], aeroelastic analysis [16,20], wind response of buildings and
structures [21], blood flow in veins and arteries [22–24], heart valves dynamics [25], and
airflow in collapsible airways [26]. However, an accurate and efficient computational model
for this problem still poses a great challenge, which is often aggravated by large deformations
and complex geometries of the closely coupled fluid-structure system. Various strategies and
numerical methods have been developed towards solving the FSI problems in different areas.
They can be categorized into two categories: the Eulerian method and the arbitrary Lagrangian
Eulerian (ALE) method. In the Eulerian method, the fluid flow is computed on a stationary
mesh and the mesh update is avoided, which makes it more efficient and easy to implement.
However they suffer some accuracy problems in the interpolation of fluid variables near the
FSI interface. The ALE method uses body-fitted meshes and does remeshing as the fluid-
structure interface moves, which generally results in higher accuracy though requiring more
computational efforts on mesh treatment. In recent years, different ALE methods have been
developed and widely used in various areas, such as airflow past the parachute [27], flow past
a flapping wing [28], transient motion of a missile [29], stokes flow in an elastic tube [30], and
among others. In this work, we adopt a dynamic mesh based ALE method to couple the FV
structural dynamics solver with the fluid dynamics solver.
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The objective of the work is to assess the accuracy of a new cell-vertex unstructured finite
volume method for structural dynamics in response to fluid motions. The goal is to provide an
alternative approach to the FE method for the analysis of structural dynamics in dealing with
FSI problems. In the current method, the structure domain is discretized into an unstructured
grid for complex geometries. The stresses are calculated in a cell-by-cell manner based on a
cell-based data structure and stress distribution is linear within cells, but can be discontinuous
across different cells, even within the same control volume. The control volumes are
constructed around vertices using the median dual of the grid. The deformation gradients and
stresses are evaluated using Green’s Theorem. Time-accurate solutions are obtained by
employing an implicit dual time stepping scheme, wherein a pseudo time term is added to the
dynamic structural equations and the physical time term is integrated by a second-order
backward time discretization scheme and the pseudo time term is finally eliminated by a sub-
iteration process. For the fluid domain, the governing incompressible Navier-Stokes equations
are spatially discretized on an unstructured grid, which is solved by the implicit characteristic-
Galerkin approximation together with the fractional four-step algorithm [31]. At the fluid
structure interface, the two meshes conform to each other for the implementation of the ALE
algorithm. To handle the motion of the fluid mesh, an efficient dynamic mesh algorithm [32]
is adopted. The fluid-structure coupling is achieved in an interactive manner, in which both
the fluid and structure governing equations are computed separately depending on the exchange
of boundary conditions at the fluid-structure interface.

The paper is laid out as follows. In section 2, the governing equations and FV formulation for
structural dynamics are introduced. Numerical techniques for solving the governing equations
are also outlined. In section 3, the governing equations for fluid dynamics and the associated
computational methodologies are briefly described. In section 4, the implementation of the
dynamic mesh method and the solution procedure for the FSI is presented. In section 5, some
benchmark cases are presented for estimation of the order of accuracy of the scheme and
validation of the model. The coupled FSI system is then applied to study the effects of wall
inertia and structural stresses on the fluid flow in a channel flow with an elastic wall.

2. Finite Volume Formulation for Structural Dynamics
2.1 Governing Equation

The governing equation for a continuum undergoing motion is given by the Cauchy’s equation:
(1)

where b is the body force, σij is the stress tensor, ρ is the material density, and a is the
acceleration. For the structure considered here, the body force is negligible compared with
stresses and other forces acting on them. There are two major types of forces: damping and
external forces. External forces generally vary as functions of time. Damping is the ability of
a structure to dissipate energy. In structural mechanics, the most common damping device is
the ideal linear viscous damper. For a structure with linear viscous damping, the damping is
directly proportional to the structure velocity, while acting in the opposite direction of the
velocity. Discarding the body force and considering the influences of external and damping
forces, Eq. (1) becomes

(2)

where f is the external force, U is the structure velocity, and c is the damping ratio. The only
external force considered here is the fluid force acting at the fluid-structure interface, which
can be incorporated through the boundary conditions. Thus the external force term in Eq. (2)
is omitted hereafter. For a detailed description about force equilibrium, please refer to Bathe
[33].
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2.2 Constitutive Relationship and Displacement Formulation
The constitutive relationship between stress and strain is the generalized Hook’s law. For an
isotropic homogeneous structure, it is given as

(3)

where E is the Young’s Modulus, and υ is the Poisson’s ratio of the structure. The stress vector
is σT = [σxx σyy τxy] and the strain vector is εT = [εxx εyy γxy]. The elastic strain can also be
expressed in terms of total and initial strains σ = D(εt - ε0), where D is the constitutive matrix
as expressed in Eq. (3), and εt and ε0 are the total and initial strains, respectively.

To allow large nonlinear deformation, the Green-Lagrange tensor is adopted to describe the
strain-displacement relationship.

(4)

where di is the displacement tensor. In two-dimensional (2D) vector form d = (dx,dy), Eq. (4)
reads

(5)

where L is the matrix of differential operators. Substitution of the constitutive stress-strain Eq.
(3) and the strain-displacement Eq. (5) to the dynamic equilibrium Eq. (2) yields

(6)

which is subject to the boundary conditions:

(7)

Here the structural boundary is the union of the prescribed displacement boundary dp and the
prescribed traction boundary tp which includes the external force f. T is the matrix of outward
normal operators.

(8)

where n = (nx, ny) is the unit vector outward normal to the domain boundary.

2.3 Spatial Discretization
Equation (6) is discretized on an unstructured triangular grid and a cell-vertex scheme is
adopted to construct control volumes [34]. The spatial discretization is performed by using the
integral form of the conservation equations over the control volume surrounding node P shown
in Fig. 1.

(9)
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The first term on the left-hand side of Eq. (9) is converted to a line integral via the divergence
theorem of Gauss and, and is then approximated by

(10)

where ncell is the number of triangular cells associated with node P, Δlci is the part of control
volume boundary in cell Ci, and Δlpi is the edge vector of cell Ci that is opposite to vertex P.
Here the value (DLd - Dε0)i is calculated at the center of the triangular cell Ci, which can be
obtained by using Green’s theorem based on the variables at the three vertices of the triangle.
Like the Galerkin type of formulation, the gradient of a flow variable ø at the center of a triangle
is evaluated by

(11)

where øi is the flow variable at vertex i of a triangular cell, Δli is the edge vector facing node
i, and A is the area of the triangle.

2.4 Temporal Discretization and Integration
The time dependent term is discretized using an implicit second-order accurate backward
differencing scheme. To achieve matrix-free operation and to use a larger time step size, a dual

time-stepping scheme [35] is adopted by adding a pseudo time derivative term  to Eq. (6).
Re-writing the integral equation Eq. (9) for a given node P together with Eq. (10) yields

(12)

where the superscript n denotes the real time level. Then the solution is sought by marching
Eq. (12) in τ to a pseudo steady state. We adopt a five-stage Runge-Kutta scheme for pseudo
time integration for stability and convergence.

(13)

where the superscript m denotes the pseudo time level and the coefficients for the five-stage
Runge-Kutta time integration are as follows:

The five-stage time integration scheme is of 4th-order accuracy and allows a large time step,
but it is also computationally expensive. It is noteworthy that Bathe [36] proposed a two-step
implicit time integration scheme for transient FE solutions of structural dynamics. The first
step is based upon delta-form Newmark scheme with a half time step, and the second step
utilizes the three-point backward Euler scheme as in Eq. (12). Although the scheme requires
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twice the computational effort of Newmark scheme, it achieved better energy and momentum
conservation and is more stable.

The cell-vertex FV method does not use shape functions for spatial discretization and it is
matrix-free, thus reducing the computational efforts and storage requirements. Of particular
note is the structural dynamics solver that can treat a structure of finite thickness so that all
components of the structural stress can be obtained.

After the velocity is obtained, the displacement is calculated using the second-order backward
difference scheme:

(14)

So

(15)

3. Mathematical Formulation for the Fluid
The governing Navier-Stokes equations for the incompressible viscous flow in the ALE
framework for FSI read:

(16)

(17)

where ui, p, ν and ρ are the fluid velocity, pressure, kinematic viscosity, and density,
respectively.  is velocity of the fluid mesh and  represents the ALE convective velocity
induced by the difference between the fluid velocity and the mesh velocity.

The ALE modified governing equations are solved by using a fractional four-step method
[31]. In this method, an intermediate velocity is first obtained from the momentum Eq. (16)
with the pressure gradient calculated from the old pressure field. As a result, there is no need
for special treatment of the velocity boundary condition. However, the intermediate velocity
does not necessarily satisfy the continuity equation, so a new pressure field is calculated by
solving a pressure-Poisson equation which is derived by enforcing the continuity constraint
Eq. (17). The velocity is then corrected by the updated pressure to satisfy Eq. (17). The
equations in the four-step method are solved by the implicit characteristic Galerkin
approximation. The fluid solver is second-order accurate in both time and space [31].

4. Dynamic Mesh Method and Coupling Algorithm
Mesh movement is handled by using a dynamic mesh method [32]. In this method, the shortest
distance d(is) of every fluid node (is) to the moving or solid walls is calculated and the wall
node closest to this inner node is identified (iswall). This distance d(is) is non-dimensionalized
by the maximum value dmax of all the d(is). The deformation of the fluid node  is
calculated as the product of a distance function f(is) and the deformation of its associated wall
node :

(18)

The distant function is constructed using two exponential damping functions as:
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(19)

where

The distance function Eq. (19) approaches 1 when d goes to 0 and the function approaches 0
when d goes to dmax. This property makes the grid very rigid in areas near the wall and far
away the wall while those in between areas are elastic and easy to be deformed. To make this
method more robust for large mesh deformation, the calculated deformation of every node is
further smoothed to eliminate highly skewed or overlapping cells. The smoothing is done by
averaging the deformation of node k with the deformation of its neighboring nodes.

(20)

where nedge(k) is the number of edges surrounding node k. ki is the inverse of the distance
from node k to edge i. The mesh velocities of the inner fluid nodes are obtained in the same
way as the deformation.

The current coupled FSI system is treated as a triple-domain problem that includes the fluid
domain, the structure domain, and the moving mesh. The relationship of these three domains
is depicted in Fig. 2. The FSI coupled equations are solved in an iterative manner, which is
shown in the flow chart of Fig. 3. The Navier-Stokes equations are solved first for the fluid
domain. The solutions of the fluid provide external forces including fluid pressure and shear
stress to the structure domain. The dynamics equation is then solved for the structure under the
influences of fluid forces, which provides deformation and velocity boundary conditions at the
fluid-structure interface. The fluid mesh is moved by the dynamic mesh algorithm in
accordance with these boundary conditions, which updates the mesh deformation and ALE
velocity for the computation of fluid domain for the next time step.

Through the ALE and dynamic mesh method, the cell-vertex unstructured FV method for
structural dynamics can be integrated with the fluid dynamics solver for FSI problems. The
coupling system does not impose any ad hoc assumptions on the fluid, structure or moving
mesh domains, which is critical to achieve a realistic representation of the physical reality of
any system.

5. Computational Results
In this section, a grid convergence study is first performed for accuracy assessment of FV-
based spatial discretization. Then the problem of vortex-induced vibration of an elastic plate
is examined for model validation. Finally a channel flow with an elastic wall of different wall
thickness is simulated to study the effects of wall inertia and structural stresses on the flow
pattern.

5.1 Grid convergence study and error analysis
To verify the implementation of fluid-structure interaction algorithm and assess the accuracy
of the FV method for structural dynamics, a grid convergence study is performed for a case
where a flexible plate is situated at the center of a 2D channel as depicted in Fig. 4. The width
and length of the channel are 2cm and 20cm, respectively, while the width and length of the
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flexible plate are 0.2cm and 1.6cm, respectively. Table 1 lists the properties of the fluid and
the plate. Solid wall conditions are applied at the upper and lower boundaries of the channel,
and stress free conditions are assumed at the outlet. A sinusoidal velocity uin = 1.5 sin(2πt)
with a period T = 1s is applied at the inlet. The maximum inlet velocity is 1.5cm/s, so the
maximum Reynolds number of the flow is 300. Four levels of consecutively finer meshes are
used for simulation. For each mesh, both structure and fluid domains are discretized with a
uniform grid distance h, and the grid distance of a finer mesh is a half of that of its next coarser
mesh as shown in Fig 5. The meshes for the plate are constructed in a way that every node on
the coarser meshes coincide with that of the finest mesh, i.e. the reference mesh, to avoid
interpolations when comparing the solutions on different meshes. The grid distance and the
number of nodes are listed in Table 2. A time step size of 0.01s is used.

With the pulsatile inflow, the flexible plate deflects back and forth in the direction of the fluid
flow. The solver runs 10T for the plate to achieve its stable vibration status. Then the solutions
are recorded at T/4 when the plate is at its maximum deflection in the flow direction as presented
in Fig. 6. The tip displacements of the plate at this moment are summarized in Table 2. It is
observed that the solution obtained on mesh (iii) is very close to that obtained on mesh (iv),
indicating the coupled solver is grid independent. Since there is no analytical solution to the
system, the solution obtained on the finest mesh (iv) is treated as the “exact” solution and is
used as a basis in calculation of the errors of the coarser solutions. The errors are calculated
for the displacements dx of the plate. For a mesh of n nodes, the kth error norm and the infinity
error norm of dx with respect to the “exact” solution (dx)e are calculated as follows,

(21)

The convergence history of L1, L2, and L∞ error norms for the three coarser meshes with respect
to the finest mesh are shown in Fig. 7 against the grid distance h in a log-log manner. In the
plot, the convergence rates of L1 and L2 are higher than slope 2. The overall slope for L∞ is
smaller than those of L1 and L2, but it is still very close to 2. To further analyze the accuracy
of the solver, the Richardson formula is used to estimate the order of accuracy of the coupled
system.

(22)

where fj denotes the numerical solution obtained on the jth mesh, and ‖ ‖ represents any of the
error norms L1, L2, and L∞. The computation for γ is performed on meshes (ii), (iii), and (iv).
The results are summarized in Table 2. All the computed values of γ are greater than 2, which
indicates that the current cell-vertex unstructured FV method for structural dynamics is at least
second-order accurate.

5.2 Flow-induced vibration of an elastic plate
In this problem, an elastic plate is attached to a rigid square cylinder at the center of its
downstream face as shown in Fig. 8. This example was proposed by Wall et al. [37], and many
other researchers like Dettmer et al. [38], Hübner et al. [39] and Teixeira et al. [40] also studied
this model to test their numerical methods for the FSI problems. A uniform and constant
velocity uin is imposed at the inlet, and the outlet pressure pout is set to 0. The no-slip boundary
condition is applied to all the solid walls. The elastic plate is fully clamped into the square
cylinder, which means:

a. d = 0, no displacement occurs at the fixed end;

Xia and Lin Page 8

Comput Struct. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



b. ∇d = 0, rotation of the fixed end is suppressed;

c. Q ≠ 0, shear forces are calculated;

d. M ≠ 0, bending moments are calculated.

The material properties for both the fluid flow and the plate are listed in Table 3, which are
chosen to be consistent with those used by Hübner [39]. Since the vibration frequency of plate
is higher than the first natural frequency of the plate of 0.61Hz, the structural damping is not
considered here. The inflow velocity uin is set to 31.5cm/s, so the Reynolds number

 is 204, whereby L is the width of the square rigid body.

Both fluid and structure domains are discretized into unstructured triangular meshes as shown
in Fig. 9(a). The fluid mesh is of 4,319 nodes and the structure mesh is of 41×4 nodes. At the
fluid-structure interface, the two set of meshes conform to each other as seen in the close-up
view of the meshes in Fig. 9(b). A time step size of 0.001s is used in the simulation. In each
physical time steps, 200 sub-iterations are used for pseudo-time stepping in the structure
domain in order to achieve divergence-free conditions. The order of the residual is 10−6.

Initially, a very large Young’s modulus is assumed to harden and fix the plate to obtain a fully
developed flow around the rigid square cylinder. In the fully developed flow as presented in
Fig. 10, vortices are shed from the corners of the square cylinder periodically with a frequency
of 3.6Hz, as indicated in the variance of fluid forces in Fig. 11. This frequency is very close to
the frequency of 3.7Hz reported in [39]. It is observed that within each shedding period three
vortices move along the fixed plate, with two small vortices on one side and one large vortex
on the other side as shown in Fig. 10. This distribution pattern of vortices induces pressure
imbalance around the plate and causes the plate to vibrate when the Young’s modulus is
reduced.

After t ≥ 10s when the fluid flow is fully developed, the Young’s modulus is reduced to
E=2.0×106 g·cm−1s−2, allowing drastic interaction between the flow and the elastic plate. The
elastic plate starts to vibrate under the influence of the fluid force induced by vortex shedding.
Two examples of the deformed fluid meshes are presented in Fig. 12. No excessively skewed
or distorted cells are observed in the deformed meshes even when the structure deformation is
relatively large, proving the robustness of the dynamic mesh method. Fig. 13 shows the time
history of the tip displacement of the plate. It is found that the vibration amplitude of the plate
increases gradually until the elastic plate finally reaches a stable vibration status with an
amplitude of 0.81cm and a frequency of 3.3Hz, which agree well with Hübner’s simulation
results [39]. Several snapshots of the fluid flow of 3/4 vibration period are presented in Fig.
14. The fluid flow with the vibrating plate is quite different from the one with the fixed plate,
in which only one primary vortex exists along the plate. The primary vortex appears alternately
on each side of the plate during a vibration period, and it is always located on the side opposite
to the moving direction of the plate. In contrast, for the flow over a fixed plate the vortices
move along the both sides of the plate simultaneously. When the elastic plate starts to move
towards one side, the vortices on this side are weakened and eventually suppressed by the fluid
motion associated with the plate vibration. However, the vortices on the opposite side are
strengthened and enlarged by the fluid motion, producing only one large vortex on this side.
The vortex eventually separates from the plate near the free end and produces a small vortex
rotating in the opposite direction as shown in Fig. 14(b), which causes disturbances of the
resulting fluid forces as presented in Fig. 15. It is also observed in Fig. 15 that the resulting
fluid forces have a phase angle of about 180° with the plate vibration, where was also reported
in [39]. Comparing Fig. 11 and Fig. 15, it is found that the resulting fluid forces on the vibrating
plate are much larger than those on the fixed plate. It is because the structure motions strengthen
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the vortex on one side and weaken the one on the other side of the plate, thus increasing the
pressure imbalance around the plate and producing larger resulting fluid forces.

Stress distributions in the thin elastic plate at t=14.46s are presented in Fig. 16. The stress
distributions are compared with the analytical solutions of the same clamped-free end plate
with the same extent of displacement under a constant load (without ambient fluid). At
t=14.46s, the tip displacement of plate Dy is 0.81cm. For a clamped-free end beam with the

geometry of l (length)×h (height)×w (width), a load of  should be imposed at the
free end to achieve the same extent of displacement [41]. The maximum bending stress per
unit width at the root occurs at the lower surface of the beam and is calculated as follows:

(23)

With the F load, the maximum bending stress at the root of the beam is 9,625 g·cm−1·s−2. In
the calculated results shown in Fig. 16, the bending stress on the lower surface at the root of
beam registers a value of 9,810 g·cm−1·s−2, about 1.9% deviation from the analytical result of
9,625 g·cm−1·s−2. The distribution of shear stress in the beam has a parabolic shape along the
transverse direction, having a maximum shear stress at the center and zero values on the upper
and lower surfaces [41]. The maximum shear stress per unit width is calculated as

(24)

The maximum shear stress at the center is 32 g·cm−1·s−2 in the simulated result, which agrees
with the analytical solution of 34 g·cm−1·s−2 calculated by Eq. (24).

It is found that with an initial displacement, the behavior of the plate changes greatly. A
temporary load is imposed on the elastic plate first to obtain an initial tip displacement
Dy=0.78cm and then the load is released. Unlike the one with no initial displacement, the elastic
plate reaches its stable vibration status very quickly as seen in Fig. 17. The frequency of the
vibration also decreases to 2.0 Hz. It indicates that the dynamic interplay between an elastic
plate and the fluid flow is strongly dependent on the initial conditions.

With different material properties, the plate can develop different modes of vibration. By
reducing the Young’s modulus to E=1.0×106 g·cm−1·s−2, the plate develops the second mode
of vibration as demonstrated by the time history of the tip displacement in Fig. 18. But with a
stiffer material property, the plate can sustain the fluid forces with smaller or even no
displacement as in the case of the flow with a fixed plate. Even with an initial deformation, the
vibration of a stiffer plate is eventually subdued as presented in Fig. 19, the displacement history
of an elastic plate with E=8.0×106 g·cm−1·s−2.

All the simulations in this work are run on a HP xw9300 workstation with dual processors of
2.4GHz and a memory size of 8GB. The CPU time of the above simulations varies between
150–200 minutes.

5.3 Unsteady flow in a 2D channel with a flexible wall
The problem of fluid flow in a channel with elastic walls is of great importance for many
biological systems, and has been widely studied in the last several decades. However due to
the complicated interaction between the fluid flow and the channel wall, this problem is still
not well understood. The early studies had been focused on one-dimensional (1D) models of
these systems, which mainly investigated the flow limitation, self-excitation, and wave
propagation. And analyses of these 1D models were based on many special assumptions, which
limited their capabilities to investigate the complex FSI. 2D models were developed recently

Xia and Lin Page 10

Comput Struct. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to provide a more realistic representation of the system, including Zhao et al. [32], Heil [42],
Luo et al. [43,44] and Rugonyi and Bathe [45]. In their models, the Navier-Stokes equations
for the fluid were solved simultaneously with shell theory for the elastic wall. Shell theory is
usually used for the thin-walled structure where the wall thickness is small compared with
other dimensions. However, for moderate wall thickness, the solid element of finite thickness
is more appropriate for the computation. And with this type of solid element, detailed stress
distributions can be obtained to provide more insights into the structural responses.

Here a 2D channel with a flexible wall of finite thickness is computed to investigate the
unsteady flow in a channel in response to large deformation of the channel wall. The channel
configuration is illustrated in Fig. 20. The width of the channel is D=1cm and the length is
16D. The upper wall is elastic and a control point C is placed at 3.5D away from the inlet to
record the displacement history of the flexible wall.

The channel flow with flexible walls is very complex and sensitive to the problem boundary
conditions and the material properties of the walls, see the analysis in [42–44]. The undisturbed
Poiseuille flow with average velocity of u0 =1.0 cm/s is assumed at the inlet and the stress free
conditions are imposed at the outlet. The no-slip condition is applied to the lower solid wall.
The density and viscosity of the fluid are 1.0 g·cm−3 and 2.0×10−3 g·cm−1s−1, respectively, so

the Reynolds number of the flow  is 500. The thickness of the channel wall is
t=0.05D, while the Young’s modulus of the wall is E=5.2×105 (g·cm−1s−2) and the Poisson’s
ratio is set to 0. The density of the wall is 1.0 g·cm−3, so the structure-fluid mass ratio

 is 0.05. The flexible wall is fully clamped at both inlet and outlet ends. The fluid mesh
has 6,074 nodes and the structure mesh has 1,152 (=4×288) nodes. A close-up view of the mesh
near the structure is displayed in Fig. 21. The simulation is performed with a physical time step
size of 0.002s. In each physical time steps, 200 sub-iterations are used to achieve divergence-
free conditions with the residual order of 10−6. The CPU time for this simulation is 218 minutes
for 10 periodic cycles on a HP xw 9300 workstation.

The time history of displacement at control point C is presented in Fig. 22. At the early stage
of the flow, with the sudden increase of the inlet velocity, a pressure wave propagates through
the channel. Under the influence of fluid forces, the wall deforms with a relatively large
displacement. The flexible wall bulges outwards and acts like a buffer to the fluid flow as
shown in Fig. 23(a). However the internal stress of the flexible wall soon reduces the extreme
deformation to moderate values after t ≥ 2s. And after t ≥ 6.5s, the fluid flow and the wall
develop a stable periodic response as shown in Fig. 22. The distributions of the structural
stresses of the flexible wall at t=7.27s are shown in Fig. 24. It can be seen that the maximum
values of all the stresses are more than 102 Pa and all the stress components are within
comparable ranges, so none of the stress components is negligible at this thickness-width ratio
(t/D=1/20), proving that the solid elements are more suitable than the shell elements for a wall
of finite thickness. To investigate the influences of the wall thickness and inertia to the fluid
flow and structure responses, another case with a wall thickness of t=0.1D is studied. While

all the other conditions remain the same, the structure-fluid mass ratio  is set to 0.1.
With a larger wall thickness and inertia, the deformation of the wall decreases. The maximum
deformation is 0.18cm, while it is 0.3cm for the thinner wall. The fluid flow and the wall still
develop a stable periodic response. However the system achieves the stable status at 0.8s, much
faster than the thinner wall due to larger structure internal stresses associated with the thicker
wall. The stress distributions are similar with those of the thinner wall, but with larger values.
The maximum bending stress σxx is 1.2×104 g·cm−1·s−2, and the maximum τxy and σyy are
7.5×103 and 2.0×103 g·cm−1·s−2, respectively. It is noteworthy that the shear stress τxy and the
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normal stress σxy are more significant in the thicker wall, which are definitely non-negligible.
The two cases exhibit quite different features due to different wall thickness, thus it is important
to take into account the effects of wall thickness and inertia in studying the channel flow with
a flexible wall, e.g. blood flow and pulmonary flow

6. Conclusions
A time-accurate cell-vertex unstructured finite volume method for structural dynamics in
response to fluid motions is examined for assessment of accuracy, model validation, and its
capabilities of handling structural responses. The method is integrated with a fluid dynamics
solver through a dynamic mesh algorithm and the ALE method for fluid-structure interaction
problems. A grid sensitivity test indicates that the method is at least second-order accurate. For
model validation, the coupled FSI system is applied to simulate the vortex-induced vibration
of an elastic plate, whose results agree well with the analytical solutions and other published
results of the same test case. The results further show that different vibration modes of the plate
may develop due to variation in material properties. For the channel flow with an elastic wall,
it is observed that the self-excited oscillation develops under the influence of the fluid forces.
The oscillation exhibits a long-term periodic response having a large amplitude at the early
stage of the flow development. The wall thickness and inertia can influence the fluid-structure
interaction and structural responses, thus they should be taken into account in the analysis of
channel flow with flexible walls. This works demonstrates that the cell-vertex unstructured
finite volume method may serve as a viable alternative to the finite element method for the
analysis of structural dynamics.
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Fig. 1.
Construction of the control volume for node P.
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Fig. 2.
The relationship between the fluid and structure domains.
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Fig. 3.
Flow chart of the fluid-structure interaction solution procedure.
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Fig. 4.
Model used for error analysis.

Xia and Lin Page 18

Comput Struct. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Four consecutively finer meshes used for grid independence study and error analysis.
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Fig. 6.
The flow field at T/4 obtained from mesh (iii).
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Fig. 7.
Convergence history of the error norms.
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Fig. 8.
Geometry of the model for vortex-induced vibration of an elastic plate.
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Fig. 9.
(a) unstructured mesh for the fluid domain (b) close-up view of the mesh near the plate.
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Fig. 10.
Pressure contour and velocity vector of the fluid flow with a fixed plate.

Xia and Lin Page 24

Comput Struct. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Variance of fluid forces acting on the fixed plate.
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Fig. 12.
Deformed meshes.
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Fig. 13.
Time history of the tip displacement of the elastic plate.
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Fig. 14.
Pressure contours of the fluid flow with an elastic plate.
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Fig. 15.
Time history of the tip displacement and fluid force.
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Fig. 16.
Distributions of stresses σxx τxy and σyy at t=14.46s (unit: g·cm−1·s−2).
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Fig. 17.
Time history of the tip displacement of the plate with initial displacement Dy=0.78cm.
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Fig. 18.
Time history of the tip displacement of the elastic plate with E = 1.0×106 (g·cm−1s−2).
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Fig. 19.
Time history of the tip displacement of the elastic plate with E = 8.0×106 (g·cm−1s−2).
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Fig. 20.
A 2D channel with a flexible wall.
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Fig. 21.
Close-up view of the mesh near the flexible wall.
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Fig. 22.
Time history of the displacement at control point C.
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Fig. 23.
Pressure contours of the channel flow.
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Fig. 24.
Distributions of stresses σxx τxy and σyy at t=7.27s (unit: g·cm−1·s−2)
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Table 1
Properties of fluid and structure used for the grid convergence study

Fluid Properties Structure Properties

Density ρf (g·cm−3) 1.0 Density ρs (g·cm−3) 1.0

Viscosity µ (g·cm−1s−1) 1.0×10−2 Poisson’s ratio 0.49

Young’s modulus E ( g·cm−1s−2) 5.0×104
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Table 3
Material properties of the fluid flow and the elastic plate

Fluid Properties Structure Properties

Density ρf (g·cm−3) 1.18×10−3 Density ρs (g·cm−3) 2.0

Viscosity µ (g·cm−1s−1) 1.82×10−4 Poisson’s ratio 0.35

Young’s Modulus E (g·cm−1s−2) 2.0×106
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