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Considering carcinogenesis as a microevolutionary process, best
described in the context of metapopulation dynamics, provides the
basis for theoretical and empirical studies that indicate it is possible
to estimate the relative contribution of genetic instability and
selection to the process of tumor formation. We show that muta-
tional load distribution analysis (MLDA) of DNA found in pancreatic
fluids yields biometrics that reflect the interplay of instability,
selection, accident, and gene function that determines the even-
tual emergence of a tumor. An in silico simulation of carcinogenesis
indicates that MLDA may be a suitable tool for early detection of
pancreatic cancer. We also present evidence indicating that, when
performed serially in individuals harboring a p16 germ-line muta-
tion bestowing a high risk for pancreatic cancer, MLDA may be an
effective tool for the longitudinal assessment of risk and early
detection of pancreatic cancer.

biomarkers � cancer � early detection � modeling � microevolution

S tudies of advanced colorectal carcinomas in humans have
suggested the ecological theory of metapopulation dynamics

contributes to the understanding of tumor microheterogeneity,
but ecological theory has seldom been applied to the under-
standing of the initial phases of tumor formation (1). For the
common epithelial tumors of humans, the period of tumor
development spans a decade or more (2); during this time, tissues
are constantly under the assault of environmental mutagens, but
damage is largely neutralized by DNA repair mechanisms (3).
Studies of nonneoplastic tissues in asymptomatic individuals that
are unlikely to develop tumors show the presence of mutations
(4, 5) and, even when occurring in cancer genes, mutations
appear to be cleansed from the cells constituting a tissue. This
constant low level of mutation and cleansing produces a random
fluctuation of mutations that can be registered with sensitive
detection technologies.

Under physiological conditions, the structural and functional
integrity of tissues is ensured by a compartmental organization
(6) whose spatial constraints regulate the coexistence of physi-
ological clonal patches maintained by stem cells. The progeny of
the stem cells undergo differentiation and eventually engage the
apoptotic program. The introduction of mutation and aneu-
ploidy in tissue stem cells (7, 8) alters the ecology of the clonal
cell populations that compose a tissue and create a collection of
subpopulations (metapopulations) of the same cell type occu-
pying separate patches of a subdivided habitat. The widely
accepted ecological concept that disturbances (exogenous agents
of mortality) have pronounced effects on diversity (9, 10)
suggests that repeated insults that affect tissues (e.g., repeated
chronic inflammation, repeated exposure to toxins) are likely to
influence the metapopulation dynamics of the clonal patches
composing them. In ecological thought, biodiversity was origi-
nally considered to be highest in undisturbed systems. An

alternative proposal, the ‘‘intermediate disturbance hypothesis,’’
proposes that diversity is highest when disturbance occurs nei-
ther too rarely nor too frequently or at an intensity that is neither
very large nor very small. This was originally proposed by
Connell (11) and supported by a number of subsequent empirical
studies (10, 12, 13).

Under these circumstances, the three conditions necessary for
an evolutionary process to occur, variation (mutation, epigenetic
alterations), competition (differential fitness), and replication,
are met, and hence carcinogenesis can be regarded as a micro-
evolutionary process acting on a metapopulation of cells. The
combination of mutations and epigenetic changes occurring in a
small subset of several hundred cancer genes leads to the
emergence of the complex cellular behavior that characterizes
malignant tumors (14). It is thought that the accumulation of
mutations in tumor cells is greatly enhanced by genetic insta-
bility, a property distinguishing tumor from normal cells (15, 16).
Despite genetic instability and the so-called ‘‘mutator pheno-
type’’ of tumor cells, common tumor types are defined by a
limited set of recurring genetic alterations [compare the Cancer
Genome Anatomy Project (CGAP)] that represent the most
frequent final states of an evolutionary process about whose
exact genealogy we remain largely ignorant. For each of the
altered cancer genes known to be responsible for the emergence
of a tumor, several alleles are found in a cohort of fully developed
malignant tumors (17) and, although each tumor harbors a
dominant mutated allele, recent studies suggest that microhet-
erogeneity exists in fully developed tumors (18, 19). We reasoned
that, under a metapopulation-based view of carcinogenesis, the
frequency of a given allele will correspond to the number of cells
bearing the particular allele. Thus, examined over time, the
mutational spectrum (the relative frequencies of the different
alleles for each altered cancer gene) will reflect the degree of
instability and strength of selection as carcinogenesis unfolds. As
the selective forces that shape the tumor genotype exert their
influence, the distribution of the relative frequencies of mutated
alleles will depart from randomness. We posit that the sequential
analysis of the mutational spectra at loci involved in the patho-
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genesis of tumors arising in any given tissue [mutational load
distribution analysis (MLDA)] reflects the dynamic changes
resulting from genetic instability and the strength of selection
responsible for the emergence of a tumor.

Here, we present empirical data obtained in human pancreatic
juice showing that MLDA profiles can be obtained from human
pancreatic juice, and that two metrics derived from the MLDA
profile, namely the total mutational load (TML) and the highest
allele (HDA), can be used for risk measurement and early
detection of pancreatic cancer. Studies of MLDA profiles in
members of families predisposed to pancreatic carcinoma show
the potential of MLDA as a putative risk assessment tool. In
silico modeling illustrates how MLDA can be used for early
detection of cancer.

Results
MLDA of Pancreatic Juice. We obtained empirical data in human
subjects by analyzing the soluble DNA found in pancreatic or
duodenal juice after stimulation with secretin. An oligonucleo-
tide zip-code microarray with rolling circle-amplification signal
enhancement enables the simultaneous interrogation of tissue
fluids for a moderate number of alleles (20) and the detection of
low-prevalence allelic variants. Alleles of both the Ki-ras and p53
genes are well suited for MLDA of pancreatic juice, because both
are often found to be altered in a high proportion of pancreatic
carcinomas (21). From the mutational spectrum of these two
genes, we selected 22 somatic point mutations (Fig. 1) that were
both prevalent enough to be informative and technically com-
patible for being simultaneously interrogated in an RCA en-
hanced zip-array format.

We initially tested the ability of MLDA to discriminate among
three distinct cohorts: subjects without known pancreatic pa-
thology or risk factors for pancreatic cancer (n � 9), patients
thought to be at increased risk for pancreatic cancer because of
repeated bouts of pancreatitis (n � 12), and patients with
clinically evident pancreatic carcinoma (n � 21). Fig. 1 shows the
mutational profiles for each of the cases examined [see support-
ing information (SI) Fig. 5 for an enhanced Fig. 1 that includes
the aggregate (allelic) and total mutational load values]. The
total mutational load does not overlap among the three groups
of cases (normal, 5.8–7.3; pancreatitis, 12.3–21.0; and cancer,
22.8–67.9) (Fig. 2), and we conjecture that it reflects the degree
of genetic instability present in the population of pancreatic cells.
The observed differences in aggregate and total mutational load
values among the three groups are statistically significant with a
P value �0.0001 (Kruskal–Wallis test) for Ki-ras, p53, and the
sum of both loci. The predictive value of the TML metric was
assessed with a supervised classification method based on multi-
nomial regression (a generalization of logistic regression for
more than two groups) by using the 42 cases studied. Perfect
classification of the individuals into their diagnostic groups was
possible with the model. Sensitivity was 100% (95% C.I., 84.4–
100) for cancer and 100% (95% C.I., 75.7–100) for pancreatitis.
Specificity was 100% (95% C.I., 70.1–100). Because the sample
size was small, bootstrap techniques were used to estimate the
expected misclassification rate under similar conditions. The
0.632� estimate of the misclassification error was 2% (based on
1,000 replicates) (22). The inspection of the bootstrap replicates
revealed that, of the 42 samples, three were often misclassified:
sample 9B, with the lowest total mutational load in the pancre-
atitis category, was usually assigned a high probability to belong
to the ‘‘normals’’; sample 18B, with the highest total mutational
load in the pancreatitis group, was usually misclassified as
pancreatic cancer; and sample Y10, with the lowest total muta-
tional load in the carcinoma group, was usually misclassified as
pancreatitis.

To identify whether a subset of specific alleles was equally
predictive, we explored stepwise methods for selection of alleles

and methods based on classification trees (random forests anal-
ysis) (23). The misclassification error rates were 41% for the
stepwise procedure based on multinomial regression and 19%
for the random forest, showing that none of the alternative
classification strategies improved the results. Inspection of the
selected alleles in different bootstrap samples revealed great
variability, suggesting that the information provided by each
allele is similar, and that a subset of alleles more informative than
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Fig. 1. MLDA profiles in three distinct populations. Each row represents one
subject; Top is composed of subjects with no known pancreatic pathology (n �
9), Middle groups patients with chronic pancreatitis at increased risk for
pancreatic carcinoma (n � 12), and Bottom depicts the results obtained in
patients with pancreatic carcinoma (n � 21). The number above the triplet
sequences identifies the codon. Each column represents one allele, and the
color in each box denotes the proportion of each allele constituting the
population of molecules encoding Ki-ras p21 or the p53 protein. Although
many alleles in cancer patients were �5%, the actual representation is cut off
to depict the dynamic range of values between 0.000% and 5.000%. The
enhanced SI Fig. 5 shows the results from the addition of the fractional values
for an individual gene (Ki-Ras or p53) and the total mutational load result-
ing from the addition of all fractional values (Ki-Ras and p53).
The actual fractional values for the each allele are provided
http://genecube.med.yale.edu:8080/montebello.
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the rest is unlikely to exist. For discrimination purposes, the
addition of the contribution of each allele into the TML metric
is the most informative. Qualitative inspection of the MLDA
profiles (Fig. 1) reveals two scenarios underlying a high TML: it
can be due to uniformly high values distributed throughout most
of the alleles examined (case 7B) or to a very high predominant
allele (case 4L), presumably produced by selection acting on
background genetic instability.

The second metric derived from MLDA is the highest allele
value in a profile [highest dominant allele (HDA)]. Among the
subjects with no known pancreatic pathology, the highest allele
was between 0.7 and 1.2; for cases with pancreatitis, the highest
HDA value was between 1.1 and 2.7; and for cases with
carcinoma, the values were between 2.9 and 37.3. Although the
HDA metric was differentially distributed through the three
distinct clinical groups, its discriminating capability was found to
be lower than TML (the estimate of the misclassification error
rate was 5%). It is noteworthy that six (29%) cancer samples
show a pattern of high total mutational load without one
dominant allele but several alleles with increased mutation
frequency and relatively low highest value. Despite the slightly
inferior performance of this second metric, the correlation of
TML with HDA and with the standard deviation among the
individual allele values indicates the validity of these additional
metrics (compare SI Fig. 6).

The observation that MLDA-derived metrics are effective in
identifying individuals belonging to three different risk groups
for pancreatic cancer motivated us to analyze pancreatic juice
from members of families predisposed to pancreatic cancer by a
germ-line p16 mutation. Blinded examination of the mutational
profiles and the TML values in the 16 samples examined showed
two homogeneous groups: a ‘‘normal-like’’ and a ‘‘pancreatitis-
like’’ pattern (see Fig. 3 and legend). After unblinding the series
of samples, two individuals with normal p16 genotype showed
profiles in the normal ‘‘no-risk’’ zone, and four individuals,
harboring a p16 germ-line mutation and belonging to three
independent families, turned out to have iterative studies that
provided data on the time-dependent variation of MLDA-
derived metrics. The random fluctuation of the values for
specific alleles obtained at different times can be appreciated in
the serial samples of individuals exhibiting a normal-like pattern
as well as in some of the alleles in pancreatitis-like patterns. Of
the six individuals with a p16 germ-line mutation, two had initial
low-risk samples (normal-like pattern) and moved to the high-
risk category (pancreatitis-like pattern), two were classified as
‘‘at risk’’ and remained in this class, and two had a single
time-point study (see SI Fig. 7 for an enhanced Fig. 3). It is
important to note that, for a given individual, the alleles that
show the highest values vary from time point to time point.

However, in two instances, the ascending allele remains identi-
cal, raising the possibility that the ‘‘persistence of dominance’’
may constitute an additional qualitative predictive factor for the
development of cancer. These observations underscore the value
of using a wide mutational spectrum for each locus interrogated
by MLDA. Not only is it impossible to predict which of the alleles
will be driven by selection to be ultimately and predominantly
expressed in the invasive tumor state, but also the allele that is
dominant within the risk boundaries may vary because of chance
events. A disturbance or a deleterious mutation can eliminate an
expanding oncodeme(s) and thus alter the subsequent MLDA
pattern (see below and Fig. 4).

In Silico Modeling. The aim of our simulation is to show that a
relatively simple stochastic model can provide a plausible ex-
planation for the dynamics and distribution of mutational load
and provide insight into the relation of parameters reflecting
metapopulation dynamics to the emergence of tumors and
therefore to the measure of cancer risk. The model, based on a
microevolutionary view of carcinogenesis, takes into account
intermittent global disturbances applied to a spatially structured
tissue containing metapopulations of cells. Without disturbance
and for an arbitrary length of time representing the life span of
the organism host, it is possible to parameterize the model in
such a way that, despite the occurrence of mutations, no tumors
emerge. Within a broad range of parameters, we observed that
intermediate frequencies and intensities of disturbance would
lead to higher probabilities of tumor formation than in states
with more extreme or no disturbances, but with equivalent
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Fig. 3. Longitudinal MLDA profiling of a population at risk. MLDA profiles
from subjects belonging to different families with increased risk for pancreatic
cancer due to inherited p16 mutation. Notation is: Family.Subject.Serial sam-
ple (SI Fig. 7 provides the enhanced version of the figure indicating the age at
which the sample was obtained and the genotype. Two patterns can be
recognized in the samples: normal- (e.g., family 5, sample N5) and pancreati-
tis-like patterns (e.g., family 4, sample N4). For subjects with sequential
samples, the profiles change with time from normal- to pancreatitis-like,
indicating an increase in risk. Note that in instances when the risk increases,
the alleles with high values do not necessarily persist. The total load for Ki-ras
and p53, the age at time of sampling, and the p16 genotype are provided for
each subject on the right.
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mutation rates, types of mutation, mutated phenotypes, and
otherwise identical model parameters (SI Fig. 8). In the model,
demes evolve on a grid with periodic boundary conditions. The
fitness of a deme or clone is a function of mutations affecting
three general biological functions: the proliferative rate, the
death rate (either promoting deme survival or more commonly,
by several orders of magnitude, deleterious to deme survival),
and susceptibility to disturbances. Demes were initially randomly
distributed throughout the grid at a fixed density. The param-
eters of a single run included initial cell density, baseline
mutation rate, wild-type and mutated growth, death, and sus-
ceptibility probabilities, as well as disturbance frequency and
intensity. Runs consisted of 5,000 Monte Carlo iterations.

The simulations show that the hypothetical transition, from a
randomly varying mutational spectrum to a spectrum persistently
dominated by a dominant allele(s), does take place during in silico
carcinogenesis and distinguishes a population at risk from a pop-
ulation developing a tumor (SI Fig. 9). For any specific run, we can
ascertain the in silico MLDA profile at each of the time steps for
the entire time length of the simulation. Because the model is
nondeterministic, we can select runs that do not terminate in tumor

formation and compare the MLDA profiles for each step to those
of runs that terminate in tumor formation. We find that the MLDA
profile does cross the ‘‘cancer threshold with no return’’ in the
instances in which disturbance acts as a factor causing the emer-
gence of a tumor (Fig. 4). Simulations designed to explore the role
of disturbance showed that the effect of disturbance frequency
appears to lead to relatively gradual changes in the risks of
developing tumor. The maximum risk of tumor formation occurs at
intermediate disturbance intervals. However, the effect of distur-
bance intensity shows a fairly steep bifurcation between lower
and higher intensities with a maximum risk at intermediate intensity
(SI Fig. 8).

Discussion
MLDA of pancreatic juice yields two biometrics, TML and
HAD, that distinguish normal individuals from those at risk and
from patients suffering from pancreatic carcinoma with a high
degree of specificity and sensitivity. Statistical analysis of the
data suggests that MLDA is equivalent to a conventional bi-
omarker in phase IIB of development although before a phase
III is undertaken validation studies are required to test the
reproducibility of the MLDA profiles and derived metrics in
stored samples and thus ready to support the design of more
extensive validation studies (24). Additional studies will also be
required to determine whether the source of the DNA sampled
by the MLDA assay (pancreatic vs. duodenal juice) influences
the results of the test. The technological platform used for our
initial studies is relatively cumbersome and thus not widely
applicable. Technologies are emerging, however, that will enable
sequencing of allele mixtures with quantitation at the 1% level.

The potential of MLDA is reinforced by in silico simulations
that suggest both TML and HDA will enable the early detection
of pancreatic cancer. The agent-based model also validates the
notion that disturbance is a powerful factor that underlies the
emergence of tumors independent of the rate of mutation. It is
possible to think that stool could serve as a surrogate substrate
for pancreatic juice, thus facilitating investigation of an asymp-
tomatic population. Although the Rolling Circle Amplification
enhanced zip-code array has been carefully validated (see Ma-
terial and Methods), it is hoped that technological improvements
will facilitate the quantitative analysis of the variation present in
other cancer loci, making MLDA a more robust and reliable test.

We believe TML and HDA may be particularly effective for
early detection and risk measurement, because they reflect the
pathogenetic process of carcinogenesis seen through the prism of
metapopulation dynamics. Future studies should explore
whether other ways to measure diversity will be more relevant to
the measurement of cancer risk in specific tissues (25). The
interrogation of soluble DNA found in biological f luids derived
from the tissue of interest, in this case pancreatic juice, is a
crucial element of this approach, because it provides a sample of
the entire cell population at risk and can be thought off as an
index of ‘‘molecular dysplasia.’’ Furthermore, it provides the
means to repeatedly sample and monitor events occurring in the
tissues without physical disruption. Work in progress shows that
fluids contain a broader spectrum of mutated alleles that
partially overlaps with that found in paired tissue samples (data
not shown). Because cells harboring mutations are more likely to
die, either spontaneously or under the effect of disease (distur-
bance), we speculate that fluids are enriched for mutations with
respect to tissue.

As opposed to conventional biomarkers that are based on a
single molecule (protein or nucleic acid) specific for the tumor
cell, MLDA exploits variability as the source of information.
Whereas conventional markers will miss tumors failing to ex-
press the specific molecule, MLDA reports the emergence of any
dominant tumor genotype within the alleles used as probes. Most
useful for future longitudinal studies is the potential generation
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of a scale that enables the measurement of risk. The risk scale is
based on the identification, in cross-sectional studies, of two
boundaries separating normal individuals from individuals at
risk and the latter from patients harboring a tumor.

Longitudinal records of the metrics derived from MLDA
provide a real-time description of the dynamics of carcinogenesis
and thus can be used as a relative measurement of cancer risk for
an individual organ. A number of factors contribute to an
individual’s risk of developing cancer and, at least for some
high-penetrance genes and environmental exposures, epidemi-
ologists have devised an array of means to compute risk.
However, for most common cancer types, the risk factors acting
on the vast majority of the population are weak, and even for
those with powerful risk factors, we have no way to monitor the
outcome of the process leading to tumor formation. In other
words, although we have imperfect ways to identify who is at risk,
we lack tools to forecast when the tumor will emerge. The
MLDA strategy should be well suited to implement early-
detection protocols.

Our preliminary longitudinal data in subjects at risk for
pancreatic cancer due to a germ-line p16 mutation suggest that
MLDA-derived metrics do reflect the evolution of risk in time
and can classify samples according to risk levels that are coherent
and correlate well with the understanding of pancreatic cancer.
The risk of individuals harboring a p16 germ-line mutation
increases with age, and no increase in risk is suggested by the
MLDA profiles of family members with wild-type p16 genotype.

MLDA biometrics measured in tissue or biological f luids can
be applied to a wide spectrum of organ sites. Colorectal cancer
(stools or colonic lavage), breast cancer (nipple aspirates or
ductal lavage), epithelial malignancies of the lower urinary tract
(urine), bronchopulmonary cancer, and other tumors should be
detectable at an early stage.

Materials and Methods
Simulation/Model Description. We have simulated the distribution
of mutational load and its relation to tumor development in a
population of cells located within a spatially structured tissue
subject to periodic disturbances by using a stochastic lattice
model (see SI Fig. 8 for a detailed description and SI Fig. 9 for
sensitivity analyses). The lattice is a 100 � 100 square grid with
periodic boundary conditions. Demes are represented as indi-
vidual (stem-like) cells that have the capacity to mutate, repro-
duce by expanding into vacant neighboring tissue niches or die.
Demes were initially randomly distributed throughout the grid at
various overall densities, each occupying a single location in the
grid. We simulate metapopulation barriers by limiting coloni-
zation into unoccupied neighboring sites only. A deme is char-
acterized by its ‘‘genotype,’’ which is initially wild type but
subsequently altered by accumulated mutations. During each
time step, mutation, expansion, and death were randomly as-
signed to each cell according to transition probabilities based on
the genotype of the deme. For the studies presented here, a
single baseline mutation rate was used throughout. For the
purpose of monitoring mutation load, the genotype of a deme
was represented by 10 alleles, for 3 target genes or 10 possible
values for each gene (one for each type of potential advantage;
proliferative rate, death avoidance, and susceptibility to distur-
bance). The frequencies of each mutated allele in the population
were explicitly monitored to track relative changes in mutational
load profile in the tissue over time. The mutational load at a
number of other loci (with deleterious mutations) was also
monitored. The parameters of a single run included growth,
death, and susceptibility probabilities (for both wild-type and
mutated genotypes) and mutation rate, as well as disturbance
frequency and intensity. Runs consisted of 5,000 Monte Carlo
iterations. Global disturbance events were fatal for a cell as a
randomized function of its overall death and susceptibility rates

and the global disturbance intensity parameter. Average distur-
bance intervals ranged from every 2 to 1,000 iterations. Distur-
bance intensities ranging from 0.3 to 0.999 were evaluated. For
the studies presented here, either no disturbances occurred
(undisturbed state) or disturbance frequency was 25 iterations,
with disturbance intensity of 0.9. Individual demes within
patches were subject to random culling if they persisted without
a sufficient threshold of mutations before the potential trans-
formation to an oncodeme, defined for the current studies as the
appearance of a third mutation. Tumor formation was consid-
ered to have occurred with the accumulation of three mutations
in a continuously expanding clone (see SI Appendix and SI Text).

The software for this model is available through the model
repository from the Harvard Integrative Cancer Biology Center
for the Development of a Virtual Tumor (CViT) Program and
can be found at http://genecube.med.yale.edu:8080/montebello.

Human Subjects. All samples were collected under Institutional
Review Board-approved protocols (Yale Human Investigation
Committee Protocol 10926 and Evanston Northwestern Health-
care and University of Nebraska Medical Center, and informed
consent was obtained from each patient). The ‘‘no-risk’’ or
normal samples (n � 9) were collected from individuals under-
going Endoscopic retrograde cholangio pancreatography for
biliary disease with no evidence of pancreatic pathology or
malignancy. The pancreatitis group (n � 12) had impaired
exocrine function and clinical and imaging findings of chronic
pancreatitis. Twenty-one patients with histologically docu-
mented diagnosis of pancreatic cancer were used to establish the
profile associated with malignancy. Eight members belonging to
three families at risk for hereditary pancreatic cancer due to a
p16 germ-line mutation are being followed at the Creighton
University Hereditary Cancer Institute and Evanston North-
western Healthcare. Six of the eight are asymptomatic carriers,
and two are of wild-type genotype with no known pancreatic
pathology.

Assessment of Mutational Load. Pancreatic juice was obtained
during endoscopic examination either by canulation of the
pancreatic duct or by i.v. injection of secretin 1 unit/kg, 0.2
mgr/kg (Repligen) and collection of duodenal juice in 3- to 5-min
intervals. Soluble DNA in the fluid was extracted, and 50 ng of
genomic DNA was used to PCR-amplify Ki-ras exon 1 and p53
exons 5 and 7 in a final volume of 30 �l, as described elsewhere
(20). Amplified DNA was used for a multiplex ligation detection
reaction and its products hybridized, 36 replicates for each spot,
onto a generic zip-code 3D-Link slide microarray according to
Ladner et al. (20). Hybridization was detected by rolling-circle
amplification decorated with complementary fluor-oligonucle-
otides. Slides were scanned at 635 nm on a GSI Lumonics 4000
Scanarray and analyzed with GenePix Pro 3.0 software (Axon
Instruments) or Spot (CISRO Biotech Imaging Group). Trun-
cated median values of the 36 replicates were used to make the
calculations for each zone of the array. Normalization of a given
subarray was performed by using the signal intensity of three
sample-control replicates and the added intensity of all controls.
Repeated assessment of MLDA starting with the genomic
amplifications gave reproducible measurements with 0.52%
standard deviation. The profiles obtained when three aliquots of
the original f luid were analyzed did not vary significantly, and
values were within 0.67 standard deviation. Spiking of fluids with
human Ki-ras-mutated DNA was also used to verify the fidelity
of the procedure. In 12 cases with a dominant allele, �20% the
presence of the mutation was confirmed by sequencing the PCR
product.

Total mutational load represents the sum of mutated allele
frequencies for a given case. Aggregate mutational load refers to
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the sum of frequencies of mutated alleles for one gene, which,
in this case, is either K-Ras or p-53.

Statistical Analysis. Mutational load profiles of the distinct groups
(normal, pancreatitis, and cancer) were compared by using the
Kruskal–Wallis test. The predictive value of the TML metric was
assessed with a supervised classification method based on multi-
nomial regression, also named polytomous logistic regression.
This is a generalization of logistic regression for a response
variable with more than two groups. The model aims to predict
the probability of multiple class assignment using TML as a
quantitative predictor. Because the sample size was small, boot-
strap techniques were used to estimate the expected misclassi-
fication rate under similar conditions. The 0.632� estimate of
the misclassification error was 2% (based on 1,000 replicates).

The model was internally validated by using bootstrap tech-

niques. The expected misclassification rate was estimated by
using the bias-corrected 0.632� method (22).

The predictive ability of the total mutational load was assessed
with a supervised classification method based on multinomial
regression (a generalization of logistic regression for more than
two groups). The model was internally validated by using boot-
strap techniques. The expected misclassification rate was esti-
mated by using the bias-corrected 0.632� method (21).
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