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Abstract
Gas chromatography coupled to mass spectrometry (GC-MS) is one of the most frequently used tools
for profiling primary metabolites. Instruments are mature enough to run large sequences of samples;
novel advancements increase the breadth of compounds that can be analyzed, and improved
algorithms and databases are employed to capture and utilize biologically relevant information.
Around half the published reports on metabolite profiling by GC-MS focus on biological problems
rather than on methodological advances. Applications span from comprehensive analysis of volatiles
to assessment of metabolic fluxes for bioengineering. Method improvements emphasize extraction
procedures, evaluations of quality control of GC-MS in comparison to other techniques and
approaches to data processing. Two major challenges remain: rapid annotation of unknown peaks;
and, integration of biological background knowledge aiding data interpretation.
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1. Introduction
The terms and the idea of metabolomics were introduced less than 10 years ago [1] focusing
on an improved understanding of biological networks by systematic and comprehensive
analysis of metabolism. However, comprehensive quantitative analysis of metabolites using
gas chromatography coupled to mass spectrometry (GC-MS) had already been advocated in
the 1970s [2] and subsequent decades with a focus on diagnostic purposes in clinical [3] and
plant biological settings [4]. The advent of faster computers, better algorithms for spectra
deconvolution [5] and improved statistical software packages facilitated exploiting GC-MS
data files in an unbiased way compared to the classic procedure of pre-selecting analytical
target molecules. The complement of detected peaks could now be analyzed by multivariate
statistics to yield separation between classes of biological study designs, such as mutant and
wild type plants [6], mammalian systems [7] or microorganisms [8]

These tools were subsequently used for proof-of-principle studies in a variety of species and
applications. Importantly, minimum requirements to report metabolomics studies have recently
been proposed, including standards for chemical analysis [9]. Such standards became necessary
because metabolomics involves a variety of convoluted procedures, and, without standardized
reporting, results and final interpretations become hardly comparable between studies.
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When searching the ISI literature database for GC applications to metabolomics or metabolite
profiling, 285 reports were counted until 2006, of which 80% were original research articles
(Fig. 1). There has been large increase in the number of reports since 2002, which has continued
in 2007. Based on the journal titles and the definition of science disciplines within the ISI
database, more than half of these papers focused on application of techniques rather than
method improvement (Table 1). This trend indicates a level of maturity of GC-MS that lends
itself to be used for a large variety of biological questions.

Compounds screened by GC-MS profiling cover large parts of primary metabolism that are
conserved across species, facilitating comparative studies between model organisms (e.g.,
mouse or rat) and humans. A variety of tools support use of GC-MS-based studies on primary
metabolism, from mass-spectral libraries to advances in sample-introduction techniques and
MS and interpretation of results by mapping results to known biochemical pathways.

However, compared to biomedical research or microbiology, plant-science papers still form
the majority of published papers of GC-MS metabolite profiling. This trend can in part be
explained by historical coincidences, but in part also because (in first approximation) all
metabolites detected in plants are generated by the plant biochemical machinery itself, whereas
metabolites in animals originate from both dietary catabolism and from intracellular anabolic
biosynthesis. Biochemical interpretations of metabolite profiles in mammalian organisms are
therefore less straightforward than in plants, which is also due to the high metabolic activity
of many different organs in animals. Any human metabolome catalog that is generated by
genome-based associations rather than analytical chemistry findings is necessarily limited to
surveying endogenous anabolic activities or general catabolic pathways. Conversely, an
increase in nutrition-related studies can be foreseen for analyzing gene-diet interactions in
animals and humans (including a focus on the gut microbiome), which will also probably utilize
GC-MS metabolite-profiling methods.

The current dominance of plant-science applications of GC-MS is further due to the availability
of an excellent model organism, the small eudicotyledon plant Arabidopsis thaliana.
Arabidopsis was the first higher organism with a fully sequenced genome, and generation of
knockout and transgenic plants was comparatively easier than for mutant animals. Starting in
1998, metabolite profiling by GC-MS was applied to discover functions of plant genes in
industrial research. Today, GC-MS-based metabolite profiling in plants is regarded as a
standard tool in plant research and is routinely applied in a variety of laboratories. Applications
span from genotype x environment studies, genetic studies of complex traits, and plant-
pathogen interactions to agricultural and food-quality investigations, such as the substantial
equivalence of genetically-modified food to classic bred cultivars.

In the subsequent sections, I further investigate technological developments and gaps that may
foster further fields of applications and that could lead to increased acceptance in other fields
of biology, specifically, for mammalian studies.

2. Sample preparation for GC-MS metabolite profiling
Early GC-MS studies on metabolite profiling emphasized the number of peaks that were
detected from a specific tissue sample or the number of samples that could be handled per day.
Such reports were important to distinguish the technique from transcriptomics or quantitative
proteomics projects that are still some 10-fold more expensive on a per-sample basis. However,
it had also been recognized that the number of identified peaks and the quality of quantifications
ultimately limited the usability of metabolite profiles for comparative studies. Consequently,
efforts were undertaken to decrease the degree of technical errors associated with quantifying
chemically diverse compounds from complex matrices. While it is accepted that compromises
have to be taken with respect to the quantitative accuracy in metabolomics, the number of
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studies focusing on harvesting of samples and extraction protocols suggest that this area is seen
as a confounding factor for quality metabolomics by many research groups. Reducing technical
errors during sample preparation might be more important than instrument-related parameters
or the actual choice of analytical technique.

A careful design of experiments was suggested for extraction of blood plasma [10], which is
particularly difficult due to the amount of proteins in the samples which need to be separated
from metabolite pools that may be present in free form or bound to carrier proteins. The pitfalls
of any development of novel protocols are to rank the tested parameters with respect to the
impact that variation of parameters would incur (such as solvent types or time and temperature
during the extraction procedures) and, often, the lack of accepted benchmark data. Once the
most important parameters are selected, design of experiments extends to varying these
parameters by taking extreme positions with a few intermittent steps in order to approach global
method optima. If wrong parameters or inadequate choices for extreme values are taken (e.g.,
for extraction solvent compositions), obviously even careful study designs will not achieve
optimal conditions for sample preparations. There is a lack of certified reference materials that
could serve for interlaboratory ring tests or comparisons of technical errors and metabolic
coverage between individual studies. At least, it should become accepted reporting standard
to include readily available model samples in protocol developments (e.g., standard laboratory
animals from commercial vendors instead of laboratory-specific inbred lines) and to report
molar concentrations for a small number of critical target metabolites instead of statistics on
overall number of peaks and arbitrary units for metabolite levels. For the case of blood plasma,
low-abundant sex hormones were shown to be recovered only if proteins were precipitated in
a very slow manner at +8°C but not under fast precipitation using colder methods [11].

Applications in microbial biology often focus on metabolic engineering with emphasis on
primary metabolism. Interestingly, different protocols for microbial sample preparations were
suggested with respect to the optimal temperature required to achieve fast quenching of
metabolism and efficient metabolite extraction. A very convincing recent report suggested
simplifying and accelerating the overall sample-preparation procedure for microbial samples
by using hot temperature [12] instead of infusing cultures into cold methanol solutions [8,13,
14]. In the deviating protocol using hot temperatures [12], the quenching and extraction steps
already take place during sample transfer from the bioreactor. This method enabled rapid
sampling and inactivation within 200–500 ms, which compared well with other sampling
systems reported so far.

Protocols on plant tissues focused on integration of metabolite levels with protein and transcript
data using ternary solvent compositions under cold temperatures [15]. Similar parameters were
also reported in an independent study [16]. A range of applications utilize these or very similar
protocols to study biological questions, mostly focused on primary metabolism. It is beyond
the scope of this survey to report on the individual findings.

Compared to reports on extraction protocols, relatively little work has been performed on
improving derivatization reactions for GC-MS-based metabolite profiling. Most commonly,
trimethylsilylation (TMS) is used to exchange acidic protons and thus increase volatility of
(polar) metabolites [17] although some amino acids may require special attention with respect
to the peak ratio corresponding to the different derivatization status of primary amine groups
[18]. As alternative to the mild and universal silylation reaction, derivatization by
ethylchloroformate, has been suggested for urine analysis [19] yielding quantitative precision
better than 10% RSD for metabolites tested in standard addition series. Two disadvantages of
silylation protocols are the relatively high mass that is added by the derivatization agents and
the readily neutral loss of TMS-OH groups during MS fragmentation. In order to develop
protocols to better assess the positional enrichment of isotopes during labeling studies in
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carbohydrate research, a variety of derivatization reactions were compared, suggesting a new
reagent that would overcome current limitations in flux analysis of sugars [20].

Sample preparation for volatile analysis is relatively straightforward. It can safely be stated
that unbiased volatile analysis has become a significant trend in metabolite profiling with a
focus on diagnostic purposes, such as recognition of human diseases by breath analysis with
adsorbent columns [21], or urine analysis using solid-phase microextractions [22] or headspace
techniques [23]. Another area of volatile metabolomics is aroma analysis for plant science
[24] (e.g., by using headspace, solid-phase microextractions [25], vapor-phase extraction
[26] or a combination of techniques [27]). Similarly to human biomedical applications,
profiling of volatiles is a major field for current active research in recognition and
discrimination of plant pathogenic infections [28]. These reports indicate the need to combine
different analytical techniques to approach truly metabolomic surveys and that volatiles have
to be included in these efforts. While it may be argued if liquid chromatography (LC) or nuclear
magnetic resonance (NMR)-based techniques might deliver more reliable quantitative data for
some classes of compounds, it is beyond doubt that volatiles are best analyzed by GC-based
separation.

3. Advancing techniques in GC-MS
Metabolite profiling poses a variety of challenges due to the complexity of the matrix, even if
non-volatile material (such as membrane lipids, waxes, proteins and polysaccharides) is
removed prior to injection. Peak apexes need to be physically separated, at least to some extent,
to be correctly assigned to unique metabolites; otherwise, co-elution of peaks will lead to false-
negative peak detections and to spectra that result from the combinatory contributions of two
or more compounds. The most abundant metabolites suffer least from spectral contamination,
but low-abundant or novel metabolites require efficient separation for positive detection and
structural characterization. 50,000–200,000 theoretical plates are regularly achieved in one-
dimensional chromatographic separations. However, depending on the complexity of the
sample origin, more than 1000 peaks may be present at detectable abundances in a given
sample. Average mass-spectral purity for such a number of peaks is dramatically improved if
two-dimensional GC is used for separation. Some reports have been published on the use of
GCxGC-time-of-flight (TOF)-MS for metabolomic purposes [29]; however, a range of
practical problems remain before comprehensive GCxGC separations may become routine
applications for metabolically complex samples. For example, modulation-period times
inevitably reduce some of the chromatographic resolution that achieved in the first dimension,
so first-dimension retention times are less well defined than in truly one-dimensional
separations.

In addition to chromatographic separation, quality of analysis was improved by using
automated liner exchange systems and on-line derivatizations [30]. Two commercial vendors
offer such solutions that facilitate metabolite profiling of unfractionated samples including free
fatty acids and other lipophilic metabolites, despite the presence of a non-volatile matrix, such
as membrane lipids. The basic concept is that accumulation of non-volatile material is inhibited
by constantly exchanging GC liners and by cold injection of samples with subsequent heat
ramping. In addition, a timed online derivatization of samples may result in better quantitative
results for pairs of compounds that interconvert under room-temperature conditions during
waiting times in autosamplers, such as glutamate and its cyclization product, oxoproline.

Other advances in GC-MS have emphasized the usefulness of stable isotopes for quantitative
accuracy, either using isotope-dilution techniques [31] or in vivo labeling [32]. Both methods
have great value for comparison of results between laboratories; however, complete in vivo
labeling is especially difficult to achieve for animal studies.
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4. Quality control and method comparisons
Although GC-MS is a mature technique and has proved to be successfully applied to a variety
of biological problems, performances of different analytical techniques are rarely compared.
Many metabolites need to be derivatized in order to increase volatility before analysis by GC-
MS. Amino acids belong to the more problematic classes of compounds to be analyzed by GC-
MS, especially when derivatized by the standard procedure using TMS. The standard method
for amino-acid analysis, LC with fluorescence detection, proved to be superior with respect to
reproducibility of quantitative analyses compared to TMS derivatives and GC-MS analysis
[33]. Nevertheless, both techniques yielded the same biological conclusions on environment-
induced changes in plant amino-acid levels. TMS derivatives with GC-MS analysis of amino
acids was further compared to capillary electrophoresis coupled to MS, demonstrating that
both techniques obtain similar results [34].

In principle, other derivatization techniques could be used (e.g., tertiary-
butyldimethylsilylation (TBS)). TBS derivatives of amino acids are more stable and yield better
precision and accuracy in GC-MS profiling than TMS derivatives [6]; however, TBS
derivatives are also bulkier and thus do not enable analysis of carbohydrates by GC-MS. In
many derivatization schemes, and specifically for TMS-based silylations, reactions are not
stopped by adding quenching chemicals or fractionation schemes but may continue over hours.
This fact has raised concerns that drifts over time need to be captured and corrected for [18].
Apart from the obvious necessity to completely randomize analytical sequences, it has been
suggested to use technical replicates from pooled samples as baseline allowing comparisons
even for unknown peaks and as a general measure to ensure minimal quality control [35].

The use of GC-MS and GC coupled to flame-ionization detection (GC-FID) was compared to
NMR-based metabonomics for urine analysis [36]. It was concluded that there was a large
overlap of detectable compounds between the GC-techniques and NMR analysis and that
similar chemometric results were obtained for a proof-of-principle experiments. However, GC-
MS was found to be more versatile with respect to peak identification and the number of
independent metabolic signals that were detected. While NMR is regarded as being relatively
robust and stable with respect to stability of signal intensities, mass spectrometers and GC-MS
usually requires regular calibration curves using internal standards for long-time comparisons
of quantifications. There are too many peaks in GC-MS-based metabolomics to be quantified
using thorough calibrations. Instead, a combination of internal standards and sum parameters
was found to be more suitable than internal normalizations or single-standard corrections in
order to correct for instrumental drifts [37]. Such methods may well be suited to improve the
stability and the quality of quantitative GC-MS metabolite-profiling results.

GC-MS was further tested in comparison to direct-infusion MS (DIMS) for metabolic
footprinting [38] (i.e. analysis of excreted metabolites in microbial cultures). In accordance
with the technical characteristics of both analytical techniques, it was concluded that GC-MS
was superior for functional analysis of yeast mutants impaired in amino-acid pathways,
whereas DIMS performed better for characterization of mutants involved in biosynthesis of
polar lipids.

5. Flux analysis
All other approaches mentioned so far focus on identifying and quantifying metabolites based
on concentrations or relative levels comparing two or more different biological conditions. A
very different and complementary approach to metabolite profiling by GC-MS is taken by
employing stable-isotope labeling for flux analysis. Flux analysis emphasizes the turnover of
molecules through a number of enzymes, especially investigating cases for branched
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biochemical pathways that can alter relative flux ratios depending on conditions or disease
states. In most cases, stable-isotope glucose is used and is differentially labeled at one or more
atom positions within the molecule. Flux through glycolysis or adjacent pathways (pentose-
phosphate pathway, TCA cycle and gluconeogenesis) is then estimated by analyzing relative
enrichments in isotopes of metabolites comprised in these pathways in a dynamic way [39] or
by analyzing isotope enrichments in metabolic sinks, preferably proteins, by complete
hydrolysis and investigation of positional isotope enrichments in the corresponding amino
acids [40]. Although most flux estimates have focused on microbiology applications [41], often
with the aim of metabolic engineering in order to foster direction of fluxes towards a desired
product [42], flux analysis by GC-MS has also been shown to be useful to characterize the
impact of pancreatic tumors on metabolic fluxes in different organs by use of a rat model
[43]. Although a range of different fluxes can be assessed using a single substrate molecule,
such as glucose, a comprehensive analysis of fluxes through the metabolic network has not
been achieved. Instead, other substrates need to be utilized to assess biochemical mechanisms,
such as labeled succinate dimethylester that was used for a more detailed investigation of
gluconeogenesis in perfused rat liver [7].

6. Data processing
Metabolite profiling by GC-MS and statistical analysis relies on efficient data-processing
procedures, and minimum reporting requirements have recently been suggested [9,44]. The
most straightforward way is to utilize retention indices that supposedly should be commonly
used in GC-MS. Such retention-index alignment of chromatograms reduces chromatographic
shifts to a large extent and enables setting up peak finding and peak matching algorithms that
are less dependent on column aging or column cuts. More importantly, unambiguous peak
annotations become independent from the sample origins, enabling queries across studies and
across samples for which large metabolic alterations are observed or for prolonged series of
chromatograms.

Two models can be distinguished: multitarget profiling; or, unbiased (non-targeted) profiling.
Multitarget profiling is an extension of classic analytical chemistry by defining compound
spectra, search retention-index windows, quantification ions and spectra-similarity thresholds
for multiple (known) metabolites (e.g., using directly the corresponding GC-MS instrument
software). In an extension of this approach, open source JAVA applets have been published
that utilize instrument-independent NetCDF file formats to quantify pre-defined metabolites
[45]. Such multitarget-profiling methods have the undisputable advantage that accurate
quantifications can be achieved, based on internal or external calibration curves. Reporting
absolute (molar) concentrations instead of relative peak intensities render studies more
comparable between laboratories or across different studies.

However, unidentified compounds and potentially novel biomarkers remain undetected, unless
unbiased (non-targeted) data-processing tools are employed. For such approaches, a variety of
methods have been proposed. Popular and stand-alone open-access software are MZmine
[46] and XCMS [47], which work on NetCDF files and have actually been first employed for
LC-MS data. These tools offer peak-picking and alignment capabilities, but do not comprise
further mass-spectral deconvolution. Automated mass-spectral deconvolution is achieved by
the freely available AMDIS software [5]. This software has been used to deploy a new service,
MSconnect [48], which aligns batches of AMDIS export files from related chromatograms and
filters peaks that are not consistently detected in these batch comparisons. Such filtering
systems are essential to remove spurious peaks and false positive peak detections (AMDIS
deconvolution errors) (see Fig. 2). AMDIS does not support fast spectra acquisitions, such as
those used in some TOF instruments, but, nevertheless, users can convert files to the NetCDF
formats and upload to AMDIS. As other software tools, AMDIS enables users to select a range
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of parameters, upon which the number of peak detections will change dramatically. Ultimately,
false-positive peak detections (e.g., assigning too many peaks based on minute differences in
ion-trace peak shapes) is as detrimental to obtaining high-quality results as false-negative peak
detections (i.e. failure to discriminate closely co-eluting peaks or to detect low-abundant
signals, specifically in proximity to high-abundant peaks). Thorough investigations of the ratio
and the number of false positive/false negative peak detections are therefore as crucial as
developing filter systems that eliminate spurious peak counts.

Other data-processing approaches have developed tools implemented in the Matlab software,
again using NetCDF-formatted GC-MS chromatograms as input files. An interesting approach
was taken by first binning retention-time sections into binned spectra, aligning batches of
chromatograms and then obtaining deconvoluted spectra for statistically significant different
biomarkers by multicurve fitting, exploiting the different relative contributions of co-eluting
compounds to the binned spectra [49].

A different proposed implementation of Matlab based the output of a peak-picking or peak-
matching algorithm on the frequency, how often detected peaks were found in a given batch
of chromatograms [50]. 965 samples were processed using this method, but it remained unclear
how unique the mass spectra eventually obtained were for identification of metabolites.

None of these data-processing methods lends itself directly to constructing unambiguous
metabolomics databases. The main reason is that the concept of retention indices has been
largely dismissed in the development of the data-processing algorithms, which instead relied
on overall similarity of chromatograms or peak-detection counts. Alternatively, databases have
been constructed that utilize the output of retention indices and instrument-specific mass-
spectral deconvolution software [51,52]. Both databases (and the corresponding libraries of
unique spectra/retention-index data sets [53] take advantage of the high data-acquisition rate
and spectral continuity of TOF mass spectrometers. A multiple filter system proposed for
annotating and automatically adding novel metabolite spectra [51] relied on a range of
additional mass-spectral metadata, such as peak purity, signal-to-noise ratios, apex masses and
unique ions. Thresholds, such as mass-spectral similarity, were then conditionally set based
on these metadata to ensure that even minor peaks next to very abundant compounds were
correctly annotated. This database is supported by a study-design database [54] to ensure
compliance with minimal reporting requirements proposed by the MSI working groups.
Unfortunately, none of these databases are yet supported by open-source-code software and
extensive documentation, and both mass-spectral databases rely on instrument-specific
chromatogram files, so the utility of these databases is so far limited to the host research
institutions but not available to the general public.

Very little progress has been reported for the identification of unknown peaks in GC-MS
[55]. Eventually, the usefulness of GC-MS-based metabolomics will be determined by the
reliability to detect and store unknown peaks, to identify the corresponding chemical structures
and to link statistical patterns of metabolic regulations with potential physiological and
biochemical implications. These gaps have to be closed before GC-MS can fully leverage its
potentials in metabolism research.

First, existing metabolite libraries have to be extended by obtaining accurate retention-index
information and mass spectra for all commercially available metabolites. Nevertheless, many
peaks will remain in GC-MS chromatograms that cannot be assigned to identified chemical
structures. For these peaks, novel algorithms will have to be developed that derive as much
physicochemical information as possible from both the retention times and the mass spectrum.
These data could subsequently be used to constrain hit lists obtained from queries of large
chemical databases, such as public repository PubChem. Fig. 3 shows an example of how
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improved algorithms can help annotation of GC-MS peaks by substructure recognition. The
electron-impact mass spectrum of trimethylsilylated cytosine was submitted to the NIST
substructure algorithm to validate the general idea of exploiting the information comprised in
mass spectra in an automated way to guide annotations of unknown compounds. For the
trimethylsilylated cytosine spectrum, a high number of substructures were predicted to be
present or absent with a high probability. Such information would clearly be useful to constrain
candidate structures if integrated in an automated compound-characterization scheme. Fig. 4
shows an example of identification of uncommon metabolites that were found as novel
compounds in transgenic potato tubers [56]. Using different chemical derivatizations,
substructure recognition, interpretation of mass spectra and, eventually, receiving authentic
standards from plant researchers, these compounds were identified as fructosyl-fructoses
(inulobiose and levanbiose). Without validation by authentic standards, an automated
algorithm can deliver only annotation scores and not definite identifications. It is therefore
important that authors keep a clear separation of nomenclature between unambiguous
identifications and mere characterizations or annotations of GC-MS spectra.

7. Conclusions
A range of novel processes and method improvements have been published for GC-MS-based
metabolite profiling. The technical maturity of GC-MS and the existence of commercial and
publicly-available spectral libraries render GC-MS an indispensable tool for metabolomic
applications. Metabolome coverage, data quality and data processing have been specific areas
of research activity. Advanced public databases and repositories are still needed to facilitate
data exchange between laboratories and to annotate the structures and the biochemical
characteristics of the wealth of novel compounds that are being discovered by unbiased GC-
MS analysis of biological specimens.
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Figure 1.
Number of publications published until 2006, querying the ISI database with the key words
(metabon* OR metabolom* OR “metabol* profil*”) AND (gas chromatogr* OR GC).
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Figure 2.
Processing of GC-TOF metabolite profiles using two different software packages. Left panel:
Depending on the parameter settings, processing GC-TOF netCDF files with the freely
available AMDIS software may yield a high number of false-positive peak detections
(indicated by black and orange stars) and a high number of false-negative (undetected) peaks.
Right panel: Processing the same chromatogram with the instrument-specific ChromaTOF 2.32
version software does not miss peaks or report false deconvolutions in the retention-time
window exemplified here. Note: The AMDIS report is visualized by a log-scaled intensity axis
whereas the ChromaTOF ion traces are multiplied by factors ranging from 1x to 100x.
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Figure 3.
Substructure information (left panel) generated from mass spectrum (right lower panel) for bis
(trimethylsilyl)-cytosine using the NIST substructure-recognition algorithm.
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Figure 4. Example of identification of uncommon plant disaccharides inulobiose and levanbiose in
transgenic potato tubers using derivatization and GC-MS
Left panel: Three unidentified peaks (1–3) were detected under methoximation and subsequent
trimethylsilylation (TMS) with retention times close to that of sucrose (red ion trace, m/z 217).
When using ethoxyamine instead of methoxyamine for the first derivatization step, compounds
bearing keto- or aldehyde carbonyl moieties shifted to longer retention times (blue ion trace,
peaks 1′–3′, m/z 217), whereas metabolites without such groups (such as sucrose) do not shift.
Middle panel: Identical EI mass spectra were observed for peaks 1 and 2 (red spectrum),
indicating that these may represent the syn/antiforms of a single methoximated compound.
Best library hits and substructure recognition pointed to carbohydrates, specifically, fructose
(black spectrum). Under ethoximation/TMS, some ion fragments shifted for 14 amu (blue
spectrum), but the most abundant generic carbohydrate ions remained unaltered. Right panel:
After database query, diverse authentic standards for fructosyl-fructoses were donated from
plant researchers. Peaks 1 and 2 matched retention times and mass spectra for inulobiose
(chemical structure in non-derivatized form), peaks 3 and 4 matched levanbiose.
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