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Abstract
The 2005 completion of the entire genome sequence of the 1918 H1N1 pandemic influenza virus
represents both a beginning and an end. Investigators have already begun to study the virus in vitro
and in vivo to better understand its properties, pathogenicity, transmissibility and elicitation of host
responses. Although this is an exciting new beginning, characterization of the 1918 virus also
represents the culmination of over a century of scientific research aiming to understand the causes
of pandemic influenza. In this brief review we attempt to place in historical context the identification
and sequencing of the 1918 virus, including the alleged discovery of a bacterial cause of influenza
during the 1889–1893 pandemic, the controversial detection of ‘filter-passing agents’ during the
1918–1919 pandemic, and subsequent breakthroughs in the 1930s that led to isolation of human and
swine influenza viruses, greatly influencing the development of modern virology.

Introduction
The announcement in 2005 that a virus causing fatal influenza during the great influenza
pandemic of 1918–1919 had been sequenced in its entirety [1], in the laboratory of co-author
JKT, has prompted renewed interest in the 1918 virus. The ongoing H5N1 avian influenza
epizootic, and the possibility that it might also cause a pandemic [2], increase the importance
of understanding what happened in 1918. However, in reviewing the scientific approach to
unlocking an old puzzle, it is important to note that the sequencing of the 1918 virus took place
after more than century of exhaustive and sometimes disheartening efforts to discover the cause
of influenza (Figure 1). Indeed, the influenza search not only pre-dated the great pandemic of
1918, but also attracted the efforts of some of the greatest researchers of the 19th and 20th
centuries. Along the way, the new fields of bacteriology and virology were advanced, and a
productive marriage between microbiology, epidemiology and experimental science began. In
describing here the 10-year effort (1995–2005) to sequence the genome of the 1918 pandemic
influenza virus, we attempt also to place it within this important historical perspective.

Framing influenza as a clinical and epidemiological entity
In the pre-microbiological era (before 1876) there was much confusion about the causes of
both the common communicable diseases like colds, smallpox, and measles, and the great
epidemic diseases like cholera and plague. Epidemiological notions of carriers and
intermediate vectors were not easily envisioned, preventing many observers from accepting a
unified concept of infectious diseases, some of which were directly transmissible from person
to person (for example, smallpox), others of which were acquired from intermediate vector
hosts (for example, plague), still others of which were acquired from contaminated
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environmental sources (for example, cholera) or were acquired by more than one of the
mechanisms just noted (for example, smallpox and cholera).

In the pre-microbial era, influenza had been considered among the more confusing of the
pandemic diseases for several reasons: (i) the signs and symptoms were non-specific, leading
to confusion with other conditions; (ii) interpandemic influenza-like illnesses were often
attributed to other upper respiratory infections (URIs), fuelling ongoing debates about whether
interpandemic influenza existed at all, or whether URIs were the same thing as interpandemic
influenza; (iii) pandemics occurred sporadically and unpredictably, prompting debates about
whether a new influenza-like disease was the same as the one seen decades ago; and (iv)
mortality statistics, which began to appear in developed nations in the mid-1800s, showed high
mortality only for the first year or two of a pandemic, seeming to support the belief that
interpandemic influenza did not occur.

Each of four major influenza pandemics before 1918, however, incrementally advanced
scientific understanding of the disease. The 1781–1782 pandemic evolved so rapidly, and was
so widespread, that explosive outbreaks of febrile respiratory illness in the general population
alone became a distinguishing characteristic, supporting the notion of a specific disease entity.
The 1789–1799 pandemic, coming soon thereafter, emphasized this recently learned lesson.
The 1830–1833 pandemic, though less impressive, arrived at about the same time as the second
cholera pandemic (1831–1833), of which the inevitable march toward Europe was followed
for over a year in the daily newspapers, helping to establish a deep popular epidemiological
concept of pandemic diseases. The influenza pandemic of 1847–1851 nearly coincided with
the next (third) cholera pandemic (1849–1855): this was the pandemic in which British
epidemiologist John Snow (1813–1858) first characterized the epidemiology and waterborne
transmission of cholera [3]. The 1847–1851 influenza pandemic was also the first to occur in
an era of national vital statistics: the British disease registry, set up in 1836, was able to
characterize the general epidemiological pattern of influenza mortality for the first time.

After the 1847–1851 pandemic, however, there was little recognizable influenza in succeeding
decades, and little evidence in the mortality records that people in the expected risk age groups,
infants and the elderly, were dying from any respiratory disease. If not forgotten, pandemic
influenza became by the late 1880s a curious memory related by elder physicians to young
medical students and house staff. Then, in 1889, the most explosive and widespread influenza
pandemic up to that time appeared suddenly and returned with uncharacteristic perseverance
for several years thereafter, causing as many as five successive annual mortality peaks between
1889 and 1894 [4]. However, the 1889 pandemic (now thought to have been caused by an
influenza A virus with an H3 subtype haemagglutinin [HA], as determined by archaeserology
[5] and supported by recent archaevirology; see below) also occurred in an era ready to study
it scientifically. By that time virtually all developed nations had vital statistics systems in place,
and thus the levels and pattern of mortality could be documented. More importantly, biomedical
research had just entered the microbiological era [6]. By 1889, in the middle of an age of great
scientific excitement and progress, researchers were ready to apply their experiences to
discovering the cause of an important disease, influenza, for which there had been no clinical
material available for nearly 35 years.

A reputed cause of influenza identified in 1892
It was in 1892 that the venerated physician/bacteriologist Richard Friedrich Johannes Pfeiffer
(1858–1945), in partnership with physician/bacteriologist Shibasaburo Kitasato (1852–1931),
both working in Berlin under Robert Koch (1843–1910), reported the discovery of a new
bacterium [7], which Kitasato was able to cultivate and sustain on artificial media [8], and
which both scientists claimed to be the cause of pandemic influenza. When their initial, brief,
1892 report was followed up by more extensive data in 1893 [9], the scientific world was taken
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by storm; it seemed to many that Pfeiffer had taken all of the necessary steps to establish
Bacillus influenzae, as he called it, as the true aetiological agent of influenza. (B. influenzae
was usually referred to as ‘Pfeiffer’s bacillus’ in the literature of the late 19th and early 20th
centuries, and is now known as Haemophilus influenzae).

However, although B. influenzae was clearly a pathogenic organism, and was often cultured
from fatal cases of influenza, other investigators were unable to confirm Pfeiffer’s strong
association, a problem compounded by the apparent disappearance of pandemic influenza
within a year or two of Pfeiffer’s discovery. The verdict was unclear, but the notion that B.
influenzae was the true cause of influenza persisted up to the time of the next pandemic in 1918
(see below), when Rockefeller scientists Peter Kosciusko Olitsky (1886–1964) and Frederick
L Gates (1886–1933) provided strong evidence against a causal association, documenting that
the infective influenza agent survived passage through filters that excluded B. influenzae
[10].

Despite this bacterial blind alley, it is important to note that most of the deaths during the 1918–
1919 influenza pandemic were associated with secondary bacterial invaders (for review of
clinical and pathological features of the 1918 pandemic see [11]), among them H. influenzae,
which Pfeiffer had discovered. Pfeiffer, a budding 38-year-old researcher at the time of his
discovery, went on to have a long and distinguished career as an originator of typhoid
vaccination, the discoverer of bacteriolysis (‘Pfeiffer’s phenomenon’), a conceptualizer of
endotoxin, the discoverer of the pathogenic organism Micrococcus (now Moraxella)
catarrhalis, and a tropical disease investigator of plague (in India) and malaria (in Italy; [12–
14]). Kitasato, who had already discovered the cause of tetanus (1889) and had co-developed,
with Emil von Behring (1854–1917), both tetanus and diphtheria antitoxins in 1890 [15,16],
went on to co-discover the bacterial cause of plague in 1894 [17], and to support his protégé
Kiyoshi Shiga (1871–1957) in elucidating the cause of shigellosis in 1898.

Interpandemic advances in virology (1892–1918)
The field of virology can be said to have been born in 1892, the same year in which Pfeiffer
published his claim for B. influenzae as the cause of influenza [7]. Before that time the word
virus had for many decades been used non-specifically to describe a hypothetical
communicable agent, without denoting any particular size, morphology or physical
characteristics. By the 1890s most communicable diseases were assumed to be caused by
bacteria, and establishing causality required culturing them on artificial media. In the 1880s
Louis Pasteur (1822–1895) had failed to isolate the causative agent of rabies, but when an
effective vaccine was produced few doubted that rabies was caused by a bacterium that, for
whatever reason, had not yet been cultivated. Then, in 1892, the young Russian botanist Dmitrii
Ivanovski (1864–1940) showed that tobacco mosaic disease was caused by an unseen agent
that passed through filters with pores too small to admit bacteria [18]. Six years later, in 1898,
the Dutch botanist/microbiologist Martinus Willem Beijerinck (1851–1931) showed that this
agent could be serially passed in a manner that indicated it was a replicating agent, with
replication occurring only in living plant tissue [19]. Presciently, Beijerinck speculated on the
existence and mechanism of replication of what we now call viruses, writing that ‘the
contagium, in order to reproduce, must be incorporated into the living protoplasm of the cell,
into whose reproduction it is, in a manner of speaking, passively drawn’ [20].

By the turn of the 19th/20th century, Chamberland and Berkfeld filters were being
manufactured and used in research laboratories, allowing microbiologists to filter infectious
fluids to remove bacteria that were presumably too large to pass through their pores. Using this
technology, a variety of ‘filter-passing’ agents were identified in short order, including the
agents of foot and mouth disease of cattle (1897–1898; [21,22]), bovine pleuro-pneumonia
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[23], rabbit myxomatosis [24], and African horse sickness (1900, [25]). An ever-increasing
number of filter-passing agents were soon linked to many other plant, animal and human
diseases: in 1903 Émile Roux (1853–1953) counted nine of them [26] and by 1906 Paul
Remlinger (1871–1964) had raised the number to 18 [27].

However, the situation was complicated by the discovery that not all filter-passing agents were
uncultivatable in bacterial media. The agent of bovine pleuro-pneumonia, for example, was
cultivated early on (it is now known to be a mycoplasma). In 1917, George B Foster Jr claimed
that a filter-passing agent caused the common cold, even though he simultaneously cultivated
‘minute coccoid bodies’ and had to admit that he could not distinguish between these bodies
and an ‘ultramicroscopic’ (undetected) virus as the true cause [28]. On the eve of the 1918
influenza pandemic, distinct concepts of viruses and bacteria as separate and fundamentally
different infectious entities were not yet mature. According to historian Lise Wilkinson, this
problem ‘delayed… the virus concept in the first decades of the [20th] century’ [20], and it
undoubtedly complicated the picture when the 1918 pandemic appeared.

Advances in understanding avian influenza
At the time of the 1918 influenza pandemic, no-one suspected that the cause of the human
disease was derived from an avian infectious agent. Strong associations between some human
influenza epidemics and equine epizootics in the 19th century [29] had been noted, but a
human–swine influenza link had not been established, and indeed was not to be noted until the
detection of swine epizootics in China and the United States during the autumn 1918 wave of
the influenza pandemic [30,31]. Highly pathogenic avian influenza (then called ‘fowl plague’)
had been recognized as a disease entity since 1878 [32], but was not well known to physicians
or biomedical researchers. Between 1901 and 1903, Italian and Austrian researchers, working
independently, identified filterable agents as the cause of avian influenza [33–35]. (Of
unexpected importance, one team even noted that epizootics in domestic chickens were
associated with epizootics of pneumoenteritis in pigs, transmission of disease to pet birds, and
onward from pet birds to humans [35]. It is also interesting to note, in light of contemporary
concerns about the spread of H5N1 avian influenza [2] that a 1901 Austrian epizootic in
domestic chickens had been linked to importation of pet birds from Italy [33].) Schäfer
identified fowl plague virus as influenza A in 1955 [36]. Additional avian influenza A viruses
were identified in the 1960s [37]. Webster and colleagues proposed that pandemic influenza
viruses might be related to avian influenza viruses in 1967 [38]. Slemons isolated influenza A
viruses from wild ducks in 1974 [39], and it is now generally agreed that wild aquatic birds
are the natural reservoir for influenza A viruses (reviewed in [40]).

Research efforts to identify the cause of the 1918–1919 pandemic
As noted, at the time of the 1918 influenza pandemic, biomedical thinking about influenza was
dominated by Richard Pfeiffer’s 1892 claim that B. influenzae was its cause [7]. Indeed, in
1918 Pfeiffer was still active and vocal in making the case for the organism he had discovered
[41,42]. That it was not universally cultivated from all influenza cases did not discredit
Pfeiffer’s claim, because B. influenzae was difficult to grow under the conditions of the day.

The majority of individuals who died during the 1918 pandemic succumbed to secondary
bacterial pneumonia [43–45], caused by Streptococcus pneumoniae, Streptococcus
pyogenes, H. influenzae, Staphylococcus aureus, and other organisms. Moreover, a subset died
rapidly after the onset of symptoms, often with either massive acute pulmonary haemorrhage
or pulmonary oedema, and often in fewer than 5 days. In the hundreds of autopsies performed
in 1918, the primary pathological findings tended to be confined to the respiratory tree: death
was due to pneumonia and respiratory failure. These findings are consistent with infection by
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a well adapted influenza virus capable of rapid replication throughout the entire respiratory
tree with little clinical or pathological evidence for systemic virus infection [45].

The autumn wave of the 1918 pandemic proceeded so quickly that standardized research to
investigate the cause could not easily be set up. Nevertheless, during the autumn and winter
many researchers attempted to confirm or disprove Pfeiffer’s claims, the latter by looking for
filter-passing agents, something not possible during the previous 1889 pandemic. The first to
succeed, on 1 September 1918, were Nicolle and Lebailly, who claimed to have transferred
disease to two healthy volunteers via filtered sputum from a patient in the third day of his illness
[46]. Despite equivocal results from other investigators, between December 1918 and March
1919 Yamanouchi and colleagues seemed to confirm and extend the results of the French
investigators in inoculation experiments with 24 human volunteers [47]. Six of these volunteers
had recovered from influenza; the remaining 18 volunteers, who had not had detectable illness
beforehand, all developed influenza-like symptoms after a 2–3 day incubation period, including
those receiving filtered and unfiltered nasopharyngeal inoculations of pooled infectious
sputum.

Negative or more equivocal results, as well as supporting results, were soon published [48–
69] and an air of cautious scepticism prevailed. Although one reviewer could claim about
human influenza in 1920 that ‘[i]t is perhaps fair to state that the trend of opinion has gradually
been in favour of the theory that the primary infecting agent is a filter passer’ [61], many others,
particularly clinicians sceptical of claims for invisible and hypothetical agents, did not agree,
and the question of influenza aetiology remained open for another decade. By the early 1920s,
annual influenza recurrences had died down, and influenza again became an indolent endemic
winter disease. With little clinical material available, and perhaps with a desire to forget the
horrors of the recent pandemic, influenza research quieted down and further attempts to
elucidate the aetiology were left to but a few investigators.

Swine influenza and the discovery of porcine and human influenza viruses
It has often been true in science that breakthroughs come from unexpected quarters. In 1931
Rockefeller Institute investigator Richard E Shope (1901–1966) published the first three of a
series of landmark papers [70–72] establishing the aetiology of ‘swine influenza’ or ‘hog flu’,
the new epizootic disease of pigs that had been noted initially during the autumn wave of the
1918 influenza pandemic [30,31]. It is now believed that the pandemic virus appearing in 1918
was transmitted from humans to pigs, at that time splitting off into two lineages, one human,
the other porcine [73] (reviewed in [74]). Both lineages persist today, the classical swine
influenza lineage having evolved continually since 1918, and the human lineage having caused
pandemic and endemic influenza from 1918 to 1956. The human line apparently disappeared
entirely around 1957 only to reappear in 1977, after possible release from a freezer [75], and
has continued to circulate endemically in humans up to the present time.

Shope’s studies were important in their own right, but perhaps more so because they stimulated
American and British research groups to take up, once again, the search for the cause of human
influenza. In 1933 Alphonse Raymond Dochez (1882–1964) and colleagues produced apparent
influenza via human nasopharyngeal inoculation and succeeded in cultivating and serially
passing a virus in primary chick embryo cultures, demonstrating that passage material still
produced human disease [76]. Several weeks later a British group that had been collaborating
with Dochez, led by Sir Christopher Howard Andrewes (1896–1988), who had trained at the
Rockefeller Institute in the 1940s, Wilson Smith (1897–1965) and Sir Patrick Playfair Laidlaw
(1881–1940), reported isolation and serial propagation of human influenza virus in ferrets
[77], introducing the great advantage of both a living culture medium and an animal model.
(The human virus was found to cause a catarrhal disease in ferrets after a 2-day incubation
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period.) The papers of these two influential groups, along with the ongoing work of Shope and
colleagues [70–72], led to an explosion of research in the field of virology, which has continued
unabated until the present time.

The modern characterization of the influenza A virus
The work of Shope, of Dochez and colleagues, and of the Mill Hill group led by Andrewes,
Smith and Laidlaw, resulted in the publication of hundreds of research papers during the 1930s,
making influenza the most studied and best understood viral disease of its time. This body of
work is too voluminous to review here, but it can be said that efforts to characterize influenza
were a driving force behind the development of whole fields of investigation and new research
methods, including virology, serology and immunology, experimental animal models, and
modern vaccinology and passive immunotherapy [78,79]. By the 1940s influenza B and
distinctive strains of influenza A had been identified, vaccines and immune serums had been
produced and tested, and a generation of young scientists had been stimulated to embark on
careers in virology, among them Thomas Francis (1900–1969), who did perhaps more than
any other scientist to characterize influenza, Sir Charles Stuart-Harris (1909–1997), who joined
the Mill Hill group and worked productively with many British and American colleagues, Sir
Frank Macfarlane Burnet (1899–1985), the great Russian virologist Anatolii Smorodintsev
(1901–1986), Maurice Hilleman (1919–2005), and even Jonas Salk (1914–1995), whose early
work with influenza vaccines [80] proved to be important in his development, more than a
decade later, of the first widely used poliomyelitis vaccine. By 1950, virology had truly come
of age, and two generations of scientists could look back on the tragedy of the 1918 influenza
pandemic with the seemingly impossible wish that they could study it with modern concepts
and the new tools at hand.

Recovery and sequencing of the 1918 influenza virus
Archaevirological search for the 1918 influenza in 1951

One of the co-authors (JVH) was a student at the University of Iowa in 1949, beginning a PhD
program in microbiology. In 1950, Dr William Hale (1898–1976), of Brookhaven National
Laboratory, visited the University. During a discussion about the 1918 influenza pandemic, he
commented ‘someone ought to go to the frozen north to find a victim from 1918 in a permafrost
grave’. Immediately after that meeting, Hultin contacted his faculty advisor, Dr Albert McKee
(1913–), with a dissertation proposal: to find such a permafrost grave in Alaska. Hultin began
by collecting information from Alaska, most importantly from the palaeontologist Otto Geist
(1888–1962). With Geist’s help, Hultin contacted several Alaskan missions about their 1918
experiences.

By 1951, all such mission communications had been received. Three sites along the coast of
the Seward Peninsula were selected for further study: Nome, Wales, and Brevig Mission. The
selection was based on epidemiological evidence indicating high pandemic fatality in the Inuit
population. In Nome more than half of the native population had died, in Teller 53%, in Brevig
Mission (then called Teller Mission) 90%, in York 100%, and in Wales 55% [81]. Because the
mode of burial is of great importance for the preservation of victims, it was most fortunate that
gold miners from Nome, skilled in penetrating the permafrost, had been employed by the
Territorial government. They had moved from village to village during the winter of 1918–
1919, and had managed to bury all of the victims in mass graves 2 m deep.

In June 1951, an expedition consisting of Hultin, McKee, and the team’s renowned pathologist
Jack M Layton (1917–), left for Alaska. At Brevig Mission the permafrost conditions were
promising, and permission to perform an exhumation was obtained. The team, joined in Alaska
by Geist, made rapid progress digging. Reaching a depth of 2 m, a layer of bodies was
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discovered, placed side by side. Layton opened the rib cages of four bodies, exposing frozen,
dark red, expanded lungs. Generous biopsies from eight lungs were obtained and, while still
frozen, placed in sterile containers that were then put into thermal jugs and kept frozen with
carbon dioxide snow from fire extinguishers. The instruments used were sterilized in boiling
water at the graveside; surgical masks were used, as were sterile gloves.

In the microbiology laboratory at the University of Iowa, this material was cultured in
embryonated eggs using available containment procedures of the time, including use of face
masks, gloves and special pipettes, with all work done under a negative-pressure hood. Five
susceptible ferrets received nasal instillations. The ferrets showed no signs of illness. Cultures
from the lung material of some of the specimens grew H. influenzae and S. pneumoniae.
Histological analyses showed a predominating pattern of acute viral pneumonitis, although
some sections showed acute bacterial pneumonias. All of the available specimens were
processed but no influenza virus was recovered. Unfortunately, all of the materials from this
project were subsequently discarded. As Alfred Crosby stated in his book America’s Forgotten
Pandemic, ‘the most direct assault on Spanish influenza had failed’ [82]. He also wrote [83]:
‘It has been the dream of scientists working on influenza for over a half century to somehow
obtain specimens of the virus of Spanish influenza, but only something as unlikely as a time
capsule could provide them.’

Archaevirological search for the 1918 influenza in 1995
Forty-five years later, in 1995, the search for this time capsule was resumed when co-author
JKT began a project to recover RNA fragments of the 1918 influenza virus from formalin-
fixed, paraffin-embedded (FFPE) autopsy tissues in the collection of the National Tissue
Repository of the Armed Forces Institute of Pathology (AFIP). In the mid-1990s the Molecular
Pathology Division of the AFIP had been engaged in developing and optimizing diagnostic
molecular assays for neoplastic and infectious diseases that could be applied to FFPE tissues
[84]. Projects undertaken simultaneously to characterize novel morbilliviruses from marine
mammal epizootics [85], using both poorly preserved unfixed tissues and FFPE necropsy
tissues, helped clarify protocols to perform genetic analyses of RNA viruses from sub-
optimally preserved tissues.

Thus, by 1995, technical advances were in place that would support efforts to recover genomic
material from 1918 influenza victims. The event that persuaded Taubenberger’s team to turn
their attention to influenza was the publication of a study describing the genetic basis of British
chemist/physicist John Dalton’s colour-blindness using DNA extracted from autopsy tissues
from 1844 [86]. This led to the idea of attempting a similar project using some significant
archival tissue sample for molecular genetic analysis. Genetic material from the 1918 influenza
virus seemed an obvious choice because of its great scientific and historical significance.

A search of the AFIP tissue archives revealed over 100 autopsy cases of 1918 influenza victims.
Over 70 had tissue samples associated with them. Review of the case records and histological
examination narrowed the likely influenza-RNA-positive cases to 13. Of these, one case was
found in 1996 to be positive for influenza A RNA fragments <140 bp in length. Sequence
fragments of four gene segments from this case were published in 1997, confirming the H1N1
subtype and demonstrating the lack of a cleavage site mutation in HA [87]. Although the initial
results were promising, by 1997 there was concern that unless additional positive case material
was found, it might not be possible to determine the entire genomic sequence of the 1918 virus.
A second round of screening of AFIP cases in 1997 revealed a second positive case;
simultaneously, the Taubenberger laboratory received new case material from a frozen lung
sample of a 1918 victim from Brevig Mission, Alaska, contributed by co-author JVH, as
described below.
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After reading the initial paper in 1997 on the characterization of RNA fragments obtained from
the first AFIP 1918 case, Hultin wrote to Taubenberger, detailing the Iowa expedition’s work
at Brevig Mission in 1951, and offering to return to Alaska for a second exhumation to secure
additional specimens for molecular analysis. At a special meeting of the Brevig City Council,
permission to reopen the graves was granted. One of the victims found was an obese female
whose body was well preserved. On further excavation, two skeletons were found, one on either
side of her. It is likely that the subcutaneous fatty tissue of the obese woman had preserved the
internal organs from decomposition during occasional short periods of thawing within the
permafrost. Her lungs displayed the gross appearance of those seen in acute viral pneumonitis,
expanded and dark red in colour. Samples of frozen lung were placed directly in fixatives,
including ethanol and guanidine.

The material from this frozen tissue yielded influenza RNA fragments of a slightly smaller size
than those from the two FFPE cases (no greater than 120 bp), but had the advantage of providing
more starting material. The HA1 domain of the HA gene was sequenced from all three cases
[88], and they differed from each other by only a single nucleotide over 1,200 bases. Because
the viruses were therefore probably nearly identical in sequence, it was decided to sequence
the remaining seven gene segments from the Alaskan case material.

Determining the complete coding sequence of the 1918 virus took 9 years, including
publication of the neuraminidase (NA) segment in 2000 [89], the non-structural segment in
2001 [90], the matrix segment in 2002 [91], the nucleoprotein segment in 2004 [92] and the
three polymerase gene segments in 2005 [1]. The search for additional 1918 influenza-RNA-
positive cases was also expanded by screening FFPE autopsy tissue blocks from the collection
of the Royal London Hospital. Several additional 1918 cases were found, and sequencing of
the HA1 domain of HA again revealed extremely high sequence identity between the isolates
[93].

Reconstruction of the 1918 virus
The development of reverse genetics technology for influenza viruses in 1999 [94,95] made it
possible to perform experiments with viruses containing one or more 1918 influenza genes.
This was crucial, because sequence analysis alone offered no clues to the pathogenicity of the
1918 virus. Since 2001, a series of experiments has been conducted in a multicentre,
collaborative project to model virulence in vitro, and in animal models using viral constructs
containing one or more 1918 genes produced by reverse genetics. The collaborators on this
NIAID-funded program project include co-author JKT, Drs Adolfo García-Sastre, Peter Palese
and Christopher Basler of Mount Sinai School of Medicine, David Swayne of the US
Department of Agriculture (USDA), Terry Tumpey of the US Centers for Disease Control and
Prevention (CDC), Michael Katze of the University of Washington, and Ian Wilson of Scripps
Research Institute, and their staffs. All work in this collaborative project using 1918 viral
constructs has been conducted in BSL3+ containment laboratories at the USDA Southeast
Poultry Research Laboratory, or in BSL3+ containment laboratories of the CDC [90,96–98].

Viral constructs bearing at least 1918 HA and NA genes in a background of modern, non-
mouse-adapted human H1N1 virus, are all highly pathogenic in mice [97–101]. Furthermore,
expression microarray analysis performed on whole lung tissue of mice infected with the
reconstructed 1918 virus or viral constructs containing at least the 1918 HA and NA genes
showed marked upregulation of murine genes involved in apoptosis, tissue injury, and
oxidative damage [100,101]. These findings were unexpected because the viruses with the
1918 HA and NA genes had not been adapted to mice. Control experiments in which mice
were infected with modern human viruses produced limited viral replication and little disease,
but the lungs of animals infected with the 1918 HA/NA construct showed bronchial and
alveolar epithelial necrosis and a marked inflammatory infiltrate, suggesting that the 1918 HA
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(and possibly the NA) contain virulence factors for mice, but that the full virulent phenotype
is only observed with the completely reconstructed virus [98,101].

The viral genotypical basis of this virulence has not yet been mapped, and its relevance for
human pathogenesis also remains unclear. The murine pathology, although reminiscent of
some of the acute viral pneumonia pathology seen in 1918 autopsy studies [11], is nevertheless
distinctive. The roles of the other 1918 proteins, singularly and in combination, are currently
unknown. However, the reconstructed all-eight-gene 1918 influenza virus is more virulent than
constructs containing fewer 1918 genes, suggesting contributions of each gene segment to
virulence [98,101]. Experiments to further map the genetic basis of virulence of the 1918 virus
in various animal models are planned. These experiments should help define the viral
component of the unusual pathogenicity of the 1918 virus, but cannot address whether specific
host factors in 1918 accounted for unique influenza mortality patterns, such as increased fatality
in 20–40 year olds and possible protection in the elderly [11].

Viral sequence data now suggest that the entire 1918 virus was novel to humans in, or shortly
before, 1918, and that it was not likely to have been a reassortant virus such as those that caused
the 1957 and 1968 pandemics [102]. Rather, the 1918 virus is an avian-influenza-like virus
that appears to have been derived in toto from an unknown source [1,92,103] because its eight
genome segments differ from contemporary avian influenza genes, especially at synonymous
sites. Influenza virus gene sequences from a number of fixed specimens of wild birds collected
circa 1918 showed little difference from avian viruses isolated today and consequently did not
suggest these birds were the source [104,105]. These findings also suggest that avian viruses
undergo little directed evolution in their natural hosts even over long periods.

In collaboration with Dr John Oxford, a new project to expand knowledge of human influenza
virus circulation before 1918 was initiated in 2004, using additional samples from the post
mortem tissue archives of the Royal London hospital. Recently, several pre-1918-human-
influenza-A-RNA-positive cases have been identified and initial genetic characterization is
ongoing (unpublished). The goal of this project is twofold: (i) to determine what subtype(s)
circulated in humans before 1918, and (ii) to determine whether any previously human-adapted
influenza gene segments were retained in the 1918 pandemic virus. Concurrently, autopsy
specimens from influenza cases from the 1920s and 1930s are also being examined to
characterize the early evolution of human H1N1 viruses prior to the first H1N1 isolations in
the 1930s; several influenza A RNA-positive cases from the 1920s have already been identified
and are now being studied. If there are specific genotypic traits that gave the 1918 virus its
particular virulence for young adults, comparing it experimentally with less pathogenic
descendant viruses from the early 1920s might be especially informative.

Conclusions and future work
The current projects to understand the origin of the 1918 influenza pandemic virus and its
virulence characteristics rest on a solid foundation of influenza virology and epidemiology
developed over the last century. It is hoped that additional insights into the mechanisms of viral
host adaptation and the mechanisms of how influenza viruses cause disease in their human and
experimental hosts will come from future work with the reconstructed 1918 virus. Looking
backward in time, but also looking forward into the future, we can see that science stands in
the middle of a long and continuing line of effort to comprehend history’s most devastating
human disease. We must also be aware that revealing the biology of a pandemic that occurred
nearly 90 years ago is not just a historical exercise. It may well help us prepare for, and even
prevent, the emergence of new pandemics in the 21st century and beyond.
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Figure 1.
A timeline of key dates in the history of influenza occurrence and characterization
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