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This paper gives a short review of the development of genetic parameter estimation over the last 40 years.

The need to analyse genetic processes in both animal selection experiments and animal breeding improvement

programmes motivated the majority of this work. The usage of animal model in conjunction with residual

maximum likelihood (REML) techniques for mixed models has revolutionized the methods. These methods

to estimate quantitative genetic parameters have recently been advocated for use in evolutionary studies

of natural populations. Therefore, it is perhaps timely to discuss the development of REML methods and

their application to the analysis of artificial selection experiments and breeding programmes in animals.

This should give extra insight into the methods and hopefully lead to synergy between both the areas.
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1. INTRODUCTION
Given the recent enthusiasm for the usage of residual

maximum likelihood (REML) techniques for the analysis

of mixed models in conjunction with the animal model for

the genetic analysis of natural populations (Kruuk 2004),

it is perhaps timely to review the development of these

techniques in which the author has been actively involved.

In writing this paper, the author had two aims.

The first aim is to explain some background of the

development of the REML method. It has been explained

in §2 by discussing the animal breeding problems that

motivated the author’s interest and why existing tech-

niques needed improvement. How the technique best

linear unbiased prediction (BLUP) helps both in compu-

tational terms and at a conceptual level is also shown. It is

also explained how when taking account of the structure of

the model, resulting prediction equations and likelihood

can make it easier to estimate parameters. Finally, it is

shown how the computational methods have evolved and

how the variety of genetic models that can be estimated

has increased.

The second aim is to review the animal quantitative

genetics work on selection and relate it to evolutionary

studies with the hope of contrasting the strengths of the

two approaches. In §3, it is shown how the REML

techniques were extended to deal with animal selection

experiments and improvement programmes with empha-

sis on the estimation of variance parameters taking

account of selection and prediction of breeding values.

In §4, these approaches are compared with those used in

evolutionary studies with emphasis on measuring selection

responses. It is hoped that this might lead to synergy

between the analysis of artificial and natural populations.
tribution of 18 to a Special Issue ‘Evolutionary dynamics of
ulations’.

hompson@bbsrc.ac.uk

15 October 2007
26 November 2007

679
2. ESTIMATION IN MIXED MODELS

(a) Motivation

In the early 1950s, a system of dairy cattle genetic

improvement programmes in the UK was introduced

which followed the paradigm of choosing the best of tested

young bulls to father more daughters and the next

generation of young bulls. The genetic merit of young

bulls for milk production was evaluated by comparing the

milk production of their daughters with that of daughters

of other bulls. Owing to the possible environmental effects

of herd, year and season, daughters were grouped into

contemporary groups, i.e. cows in the same herd, year and

season. The subsequent design was very unbalanced with

a small contemporary group size and although each bull

was used in many herds, all bulls were not used in each

contemporary group. When first introduced, the compu-

tational facilities were very limited and the evaluation

procedure was two-staged. In the first stage, the daughter

means were corrected for the environmental effects of

contemporary groups. In the second stage, the breeding

values of the sires were predicted by regressing these

adjusted progeny means to the overall mean, with the

regression coefficient depending on the additive genetic

variance and a measure of residual variance in the progeny

mean. In effect, this was a mixed model with contempor-

ary groups as fixed effects, random sire effects and the

variance of the sire effects depending on the additive

variance. The emphasis was not only mainly on evaluating

the bulls with the contemporary effects, just as a nuisance

factor, but there was also interest in estimating genetic

variances and covariances between traits. In the 1970s, the

computing facilities were improving. It became computa-

tionally feasible to make better adjustments for the

contemporary group effects taking account of the genetic

differences between contemporary groups arising owing to

unbalance (Thompson 1976).
This journal is q 2008 The Royal Society
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(b) Early analysis

Mixed models had been used implicitly in agricultural

experiments since the 1930s. The emphasis was on

estimating experimental treatment effects (fixed effects)

as accurately as possible by taking account of random

effects. The random effects depend on the context. In

animal experiments on pigs, one might standardize the

litter size and apply different treatments to the individual

pigs in each litter and treat litter effects as random effects.

In crop experiments, the random effects might be blocks

or groups of similar plots. If the number of treatments is

larger than the size of the litter, then one would like to use

a design allocating treatments to pigs within litters which

allowed the variances of all treatment comparisons

corrected for litter effects to be the same. Yates introduced

designs to do this, called balanced incomplete block (BIB)

designs. Further there are two possible types of compari-

sons, one within litters, which have no litter component,

and one from comparisons of litter totals which include

different sets of treatments, which do have a litter

component. One would like to combine this information

and take account of the different variances in the different

comparisons. Yates (1940) suggested constructing an

efficient weighted average of these two estimates and

called this the recovery of inter-block information. Yates

used an analysis for BIB designs, based on an analysis of

variance, by first separating variation into two parts, or

strata, within and between blocks (the latter component is

also termed ‘interblock’). The weights depend on the

variation in the two strata and the variance of the

treatment effect in each stratum. There were three sources

of information to estimate the variation: the two residual

sums of squares in the two strata and the comparison of

treatment effects in the two strata. Later Nelder (1968)

extended the method to generally balanced designs which

allowed more than two sources of variation, or strata, and

allowed the treatment effects to be partitioned into sets

with different efficiencies. In these examples, estimation of

variance components was essentially used to provide

appropriate weights for the fixed effects and give

appropriate standard errors for treatment comparisons.

The author was interested in designs where there was

little balance or orthogonality in the designs, but it was not

clear how to extend the existing methods. The extension

that was developed was built on Henderson’s work on best

linear unbiased prediction (BLUP).

(c) Best linear unbiased prediction

Some of the main points arise when considering a

linear model

yZXbCZuCe; ð2:1Þ

with

varð yÞZZGZ
0 CRZV ; varðuÞZG and

varðeÞZR;
ð2:2Þ

where y represents an n!1 vector of observations, X and

Z are n!t and n!c matrices representing design matrices

for the fixed and random effects in the t!1 and c!1

vectors b and u. The random effects vector, u, and the

residual vector, e, are assumed to be multivariate normally

distributed. The matrices V, G and R represent the

variance matrices of y, u and e, respectively. Since this
Proc. R. Soc. B (2008)
linear model includes fixed effects, a, and random effects,

b, it is called a mixed model. It has many applications. In

the analysis of experiments, interest is in estimation

of treatment effects, b, taking account of the variance

matrix V. In some genetic applications, there is interest in

the estimation of the genetic variances and covariances

in G, adjusting the data for the fixed effects a. In other

applications, which particularly motivated Henderson,

there is interest in predicting the random effects, u.

If the variance parameters are known, then the

weighted least squares estimate, b̂, of b is given by

X
0
V

K1
Xb̂ZX

0
V

K1
y: ð2:3Þ

Henderson in Henderson et al. (1959) showed that the

inversion of V, the n!n variance matrix, can be avoided

and that b̂ satisfies

X 0RK1X X 0RK1Z

Z 0RK1X Z 0RK1ZCGK1

" #
b̂

û

" #
Z

X 0RK1y

Z 0RK1y

" #
ð2:4Þ

This set of equations includes terms for both fixed and

random effects. Owing to the similarity of these equations

to least squares equations, which are the same as (2.4) but

without the G
K1 term, these are now called Henderson’s

mixed model equations. Henderson pointed out that the

effects û in (2.4) are not just computational artefacts

arising out of the solution and he related û to Lush’s

(1949) ‘most probable producing ability’ or predicted

breeding value. Henderson (1950) suggested estimating u

based on maximizing the log-joint density of the data and

random effects and later he considered the more general

problem of predicting linear functions of the unknown b

and u (Henderson 1973). The case when we wish to

predict the individual random effects is of most interest.

Then we wish to predict the vector u with elements uj.

Henderson suggested using a BLUP û for u where: (i) the

mean square error E(ûj-u j)
2 is minimized (best), (ii) û is a

linear function of y (linear), and (iii) ûj is an unbiased

estimator of uj, i.e. E(ûj-u j)Z0 (unbiased). The expecta

tions correspond to values in the hypothetical repetitions

of sampling and predicting and involve averaging over u

and e. Henderson showed that this best linear unbiased

predictor of u satisfies ûZGZ 0 VK1ðyKXb̂Þ with b

satisfying the weighted least squares equations (2.3). We

note that GZ 0 is the covariance of u with y and V is the

variance of y, so that GZ 0 V
K1 is informally cov(u, y)

divided by var(y) and can be thought of as regression

coefficients of y (corrected for the fixed effects) on u.

Henderson (1973) also noted that if b was known, one

could combine all the information available on relatives in

a selection index in order to predict u. This selection index

is an optimal way of selecting individuals as parents based

on a linear index combining information on relatives and

traits when there are no fixed effects associated with the

observations. A selection index predictor of w is then

�wZGZ 0VK1y. Hence the BLUP predictor is of the same

form as the selection index predictor with the intuitively

sensible correction of the data using the weighted least

squares estimate b̂.
(d) Estimation of variance parameters

The estimation of variance components in the mid-1970s

mainly followed Henderson’s (1953) methods that

essentially constructed an analysis of variance by
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sequentially fitting a sequence of linear models. Variance

components were found by equating sums of squares

involving random effects to their expectation. It is a

confusing procedure in that a fixed effect model motivates

the sums of squares and then a random effect model is

used to find their expectation. Cunningham & Henderson

(1968) had suggested sums of squares analogous to those

of Henderson (1953), though using terms based on the

mixed model equations rather than the fixed effect

equations. These methods were not necessarily efficient,

depending on the degree of unbalance and the relative size

of the ratio of variance components. It was suspected

whether that sums of squares would be more efficient.

An alternative method of estimation could be based on

the method of maximum likelihood (ML), but one

drawback is that ML estimation of variance parameters

can lead to very biased estimates. In the simple case of a

linear regression with t regressors, an unbiased estimate of

residual variance is the residual sum of squares, S, divided

by nKt with n as the number of observations. However,

the ML estimate is S/n, i.e. independent of the number of

regressors, and ML ignores the estimation of fixed effects

in the estimation of variance parameters. When consider-

ing the equations of Hartley & Rao (1967) for the first

differentials of the log-likelihood equations, two sums of

squares, one a weighted residual sum of squares and the

other a weighted sum of squares of predicted values,

seemed more natural terms to use. The author carried out

simulations on a non-orthogonal design, suggested for

rotation experiments by Patterson (1964), and expected

that his estimation scheme would produce unbiased

estimates. Because ML produces biased estimates, it was

surprising that the efficiency of the author’s estimation

scheme was exactly the same as those quoted by Patterson

(1964) for a ML scheme. H. D. Patterson (1969, personal

communication) explained to the author that in fact he

had not used the full likelihood of the data but that based

on a set of error contrasts, i.e. comparisons that did not

provide information on fixed effects. This method agreed

with the analysis of variance methods in balanced cases

and effectively eliminated bias in variance estimation due

to estimation of the fixed effects. We were able to show

using a spectral decomposition that there were n–t–c

comparisons with expectation equal to the residual

variance and cK1 components with expectation equal to

a function of the residual and block components. A

weighted least squares scheme was developed essentially

fitting a linear model to the independent mean squares

with parameters given by the variance components with

the slight complication that the mean squares had a

variance that depended on their expectation. In fact

this was a special case of generalized linear models

(McCullagh & Nelder 1989). These models extend linear

models with normally distributed data to allow both the

expectation of the data to be a function of a linear

predictor, and distributions that are members of the

exponential family to be used. In Patterson & Thompson

(1971) the connections with Henderson’s mixed model

equations were noted and the method extended to more

general mixed models.

We called the method a modified ML method and later,

in a review paper, Harville (1977) called the method a

restricted maximum likelihood method. T. P. Speed

(1982, personal communication) commented that a
Proc. R. Soc. B (2008)
more appropriate name might be a residual maximum

likelihood method and this was the name we preferred.

There have been other justifications of the likelihood:

Harville (1974) suggested it arose in a Bayesian analysis

with vague knowledge of fixed effects; and Speed (1991)

pointed out that REML was equivalent to a technique

called generalized ML introduced by Wahba (1990) for

the estimation of spline parameters. A convenient form of

the residual log-likelihood (Harville 1974) is

LZKð1=2Þ½ðyKXb̂Þ0VK1ðyKXb̂ÞC log detðV Þ

C log detðX 0
V

K1
X Þ�:

This is of the same form as the full likelihood with the

addition of the last term that is sometimes thought of as a

penalty for estimating the fixed effects. More recently,

Lee & Nelder (1996) used Henderson’s joint density in a

more general setting (called the hierarchical or

h-likelihood) and suggested that REML includes two

penalties, effectively one for estimation of fixed effects and

one for the prediction of random effects. In some ways

these alternative justifications add extra strength to the

method.
(e) Computation of variance parameters

Thompson et al. (2005) reviewed more recent computing

developments in deriving ML estimates. Some are related

to the maximization of a complex nonlinear function.

It is often useful to express relevant quantities in terms

of the projection matrix

PZV
K1KXðX 0

V
K1

X ÞK1
X

0
V

K1

so that

LZKð1=2Þ½y0
PyClog detðV ÞClog detðX 0

V
K1

X Þ�:

If the variance matrix is a function of parameters q, then

the estimation of a variance parameter qi involves setting to

zero the first derivatives

vL

vqi
Zy

0
P

vV

vqi

� �
PyKtr P

vV

vqi

� �� �
:

This could be thought of as equating a function of the data

to its expectation. The finding of a maximum of the

likelihood usually requires an iterative scheme. One

suggested by Patterson & Thompson (1971) is based on

the expected value of the second differentials, which can

be constructed from

E
v2L

vqi vqj

� �
ZKð1=2Þtr P

vV

vqi

� �
P

vV

vqj

� �
P

� �
:

If these second differentials of q are collected in a matrix

E, it is called the expected information matrix of q. Then,

we can update q̂ using

q̂ ZqCE
K1 vL

vq

� �
;

and this expression can be computed from the solution of

(2.4). The expected information matrix E gives an

asymptotic variance matrix of q̂ . Smith & Graser (1986)

developed a convenient sequential way of calculating the

data and determinant terms in the log-likelihood; and

Misztal & Perez-Enciso (1993) found a convenient way of



682 R. Thompson Review. Estimation of genetic parameters
calculating terms in the first differentials of the likelihood,

taking full account of the fact that a large proportion of the

coefficients in the matrices involved in the mixed model

equations are zero. Efron & Hinkley (1978) suggested,

however, that an observed information matrix, based on

the actual second differentials, could be more appropriate

than the expected information matrix for giving asymptotic

variances. Gilmour et al. (1995) showed that the average of

the observed and expected information matrices is much

easier to compute than that of either the expected or

observed information matrices. The coefficients of this

average information matrix, F, are given by

FijZKð1=2Þy0
P

vV

vqi

� �
P

vV

vqj

� �
Py:

These terms can be calculated in the same way as the data

term, y0Py in the log-likelihood and L is calculated by

replacing y with the ‘working variable’ ðvV =vqjÞPy in

algorithms to calculate the weighted sum of squares, y0Py.

The use of this average information matrix has removed

a computational straightjacket in the estimation of mixed

models. Before its use, the estimation was usually

constrained to estimating a small number of variance

parameters on relatively small sets of data with a restricted

set of variance structures. Now it is possible to fit

realistically up to a 100 parameters on much larger sets

of data with a much wider class of variance structures

including multivariate models, autoregressive models,

random regression models, spatial models and

interactions between these models (Gilmour et al. 2002).
(f ) Genetic models

The application of mixed models to animal breeding data

has motivated several of the developments in mixed model

estimation. The other key result that allowed a much wider

class of models to be fitted was to allow estimation of

correlated random effects. Henderson (1976) was inter-

ested in BLUP using information from all relatives. He

introduced an animal model of the form of (2.1) with the

element ui representing the additive genetic effect for the

ith individual. Then the variance matrix for the animal

effects is GZAsa
2, where A represents the additive

relationship matrix and sa
2 is the additive genetic variance.

Henderson showed that it is much easier to form AK1 (the

term used in the mixed model equations) than A. This

follows from the fact that, if the individuals are listed with

ancestors above descendants, A can be written as TMT
0

where M is a diagonal matrix and T is a lower triangular

matrix with non-zero diagonal elements and i, j th

elements are non-zero if the j th individual is an ancestor

of the i th (Thompson 1979). The matrix T has a simple

inverse with both the diagonal elements and i, j th elements

being non-zero if the j th individual is a parent of the i th

individual. Hence A has a simple inverse. It is interesting

to note that an animal effect can be written as an

accumulation of independent terms from its ancestors

and itself, i.e. ujZ
P

iTiju
�
i , where the independent effects

u�
i , which can be thought of as Mendelian sampling

terms, have variance matrix M. Since if, for example, we

have a non-inbred animal with parents and grandparents,

then its genetic effect is made up of one Mendelian

sampling term from itself, two Mendelian sampling terms

with coefficient one-half from its parents and four
Proc. R. Soc. B (2008)
Mendelian sampling terms with coefficient one-quarter

from its four grandparents. In this case, the estimation

procedure can be thought of as equating û0AK1û or

equivalently û�0M
K1

û� to its expectation.

The advantages of using the animal model are that one

can take account of all additive genetic relationships and

unequal family sizes. On the other hand, one might be

using a composite heritability that might be biased by non-

additive variances, for example, dominance or environ-

mental covariances associated with full sibs if these terms

are not included in the model.

For computational reasons the REML methods were

used initially for sire models, i.e. relating a sire effect with

each observation and ignoring other relationships,

particularly for dairy cattle populations where there are

relatively few sires each with many progeny. As computa-

tional facilities improved it became possible to fit animal

models, relating an animal effect with each individual,

both for univariate and multivariate data taking account of

additive relationships (Meyer 1985, 1997; Jensen et al.

1997). The basic framework was extended to include

more biologically appropriate models with genetic com-

ponents, including maternal models that introduce terms

into the model for an individual that depends on the

mother of the individual or her phenotype (Wilham 1963;

Falconer 1965; Koerhuis & Thompson 1997). Misztal

(1997) showed how dominance terms could be included

in the model. More recently, there has been interest in

introducing extra heritable components to model

interactions, including competition effects, between

individuals (Bijma et al. 2007). The usage of the animal

model with REML was developed and followed initially

for livestock populations only, but subsequently much

more widely. Kruuk (2004) has shown the usage of these

models in the analysis of natural populations.

Before the introduction of the animal model, parameter

estimation was a three-stage procedure: adjusting data for

environmental effects, estimating covariances between

relatives, and interpreting them in terms of genetic

parameters. Now, it consists of fitting a mixed linear model

with specification of expectation and variance submodels.
3. EFFECTS OF SELECTION
Sometimes, either through design or accident, parents

are chosen on their phenotypic performance. Then some

of the usual methods of estimation are biased; for

example, heritability if estimated by sib covariances, or

genetic correlations if estimated by parent–offspring

regression. Some of these difficulties are removed if

ML methods are used.

Suppose we have observations on n1Cn2 female

animals, yi , (iZ1, n1Cn2), of which the first n1 animals

are selected at random and used as parents, and we have n1

offspring observations, zi , (iZ1, n1). Suppose both yi and

zi are normally distributed with means m1 and m2,

variances V11 and V22 and covariance V12 between yi
and zi. Let �y, �y� and �z be the mean values for all

observations in the parental generation, parents and

offspring, respectively. Then ML estimates of m1 and m2

satisfy (e.g. Curnow 1961)

�yZm1 ð3:1Þ

�zZm2 CV12V
K1
11 ð �y�Km1Þ: ð3:2Þ
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An instructive form for the likelihood follows if we

partition the likelihood into two independent parts. The

first part is the likelihood of the parental data, denoted L1,

and the second part the likelihood of ziKV21V11
K1yi ,

denoted L2.1, which can be thought of as the offspring

record conditional on the parental record. So ML

makes use of three pieces of information: the parental

data give information on V1, regression of zi on yi gives

information on V21V11
K1 and the variance of ziKV21V11

K1yi
gives information on the conditional variance

V22cZV22KV21V
K1
11 V21. Suppose now that parents are

chosen on the basis of their own phenotypic values or a

function of these. Following Kempthorne and Von

Krosigk (in Henderson et al. 1959) we can again write

the log-likelihood as the sum of the log-likelihood of the

parental values and the log-likelihood of offspring values

given as parental values. The estimates of the fixed

effects again follow (3.1) and (3.2) and have the natural

interpretation whose response ( �zKm2) equals regression

coefficient (V12KVK1
11 ) times selection differential

( �y�Km1), and the residual log-likelihood is again of the

same form. Curnow (1961) notes that the information

matrix used in the calculation of the asymptotic variance

matrix of the estimates needs modification. He suggests

that expected values for covariances cov(z, y) and var(z),

terms depending on the parental values, should be

calculated using the observed parental values. If the

effect of selection is to reduce the variance of the parental

observations to a proportion k then

covðz; yÞZ kV21 and

varðzÞZV22Kð1KkÞV21V
K1
11 KV12:

ð3:3Þ

Note that if k!1 the variance in the offspring generation

is reduced, but REML still estimates the variance in the

absence of selection, V22.

An alternative and more general way of thinking about

selection processes was introduced by Rubin (1976) who

suggests thinking about the ‘complete data’, comprising

observed data and missing data and introducing a

missing value indicator. In our example, the observed

data are yi, (iZ1, n1Cn2) and zi , (iZ1, n1); the missing

data are zi , (iZn1C1, n1Cn2); and the missing value

indicators are Ryi
, with Ryi

Z1 (iZ1, n1Cn2), and Rzi
,

with Rzi
Z1 (iZ1, n1) and Rzi

Z0 (iZn2C1, n1Cn2). He

shows that if the missing value indicator depends only on

observed data and not the missing data, then the

inference can be based on the observed data. In this

case, the data are said to be missing at random. This

gives extra motivation to our sequential formation of

likelihood and the estimates of u from the mixed model

equations. Rubin (1976) also suggests methods for other

cases when the missing data are ‘missing completely at

random’ and ‘not missing at random’. Hadfield (2008)

has discussed the application of these ideas to the analysis

of natural populations.

A logical extension of this missing-at-random

paradigm is that, when we measure and make selection

decisions based on several variates, a multivariate

approach estimating covariances between variates will

be more appropriate than a sequence of univariate

analyses. More motivation for this approach is given by

the comment by Robertson (1966) that in predicting

response on one trait, one cannot merely multiply
Proc. R. Soc. B (2008)
heritability by selection differential to give response if

other traits influence selection decisions. The corollary

is that one cannot either predict unbiased breeding

values or obtain unbiased estimates of variance par-

ameters if the relevant selection traits are not included in

the analysis.

Henderson (1950, 1973) had used both likelihood

based and sampling arguments to motivate the develop-

ment of BLUP. With random selection of parents, both

arguments give the same predictors. When there is a

selection of parents, then the methods do not necessarily

agree. Henderson (1975), using sampling arguments with

a model based on (2.1) and (2.2), suggests conditioning

on contrasts L 0y with the coefficients of L depending on

how selection is carried out. The author found this

paradigm hard to understand (Thompson 1979), it can

lead to difficulty in generating simulation samples

(Schaeffer 1987) and to loss of efficiency (Im et al.

1989). Rubin (1976) suggests that, based on the

consideration of studies with active intervention, infer-

ences based on likelihoods are less sensitive than sampling

distribution inferences to the process that cause missing

data, in that likelihood methods are more likely to take

account of the fact that the follow-up data might not be

missing at random.

Essentially, analyses of many sets of animal breeding

data were carried out to predict breeding values for

animals, but it was soon recognized that use of the

predicted breeding values also enabled formation of the

estimates of genetic trend (Van Vleck 1977). However, it

is not always obvious how to interpret these estimators.

The estimates of mean genetic values in different

generations certainly have an interesting structure due to

the accumulation of genetic drift in each generation (Hill

1972; Thompson & Atkins 1994). In some cases,

including the earlier two generations example, the

predicted genetic mean value in the second generation is

a function of the heritability and the selection differential

and does not depend on the individual values in the

second generation. Hadfield (2008) has given other

instances when the use of predicted breeding values for

estimating selection differentials is naive.
4. INFERRING SELECTION
In selection experiments, one has at least some control of

the selection processes and it is then easier to take account

of selection in the resulting analyses. In other cases, we

may wish to infer something about the unknown selection

processes from the observed data. A useful case to

consider is if we measure q traits with genetic variance G

and phenotypic variance P. Then if the selection

differential, the difference between the mean phenotype

before and after an episode of selection, is s then the

application of (3.2) (or extension of (3.2)) shows that the

response to selection, r, is given by rZGPK1s (e.g. Lande

1979), assuming that the individuals are unrelated.

Animal breeding literature tends to emphasize the

estimation of the genetic variances and covariances rather

than the selection differentials.

An early attempt to infer culling rules was to

incorporate a culling variate into modelling dairy

cattle culling procedures (Robertson 1966). Meyer &

Thompson (1984) extended the two-trait example to
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include sire families and investigated also a threshold

trait, with values 0 and 1, correlated with the first trait y.

They showed that it was possible to obtain information

on the relationships of the underlying trait with y but

not on the relationships between the culling variable and

the second trait, essentially because the culling variable

was 1 whenever a value was available on the second

trait. This analysis essentially treated culling as a

discrete variable.

Studies in evolution biology have an emphasis different

from those in animal breeding. In terms of the equation to

predict response, rZGPK1s, there is more interest in

measuring the phenotypic selection gradient, bZPK1s,

than the response r. For example, Kingsolver et al. (2001)

give a comprehensive review of recent estimates of

selection gradients. Lande & Arnold (1983) give the

underlying theory. They make extensive use of an identity

introduced by Robertson (1966) and developed by Price

(1970) and called by Lynch & Walsh (1998) the

Robertson–Price identity. This theory shows that the

vector of selection differentials of traits can be expressed in

terms of the covariances between the traits and relative

fitness. Then if there is a linear relationship between

fitness and the traits, PK1s can be thought of as a vector of

the (phenotypic) regression coefficients of relative fitness

on the q traits which are recorded. Arguments similar to

those in the formation of (3.3) can give the change in

variances the following selection.

Alternatively, if we add relative fitness to the set of q

traits and use the Robertson–Price identity to note that

the selection differential for relative fitness is equal to the

phenotypic variance of relative fitness, we find that rZgf,

where gf represents the genetic covariance between the

traits and relative fitness. Presumably, if fitness is linearly

related to the other traits in the analysis, a mixed model

analysis of the traits and fitness could give alternative

estimates. Lande & Arnold (1983) also extend their

methods to include a quadratic regression of traits on

fitness and if the traits are normally distributed there is a

natural interpretation of this extension. They also suggest

canonical transformations, which essentially form linear

combinations of the variates, so that the fitness surface

and the changes in variance due to selection can be

expressed in a simpler form. This use of canonical

transformation is different from that used in animal

breeding studies to simultaneously diagonalize the G and

P matrices and simplify the calculation of predictions and

estimation of genetic parameters (Thompson 1977;

Meyer 1985).

There is an interesting contrast between the animal

breeding approach with its emphasis on estimating genetic

and phenotypic variances and the evolutionary biology

approach with its emphasis on fitness and selection

gradients. It could be useful to attempt a synthesis. It

does not seem appropriate always to treat fitness as just

another trait in a standard mixed model analysis of

normally distributed traits.

There are several reasons. (i) The consequence of

treating fitness as a trait that is totally dependent, either

linearly or nonlinearly (Lande & Arnold 1983), at the

phenotypic or genetic level on other measured traits has

the consequence that the usual assumption of multi-

variate mixed models of positive definite variance

matrices cannot hold, nor does it seem simple to take
Proc. R. Soc. B (2008)
account of nonlinear relationships between traits; (ii) in

equilibrium there might be no additive genetic variance in

fitness and again the usual assumption of a positive

defined additive genetic matrix will not hold; and (iii)

fitness might not be normally distributed (or not be easily

transformed to be so). One suggestion for a trait that

follows a distribution in the exponential family (e.g.

Poisson, gamma or binomial distribution) is to use a

generalized linear mixed model. There are rather obvious

extensions to the generalized linear model weighted least

squares equations (McCullagh & Nelder 1989) and

Henderson’s mixed model equations to give approximate

estimators in this case (Thompson 1979; Breslow &

Clayton 1993; Lee & Nelder 1996). These estimators use

approximations and in the animal breeding context are

thought to behave better for larger family sizes, i.e. for

sire models rather than animal models (Ducrocq &

Casella 1996; Moreno et al. 1997). The methods Lee &

Nelder (1996) introduce are thought to be slightly

different and they argue that these behave better for

essentially smaller family sizes, but no numerical results

have yet been given for animal models.

Alternatively there has been the recent development of

methods based on Markov Chain Monte Carlo (MCMC)

sampling. This paradigm often makes it simpler to think

about general models without being constrained by the

linearity of expectation or normality of distribution. They

can be used to give ML estimates (Guo & Thompson

1994), but most of their usage has been in the

development of Bayesian methods. Sorensen & Gianola

(2002) review their application to quantitative genetics.

More recent relevant papers consider multivariate analysis

when the underlying traits are multivariate normal, but

some measured traits may be grouped or censored

(Korsgaard et al. 2003) and the joint analysis of survival

and an underlying normally distributed trait (Damgaard &

Korsgaard 2006a,b). The Bayesian approach allows

the natural incorporation of ‘prior’ information on

parameters. This prior evidence is not often well

explained, however. Thompson et al. (2005) note that at

a recent conference five-sixths of the papers using a

Bayesian analysis did not quantify the prior knowledge or

used vague or flat priors. Some papers at least paid lip

service to the Bayesian paradigm.
5. CONCLUSIONS
One of the aims in writing this paper was to outline the

development of REML and the animal model and the

applications which provided the stimulation for this.

Another aim was that the author had hoped to tie up

what he perceived as some loose ends, which include

treating fitness as another trait in a standard multivariate

mixed model analysis. In fact some of them seem to have

been tied up before the paper is published. In a paper in

this issue, Hadfield (2008) has built on Rubin’s missing

data theory to extend survival analysis to show how it can

be used to provide a basis for a better analysis of viability

selection in natural populations.

The author would like to thank Desmond Patterson for his
mentoring at the start of the former’s career, and Bill Hill,
Loeske Kruuk, Daniel Sorensen and two anonymous referees
for their comments and patience.
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