Table 2.
Test type | Algorithm | Feature vector (# features) | Reference | Accuracy | MCC | GC2 | |||||||
all-α | all-β | α/β | α+β | overall | all-α | all-β | α/β | α+β | |||||
Jackknife | SVM (Gaussian kernel) | CV (20) | [36] | 68.6 | 59.6 | 59.8 | 28.6 | 53.9 | 0.52 | 0.42 | 0.43 | 0.15 | 0.17 |
LogicBoost with decision tree | CV (20) | [23] | 56.9 | 51.5 | 45.4 | 30.2 | 46.0 | 0.41 | 0.32 | 0.32 | 0.06 | 0.10 | |
Bagging with random tree | CV (20) | [34] | 58.7 | 47.0 | 35.5 | 24.7 | 41.8 | 0.33 | 0.26 | 0.22 | 0.06 | 0.06 | |
LogitBoost with decision stump | CV (20) | 62.8 | 52.6 | 50.0 | 32.4 | 49.4 | 0.49 | 0.35 | 0.34 | 0.11 | 0.13 | ||
SVM (3rd order polyn. kernel) | CV (20) | 61.2 | 53.5 | 57.2 | 27.7 | 49.5 | 0.46 | 0.35 | 0.39 | 0.11 | 0.13 | ||
Multinomial logistic regression | custom dipeptides (16) | [28] | 56.2 | 44.5 | 41.3 | 18.8 | 40.2 | 0.23 | 0.20 | 0.31 | 0.06 | 0.05 | |
Information discrepancy1 | dipeptides (400) | [22, 24] | 59.6 | 54.2 | 47.1 | 23.5 | 47.0 | 0.46 | 0.40 | 0.24 | 0.04 | 0.12 | |
Information discrepancy1 | tripeptides (8000) | 45.8 | 48.5 | 51.7 | 32.5 | 44.7 | 0.39 | 0.39 | 0.25 | 0.06 | 0.11 | ||
Multinomial logistic regression | custom (34) | [27] | 71.1 | 65.3 | 66.5 | 37.3 | 60.0 | 0.61 | 0.51 | 0.51 | 0.22 | 0.25 | |
SVM with RBF kernel | custom (34) | 69.7 | 62.1 | 67.1 | 39.3 | 59.5 | 0.60 | 0.50 | 0.53 | 0.21 | 0.25 | ||
StackingC ensemble | custom (34) | 74.6 | 67.9 | 70.2 | 32.4 | 61.3 | 0.62 | 0.53 | 0.55 | 0.22 | 0.26 | ||
Multinomial logistic regression | custom (66) | [26] | 69.1 | 61.6 | 60.1 | 38.3 | 57.1 | 0.56 | 0.44 | 0.48 | 0.21 | 0.21 | |
SVM (1st order polyn. kernel) | autocorrelation (30) | 50.1 | 49.4 | 28.8 | 29.5 | 34.2 | 0.16 | 0.16 | 0.05 | 0.05 | 0.02 | ||
SVM (1st order polyn. kernel) | custom (58) | [29] | 77.4 | 66.4 | 61.3 | 45.4 | 62.7 | 0.65 | 0.54 | 0.55 | 0.27 | 0.28 | |
Linear logistic regression | custom (58) | 75.2 | 67.5 | 62.1 | 44.0 | 62.2 | 0.63 | 0.54 | 0.54 | 0.27 | 0.27 | ||
SVM (Gaussian kernel) | PSI-PRED based (13) | this paper | 92.6 | 79.8 | 74.9 | 69.0 | 79.3 | 0.87 | 0.79 | 0.68 | 0.55 | 0.55 | |
SVM (Gaussian kernel) | custom (8 PSI-PRED based) | this paper | 92.6 | 80.6 | 73.4 | 68.5 | 79.1 | 0.87 | 0.79 | 0.67 | 0.54 | 0.54 | |
SCPRED | custom (9) | this paper | 92.6 | 80.1 | 74.0 | 71.0 | 79.7 | 0.87 | 0.79 | 0.69 | 0.57 | 0.55 | |
10-fold cross validation | SVM (Gaussian kernel) | CV (20) | [36] | 67.9 | 59.1 | 58.1 | 27.7 | 53.0 | 0.51 | 0.42 | 0.41 | 0.14 | 0.16 |
LogicBoost with decision tree | CV (20) | [23] | 51.9 | 53.7 | 46.5 | 32.4 | 46.1 | 0.38 | 0.37 | 0.31 | 0.07 | 0.10 | |
Bagging with random tree | CV (20) | [34] | 53.5 | 51.0 | 37.6 | 22.0 | 41.2 | 0.28 | 0.30 | 0.22 | 0.04 | 0.06 | |
LogitBoost with decision stump | CV (20) | 63.2 | 53.5 | 50.9 | 32.4 | 50.0 | 0.48 | 0.36 | 0.36 | 0.12 | 0.14 | ||
SVM (3rd order polyn. kernel) | CV (20) | 61.4 | 54.0 | 55.2 | 27.4 | 49.2 | 0.46 | 0.35 | 0.37 | 0.10 | 0.13 | ||
Multinomial logistic regression | custom dipeptides (16) | [28] | 56.9 | 44.2 | 42.2 | 17.7 | 40.2 | 0.24 | 0.20 | 0.32 | 0.04 | 0.06 | |
Multinomial logistic regression | custom (34) | [27] | 69.9 | 65.3 | 66.5 | 38.4 | 60.0 | 0.60 | 0.52 | 0.51 | 0.23 | 0.25 | |
SVM with RBF kernel | custom (34) | 70.2 | 61.6 | 67.6 | 39.6 | 59.8 | 0.60 | 0.49 | 0.53 | 0.22 | 0.25 | ||
StackingC ensemble | custom (34) | 73.4 | 67.3 | 69.1 | 29.8 | 59.9 | 0.59 | 0.52 | 0.54 | 0.18 | 0.25 | ||
Multinomial logistic regression | custom (66) | [26] | 69.1 | 60.5 | 59.5 | 38.1 | 56.7 | 0.56 | 0.44 | 0.48 | 0.20 | 0.21 | |
SVM (1st order polyn. kernel) | autocorrelation (30) | 52.4 | 49.7 | 0.3 | 30.4 | 35.1 | 0.18 | 0.16 | 0.05 | 0.06 | 0.02 | ||
SVM (1st order polyn. kernel) | custom (58) | [29] | 77.7 | 66.8 | 60.7 | 45.4 | 62.8 | 0.64 | 0.54 | 0.54 | 0.28 | 0.28 | |
Linear logistic regression | custom (58) | 74.7 | 66.4 | 62.7 | 45.8 | 62.4 | 0.63 | 0.54 | 0.54 | 0.27 | 0.28 | ||
SVM (Gaussian kernel) | PSI-PRED based (13) | this paper | 93.2 | 79.5 | 75.7 | 69.4 | 79.7 | 0.87 | 0.79 | 0.70 | 0.55 | 0.55 | |
SVM (Gaussian kernel) | custom (8 PSI-PRED based) | this paper | 92.5 | 80.4 | 73.7 | 68.0 | 79.0 | 0.87 | 0.79 | 0.67 | 0.54 | 0.54 | |
SCPRED | custom (9) | this paper | 92.8 | 80.6 | 74.3 | 71.4 | 80.1 | 0.87 | 0.79 | 0.70 | 0.57 | 0.56 |
1This method was not originally tested using 10-fold cross validation and thus we also did not report these results