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The expression of P-glycoprotein does influence the distribution
of novel fluorescent compounds in solid tumour models

C Martin', ] Walker', A Rothnie' and R Callaghan™'
"Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 90U, UK

Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance
is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier,
do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the
multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour
spheroids (TS) were generated from either drug-sensitive MCF7*YT cells or a drug-resistant, P-gp-expressing derivative MCF7%",
Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM,
rhodamine |23 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport,
exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation
and distributed extensively throughout the TS*T, whereas calcein-AM accumulation was restricted to the outermost layers. The
presence of P-gp in TS resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by
nicardipine restored intracellular accumulation and distribution patterns to levels observed in TS, The results demonstrate the
effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the
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Conventional chemotherapy continues to remain at the front line
of treatment strategies against cancer and the last two to three
decades have witnessed an ever-increasing armoury of clinically
useful compounds (Skeel, 1999; Baguley, 2002). Unfortunately, a
substantial proportion of chemotherapy treatments fail due to the
myriad of drug resistance pathways generated by most forms of
cancer (Chaney and Sancar, 1996; Wang et al, 1999; Desoize and
Jardillier, 2000; Gottesman et al, 2002). Resistance pathways may
be broadly characterised as affecting the pharmacodynamics
(response) or pharmacokinetics (lifetimes and exposure) of
anticancer agents. Pharmacodynamic resistance pathways include
factors such as altered drug target sensitivity, increased DNA
repair pathways and a reduced ability to produce an apoptotic
response. Pharmacokinetic pathways produce alterations in the
stability, metabolism, excretion and distribution of drugs at the
tumour site. Thus, the situation in vivo is clearly more complex
than can be explained by any single factor such as the much-touted
multidrug resistance pump P-glycoprotein (P-gp) (Gottesman et al,
2002).

P-glycoprotein is a member of the ABC superfamily of
transporters (Holland and Blight, 1999) and is able to confer
resistance by actively extruding an extraordinarily diverse range of
chemotherapeutic agents and a significant amount of research
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tissue is strongly determined by the physico-chemical properties of the individual compounds.
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effort has been directed towards understanding and circumventing
the actions of P-gp in vivo. But has the contribution of P-gp to
drug resistance warranted this attention? In the case of haemato-
logical malignancies (e.g. AML, ALL, multiple myeloma and non-
Hodgkin’s lymphoma), the protein is frequently expressed both
prior to, and following, exposure to chemotherapeutic regimes (for
a review see Sonneveld, 1996; Chauncey, 2001). Expression of P-gp
in such cancers is associated with an increased likelihood of
relapse, fewer remissions and a poor survival time (Willman, 1997;
van den Heuvel-Eibrink et al, 2000; Dhooge et al, 2002). Strategies
to circumvent the drug resistance phenotype in haematological
tumours by inhibition of P-gp have met with some success and
compounds such as PSC833, LY79553 and XR9576 have entered
clinical trials (Fields et al, 1998; Stewart et al, 2000). However, the
situation is less clear in solid tumours. Certainly, the protein is
endogenously expressed in a variety of tumours (for a review see
Goldstein, 1996). Furthermore, the expression is frequently
induced or upregulated following chemotherapy particularly in
breast and the gastrointestinal tract (Schneider et al, 1989; Ro et al,
1990; Chan et al, 1991, 1997; Pirker et al, 1993; Tokunaga et al,
2001; Coley et al, 2002).

However, inhibition of P-gp in many solid tumours has not
always been associated with improved clinical outcome. The
results have been interpreted in terms of (i) inefficient P-gp
inhibition, (ii) the involvement of other resistance pathways and/
or (iii) a lack of clinical relevance for P-gp. The latter argument
stems partly from the knowledge that solid tumours present a
significant inherent barrier to drug pharmacokinetics, even
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without P-gp expression. The complex 3-D arrangement of
avascular regions (or nodes) situated between capillaries are the
primary target regions for chemotherapeutic agents (Desoize and
Jardillier, 2000; Mueller-Klieser, 2000) and display a hostile
environment (Folkman, 1971; Harris, 2002) that impairs che-
motherapy by altering drug response either inherently or by
increasing the expression of specific proteins (see Harris, 2002).
Furthermore, drug pharmacokinetics within the avascular regions
will be attenuated by the high local interstitial pressure, extensive
cell-cell contacts and the extracellular matrix (Desoize and
Jardillier, 2000; Mueller-Klieser, 2000). P-glycoprotein expression
would be expected to affect intracellular accumulation; however,
the influence on overall tissue distribution is unclear. The
influence of inherent multicellular barriers has persuaded many
clinicians, and some scientists, to relegate the role of P-gp to
almost bystander status. Can we really have that much confidence
in disregarding the influence of this archetypal ‘multidrug’
transporter on the pharmacokinetics of anticancer agents in solid
tumours?

To address this, the versatile multicellular spheroid (MCTS)
model (Kunz-Schughart et al, 1998; Santini and Rainaldi, 1999)
was chosen to investigate the influence that P-gp exerts on drug
distribution in solid tumours. In order to examine drug
distribution patterns within tumour spheroids (TS), a confocal
fluorescence microscopy technique was employed, a particular
advantage being the ability to measure drug distribution in intact
tissue. The TS were formed from either the drug sensitive MCF7"*
breast cancer cell lines or a P-gp-expressing drug-resistant
derivative. Distribution profiles were characterised for three
fluorescent compounds that are transported substrates of P-gp.
The results provide insight into the drug-specific effects of P-gp on
pharmacokinetic properties within a solid tissue mass.

MATERIALS AND METHODS

Materials

Dulbecco’s minimum essential medium (DMEM) with GlutaMax I,
penicillin, streptomycin and foetal calf serum were purchased from
Invitrogen (Paisley, UK). BODIPY® FL paclitaxel (BODIPY-taxol)
and calcein-acetoxymethyl ester (calcein-AM) were obtained from
Molecular Probes (Leiden, The Netherlands). Nicardipine and
rhodaminel23 were purchased from Sigma-Aldrich (Poole, UK).
[*H]azidopine (51 Cimmol)™' was from Amersham Biosciences,
Amersham, UK. Escherichia coli (E. coli) phospholipids and
cholesterol were purchased from Avanti Polar Lipids (AL, USA) and
octyl-f-p-glucoside was from Merck Biosciences (Nottingham, UK).

Cell culture and TS growth

Drug-sensitive (MCF7™T) human breast cancer cells were obtained
from the NCI-Frederick cancer DCTD Tumour cell repository. The
drug-resistant (MCF729") cells were obtained from Professor
Cowan and were generated by selection in adriamycin, as
described (Batist et al, 1986), from MCF7"" cells (Soule et al,
1973). Both cell lines were grown as monolayer cultures in DMEM
supplemented with 10% (vvY) foetal calf serum and penicillin/
streptomycin (1001Uml™" and 100mgml~", respectively). The
resistant MCF72%" cell line was cultured in the presence of 3 um
doxorubicin for a single passage every 10 passages to maintain
selection pressure.

Tumour spheroids of MCF7 cell lines were grown using the
liquid overlay technique (Kunz-Schughart and Meuller-Klieser,
2000) in 96-well tissue culture plates. The 96-well plates were given
a 100 ul base-coat of 0.75% (wv~ ') agar that had been prepared in
DMEM. Freshly trypsinised MCE7 cells were overlaid on solid agar
base-coats at a density of 4 x 10> cells in a volume of 200 ul DMEM.
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The MCF7™7 cell lines were kept still for 24h (37°C, 5% CO,) after
which the plates were shaken at 300r.p.m. in a tissue culture
incubator. Tumour spheroids generated from MCF7"" cells will be
referred to as TS"" and similarly, those from MCE72%" cells as
TSAdr throughout the manuscript. MCF72" cell overlays were kept
stationary for 48h prior to shaking due to a greater fragility at
early stages of growth. TSY" were fully formed within 48h and
could be routinely cultured under these conditions for up to 10
days, with replacement of the medium at 3-day intervals. In
contrast, TS*® required 72h to form fully.

Expression and purification of P-gp

Human P-gp was expressed in insect cells using the baculovirus
expression system and full details of the purification procedure for
P-gp have been reported previously (Taylor et al, 2001). The
purified protein was reconstituted into liposomes comprising a
4:1 (ww ') mixture of crude E. coli phospholipids and cholesterol
at a protein:lipid ratio of 50 (ww ') to allow functional
assessment. The protein concentrations were in the range 15-
20ugml™' and proteoliposomes could be stored in buffer
comprising 150 mM NaCl, 20 mm Tris pH 7.4, 1.5 mm MgCl,, 20%
(vv 1) glycerol buffer for up to 6 months at —80°C.

Photoaffinity labelling of P-gp with [*H]-azidopine

Reconstituted P-gp was labelled with the photoactivatable inhibitor
[’H]azidopine according to previously published procedures
(Taylor et al, 2001). Briefly, the groteoliposomes (250 ng) were
incubated in the dark with 0.5 um ["H]azidopine in the presence or
absence of bodipy-taxol (5 um), rhodamine 123 (10 um) or calcein-
AM (10 um) for 1h at 20°C. The total incubation volumes were
40 ul. The unreacted [*H]azidopine was separated by 8% SDS-
PAGE and the band intensity was quantified by densitometry (NIH
2.0 Image Software) of autoradiograms.

ATPase activity of P-gp

The ATPase activity of purified P-gp was determined using
modifications (Taylor et al, 2001) of the previously described
colorimetric assay (Chifflet et al, 1988) to measure the liberation of
free inorganic phosphate. The proteoliposomes (250ng) were
incubated with 2mm ATP in the absence or presence of 10um
nicardipine to determine the maximal rates of basal and drug-
stimulated activity, respectively. The total sample volume was 50 ul
and incubations were for 20 min at 37°C (Callaghan et al, 1997).
The effects of bodipy-taxol (5um), rhodamine 123 (10um) or
calcein-AM (10 um) on ATPase activity were determined during
measurement of both basal and nicardipine-stimulated activity. All
drug additions were from concentrated DMSO stocks and the
solvent concentration did not exceed 1% (vv ™).

Confocal fluorescence microscopy of TS and monolayers

The distribution of calcein-AM, BODIPY-taxol and rhodaminel23
in TS with diameters in the range 300-400 uM was studied using a
Zeiss LSM510 confocal laser scanning microscope (Carl Zeiss,
Welwyn Garden City, UK). All three fluorophores were excited
using an argon laser (excitation wavelength =488nm) and
detected using an emission filter set at 505-530nm. Tumour
spheroids were exposed to BODIPY-taxol (2.5um), calcein-AM
(5 um) or rhodamine 123 (5 um) at 37°C for periods indicated in the
text and figure legends. Following incubation, the TS were washed
in buffer A (150 mm NaCl, 20 mm Tris pH 7.4) and placed in cavity
microscope slides (RA Lamb, Sussex, UK). Where P-gp inhibition
was required, nicardipine (10 um) was added for a preincubation
period of 1h prior to the addition of fluorescent compounds. To
examine the 3-D distribution of fluorophores within TS, a scan in
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the z-direction was performed at 4 uM steps over a maximum depth
of 80 um from the periphery of the tissue to provide 20 discrete
images. The intensity was measured along two perpendicular lines
that bisected the image along the x- and y-axis. The signal was
averaged for data obtained from the two lines to provide an
averaged measure of fluorescence intensity along the ‘xy-plane’.

Drug accumulation measurements in monolayers required that
cells were grown on coverslips. The coverslips were washed in PBS
and placed in buffer A containing fluorescent compounds at
concentrations stated above. Inhibition of P-gp function was
achieved, where required, with a preincubation of cells in buffer A
containing nicardipine (10 um) for a preincubation period of 1h.
The coverslips were washed in PBS and covered with a thin film of
buffer A containing 20% (vv™') glycerol. The coverslips were
inverted and placed on microscope slides and the edges sealed with
clear nail varnish. Drug accumulation was measured in the
monolayers using fluorescence confocal microscopy as described
above. The optical sections obtained along the z-axis were achieved
using 1 uM increments.

RESULTS
Verification of BODIPY-taxol as a substrate for P-gp

Several previous investigations have characterised the distribution
of the inherently fluorescent P-gp substrate doxorubicin in solid
tumours. However, the fluorescence of doxorubicin is relatively
weak and several alternative compounds with which to assess drug
distribution and the influence of P-gp on drug pharmacokinetics
are available. For example, calcein-AM and rhodamine 123 were
included, since they are well-characterised allocrites for P-gp and
display high fluorescence intensity (Homolya et al, 1993; Shapiro
and Ling, 1998). BODIPY-taxol, a novel fluorescent derivative of
the anticancer drug paclitaxel has been suggested, but not proven,
to interact with P-gp (Fellner et al, 2002). Taken together, the data
presented in Figure 1 obtained using purified and reconstituted P-
gp demonstrate that BODIPY-taxol is indeed capable of direct
interaction with this transporter. [*H]Azidopine was used to
photoaffinity label P-gp (Figure 1A), and a 0.5 uM concentration
was employed to ensure reasonable saturation of the protein, given
that this drug was previously shown to display a K4 of 450 nM
(Taylor et al, 2001). All the three fluorescent compounds, at the
indicated concentrations, were able to reduce the photoaffinity
labelling of P-gp by azidopine. Calcein-AM and rhodamine 123 at
concentrations of 10 um produced a reduction in [*H]azidopine
labelling of approximately 50% (Figure 1A). BODIPY-taxol
produced the greatest inhibition of P-gp labelling with only 20%
of the signal remaining in the presence of this paclitaxel derivative.

To determine the consequence(s) of interaction of these
fluorescent compounds with P-gp, the effects on ATP hydrolysis
were measured (Figure 1B). The basal ATPase activity of P-gp
(0.23+0.07 umol Pimin ' mg™") was stimulated 3.2-fold by nicar-
dipine to a maximal rate of 0.740.05umol Pimin 'mg .
Rhodamine 123 (10um) did not affect either the basal or
nicardipine-stimulated activity. In contrast, calcein-AM caused a
2.6-fold increase in basal ATPase activity to a value of
0.6040.05 umol Pimin ' mg~". There was a marginal reduction
in the level of nicardipine-stimulated activity; however, this did
not reach a statistically significant value. BODIPY-taxol caused a
1.8-fold stimulation of  the basal activity to
0.4240.02 umol Pimin~'mg ™' and this degree of stimulation is
similar to that produced by paclitaxel (Gabriel et al, 2003). The
coincubation of P-gp with BODIPY-taxol (5uM) and nicardipine
(10 um) resulted in a reduced degree of stimulation compared to
that solely produced by nicardipine. Thus, under these conditions
BODIPY-taxol acts as a partial agonist on ATP hydrolysis and
modifies the actions of nicardipine. Taken together, the photo-
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Figure | Azidopine displacement by model fluorescent substrates of P-

. (A) Purified, reconstituted human P-gp (250ng) was incubated with
["Hlazidopine (0.5 um) for 60 min in the absence (lane |) or presence of
[Oum rhodamine 123 (lane 2), 10um calcein-AM (lane 3) or 5um
BODIPY-taxol (lane 4). The samples were then placed on ice and
irradiated (315nm, 100 W at 5cm) for 5min. Protein was separated from
unbound [“HJazidopine by SDS—PAGE and subjected to autoradiographic
analysis. (B) The ATPase activity of purified, reconstituted human P-gp
(250ng) was determined by measurement of liberated inorganic
phosphate. Basal and drug-stimulated (10 uM nicardipine) ATPase activities
were determined in the absence or presence of rhodamine 123 (10 um),
calcein-AM (10 um) or BODIPY-taxol (5pum). Basal and nicardipine-
stimulated activities are represented by clear and filled bars, respectively.
Error bars denote the s.em. and the dotted lines represent the level of
basal and stimulated activity in the absence of fluorescent allocrite.

affinity labelling and ATPase activity data indicate that BODIPY-
taxol, like calcein-AM and rhodamine 123, is capable of direct
interaction with P-gp.

Cellular accumulation of BODIPY-taxol and calcein-AM

The investigations reported above do not demonstrate whether
BODIPY-taxol is able to cross cellular membranes, thereby
entering a ‘compartment’ susceptible to extrusion by P-gp. Should
BODIPY-taxol readily cross the cellular membrane, it would fulfil
all the necessary criteria allowing its use as a probe to examine the
effects of P-gp on drug distribution in the TS model. The ability to
cross the plasma membrane was initially examined in monolayer
cultures of MCE7"" cells for both BODIPY-taxol and calcein-AM.
Calcein-AM was examined since it is known to possess high
lipophilicity and is only converted to the fluorescent, membrane-
impermeant derivative calcein by cytoplasmic esterases (Homolya
et al, 1993). The intracellular localisation of calcein-AM was
measured by confocal fluorescence microscopy and the results are
shown in Figure 2 (panel A). The fluorescence observed is due to
the calcein moiety, generated by nonspecific esterases, and is
extensively distributed in the cytoplasm. However, an internal
membrane is well defined and presumably corresponds to the
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Figure 2 Accumulation of P-gp substrates in MCF7*"" cells and TS
The accumulation of 5 uM calcein-AM was determined in (A) monolayer
cultures of MCF7™T cells. The cellular levels of 2.5 um BODIPY-taxol were
also measured in (B) monolayer or (€) TS systems. The fluorescent
compounds were incubated with cells for 60 min at 37°C in a humidified

atmosphere (5% CO,). The images were obtained by confocal
fluorescence microscopy and for TS they were taken from cells close to
the tissue periphery.

nuclear envelope. In addition, there are several intensely
fluorescent pockets that indicate intranuclear localisation. As
shown in panel B (Figure 2), BODIPY-taxol is also able to cross the
plasma membrane of MCF7"" cells and accumulate within the
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cytosol to significant levels. An intracellular membrane was again
well defined, however, in contrast to calcein-AM, there was no
evidence of BODIPY-taxol accumulation within the nuclear
compartment of these cells. There was negligible accumulation of
either compound in the P-gp-expressing MCFA* cells using
similar concentrations. However, following a 1h preincubation
in the presence of 10 uM nicardipine, both drugs accumulated
within MCFA%" cells, producing high fluorescence intensity and
displaying a similar distribution pattern to that observed in the
parental cells (data not shown). The observations with BODIPY-
taxol in both purified proteoliposomes and native cellular systems
indicate that this compound is a useful tool to examine the effects
of P-gp on drug distribution in solid tumour models.

Time course of drug accumulation in MCF7"" TS

To characterise the intratissue distribution and intracellular drug
accumulation in solid tissue not expressing P-gp, TS (300-
400 um) were exposed to BODIPY-taxol (2.5 uMm) and calcein-AM
(5um) over various time courses (Figure 3). The distribution of
drug was followed at a single depth (60 um) along the z-axis from
the periphery of the tissue to enable determination of the
comparative degree to which each compound was able to permeate
the tissue. Moreover, this allowed assessment of whether drug
could accumulate in quiescent cells in addition to the proliferating
outer layers. Calcein-AM rapidly accumulated in the TS periphery
as evidenced by the intense fluorescent signal observed following
5-30-min incubation (Figure 3, panels A, B). A striking
observation was the lack of distribution in fluorescent signal to
the central areas even following incubation of TS"" in the presence
of calcein-AM for up to 6h (Figure 3, panels C, D). BODIPY-taxol
accumulation in the peripheral layers of TS was also rapid, as
evidenced by the similar degree of fluorescence intensity at 5 and
30-min incubation (Figure 3E-F). However, this paclitaxel
derivative displayed a significantly different overall distribution
pattern within TS compared to that observed for calcein-AM.
Longer durations of TSV exposure to BODIPY-taxol resulted in
fluorescence distribution throughout the tissue rather than simply
localised to the periphery (Figure 3G-H).

The fluorescent signal produced by BODIPY-taxol was examined
at higher magnification to determine whether the distribution
corresponded to intracellular or interstitial sites in TSY'. To
ensure that significant intratissue distribution had occurred, the
images were taken following 2-h incubation and at a depth of 60 um
below the tissue periphery (see Figure 2C). The distribution
pattern of fluorescence observed at this higher magnification
demonstrates that BODIPY-taxol (Figure 2C) was accumulated
intracellularly within a predominantly cytoplasmic localisation.
Overall, the pattern of intracellular distribution of this paclitaxel
derivative in TS"" was similar to that observed in monolayer
cultures. Subsequent investigations were aimed at determining
whether the accumulation of drugs in cells within TS could be
modulated due to the expression of P-gp.

Drug accumulation and distribution in TS

The relative distribution of the fluorescent compounds within
TSWT or TSAY (d=300-400 um) is shown in Figure 4 with the
optical sections obtained at a depth of 60 um from the tissue
periphery. The results demonstrate that TS*®" displayed a marked
reduction in the overall accumulation of each of the compounds
examined (Figure 4D-F) compared to that observed in the TSWT
(Figure 4A - C). Incubations of TS*%" for periods up to 6 h did not
enhance the intracellular accumulation or affect the overall
distribution pattern (data not shown). The results provide direct
evidence that the expression of P-gp in a solid tissue environment
may impair the pharmacokinetics of its transported substrates by
reduction in the intracellular accumulation. The obvious next
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Figure 3 Time course for distribution of calcein-AM and BODIPY-taxol
in TS. MCTSWT (d'=300—400 uM) were incubated with 5 uM calcein-AM
(panels A—D) or 2.5 um BODIPY-taxol (panels E—H) for the periods
indicated. The distribution of each compound was measured by confocal
fluorescence microscopy and the images shown were taken at a depth of
60 um from the periphery along the z-axis. The white bars correspond to
100 pm.

question to tackle is whether this action of P-gp may be overcome
pharmacologically.

The distribution of each fluorescent compound was measured in
TS to a depth of 80 uMm from the tissue periphery in increments
of 4 um. The degree of BODIPY-taxol accumulation at three depths
in the tissue (20, 40 and 80 uM along the z-axis) is shown for TSAdr
in the presence (Figure 5C, F and I) or absence of the P-gp
inhibitor nicardipine (Figure 5B, E and H). The fluoresence was
quantified at each depth and the intensity along the xy-plane of
each image is shown in Figure 5A, D and G. In the absence of
nicardipine, only a small percentage of cells at any depth displayed
measurable accumulation of the fluorescent paclitaxel derivative.
Pretreatment of the TS*%" with 10 um nicardipine inhibited P-gp
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Figure 4 Permeation of drug-sensitive and -resistant TS by fluorescent
allocrites of P-gp. TS™T (panels A—C) and TS*" (panels D—F) were
incubated in the presence of 25um BODIPY-taxol (A, D), 5um
rhodamine-123 (B, E) or 5uM calcein-AM (C, F) for 60 min. Optical
sectioning of TS (d =300—-400 um) was achieved by confocal fluorescence
microscopy and the images shown were taken at a depth of 60 uM from the
tissue periphery. The white bars correspond to 00 uMm.

and produced a striking increase in the intracellular accumulation
of BODIPY-taxol. The distribution pattern was identical to that
observed in the non-P-gp-expressing TS™". At a distance of 40 um
below the periphery, the fluorescence was relatively evenly spread
along the ‘xy-plane’ in nicardipine-treated TS*%" (Figure 5D, F).
However, at the greatest depth examined, there was a marked drop
in the distribution of BODIPY-taxol (Figure 5G, I) in the central
region along the xy-plane. This suggests an incomplete penetration
of the compound; however, increasing the exposure time to
BODIPY-taxol from 2 to 6h produced a relatively homogeneous
distribution at this depth (data not shown), similar to that
described for the TS™™ in Figure 3H. The accumulation of calcein-
AM (Figure 6A-C) and rhodamine 123 (Figure 6D-F) was also
quantified in TSAY in the presence (solid lines) or absence (dashed
lines) of nicardipine pretreatment. The extent of accumulation for
both the compounds at each depth examined was significantly
increased in TS*%" by the nicardipine pretreatment. There were
some differences in the distribution patterns observed for calcein-
AM and rhodamine 123; however, they were only apparent at
greater depth within the tissue. For example, at —40um the
fluorescence intensity of calcein-AM was considerably lower in the
region 200-300 um along the xy-plane (Figure 6B), compared to
that observed for rhodamine 123 (Figure 6E). The difference was
less pronounced at —80 um (Figure 6A, D). However, fluorescence
was clearly detectable for rhodamine 123, but not for calcein-AM,
in this central region at this particular depth within the TS. The
distribution patterns of rhodamine 123 and BODIPY-taxol were
similar in TS treated with 10 uM nicardipine, and indicate an
extensive penetration through the tissue. In contrast, the calcein-
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Figure 5 Cellular distribution of BODIPY-taxol in TS, TS (d = 300—400 uM) were incubated with 2.5 uM BODIPY-taxol for 60 min at 37°C in the
presence or absence of 10 uM nicardipine. Images were produced by optical sectioning to a depth of 80 um at 4 uM increments along the z-axis of the tissue.
The fluorescence intensity was measured for each of the images along the xy-axis. (A, D and G) intensity measured at depths of 20, 40 or 80 um from the

periphery along the z-axis. (B, E and H) images taken in TS"

" at depths of 20, 40 or 80 uM along the z-axis (intensities are shown in the graphs as a dotted

line). (C, F and 1) images obtained from TS that had been incubated with 10 uM nicardipine prior to addition of BODIPY-taxol (intensities shown in the

graphs as solid lines).

AM distribution was confined to the outer few cell layers and this
was identical to that observed in TS"W'. The effect of P-gp
inhibition did, however, increase the extent of accumulation in this
surface localised cell population.

DISCUSSION

Efficient chemotherapy in solid tumours relies on achieving an
appropriate pharmacokinetic lifetime, which in turn is dependent
on two early conditions being met: (i) extensive distribution
throughout avascular regions and (ii) sufficient accumulation
within the discrete cell populations. Both factors may be altered in
cancerous tissue due to the presence of high interstitial pressure,
extensive extracellular matrix, cell - cell contact and the expression
of efflux pumps such as P-gp on the cell surface. However, unlike
the case in haematological disorders, the role of P-gp in altering
drug pharmacokinetics in solid tumours has been questioned
(Kaye, 1995, 1998).

A major basis for the ambivalence towards a role for P-gp has
arisen due to the significant barriers to distribution produced by
the 3-D organisation of cells in solid tumours, even in the absence
of this drug efflux pump. For example, doxorubicin displays a
highly localised distribution to the outer cell layers of solid tissue,
yet the accumulation in this region is extensive (Durand and Olive,
1981; Durand, 1986; Wartenberg and Acker, 1996). In contrast,
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paclitaxel exhibits a wider distribution in tumour models;
however, the rate of its permeation through the tissue is slow
(Nicholson et al, 1997; Kuh et al, 1999). Cisplatin is poorly
accumulated within cells, yet its penetration through TS models is
relatively extensive (Erlichman et al, 1985). To date, investigations
on the role of P-gp in modulating drug distribution in solid
tumours have focussed on doxorubicin, mainly due to its
availability in radiolabelled form or its inherent fluorescence. In
the present paper, a selection of compounds with different
chemical characteristics were chosen to examine distribution in
the TS model, which provides a reflection of the avascular nodules
found in solid tumours in vivo (Thomlinson and Gray, 1955;
Harris, 2002). The use of confocal microscopy permitted
investigation in a noninvasive fashion compared to previously
used techniques such as autoradiography (Nederman et al, 1988;
Kobayashi et al, 1993) or flow cytometry (Durand, 1990). None of
the compounds used was an anticancer agent; however, the
fluorescent compounds rhodamine 123 and calcein-AM are both
well-established substrates for transport by P-gp (Homolya et al,
1993; Shapiro and Ling, 1998). The data using purified recon-
stituted P-gp revealed that BODIPY-taxol stimulated ATP hydro-
lysis and displaced the binding of [’H]azidopine, both indicative of
a direct effect on the protein. Moreover, this highly fluorescent
derivative of paclitaxel retained the ability to cross the plasma
membrane of MCF7" " cells and thus served as a marker to assess
the influence of P-gp in TS. The confocal images of each
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Figure 6 Quantitation of fluorophore distribution within TS*Y", TSAY" (d = 300400 uM) were incubated with 5 uM calcein-AM or rhodamine 123 for
60 min at 37°C in the presence or absence of 10 uM nicardipine. Images were produced by optical sectioning to a depth of 80 uM at 4 uM increments along
the z-axis of the tissue. The fluorescence intensity was measured for each of the images along a central axis (x-axis). The data shown were taken from images
at 20 um (A, D), 40 um (B, E) or 80 um (€, F). The dotted lines represent intensity of fluorescence produced by calcein-AM (A—C) or rhodamine 123
(D—F) in TS*", while the solid lines were obtained following incubation of these agents in the presence of 10 uM nicardipine.

compound were confined to a depth of 80 um from the surface,
since the fluorescent signal is subject to attenuation due to
absorption and scattering artefacts at greater depths (Wartenberg
et al, 1998). This depth of field does extend sufficiently into the
tissue to provide measurements of distribution in both the outer
proliferative and deeper quiescent cell populations (Hall et al,
2003; Walker et al, 2003).

Durand (1990) proposed that the effect of P-gp on drug
distribution would manifest as an increased penetration rate
through tissue. This effect would result from a lack of significant
reduction in extracellular concentration during passage due to the
reduced accumulation in cells. This hypothesis was supported by
the reduced penetration of ['*C]doxorubicin through TS following
inhibition of P-gp, thereby producing toxicity in perivascular cells
while preventing access to central quiescent cells (Tunggal et al,
2000). However, doxorubicin distribution may not provide a
‘global’ or typical template for drug distribution due to the
sequestration within the outer cell population caused by its avid
binding to cellular macromolecules (Sutherland et al, 1979; Kwok
and Twentyman, 1985; Tunggal et al, 1999). The distribution of
fluorescence produced following calcein-AM addition displayed a
similar pattern to doxorubicin, with localisation restricted to the
outer few cell layers. The lack of distribution at deeper regions of
TS is unlikely due to physical artefact caused by nonspecific
quenching of fluorescence since it was not evident for either
rhodamine 123 or BODIPY-taxol. Inhibition of P-gp in TS*%" by
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nicardipine produced a large increase in calcein-AM accumulation;
however, the overall distribution remained restricted to similar
regions as in TSW'. P-gp is expressed at deeper layers of TS""
Walker et al, 2003) although the levels are very low, and it was
thought that this may account for the lack of calcein fluorescence
in this region. However, nicardipine addition to TS"" did not
affect calcein-AM distribution at any depth of the TS“'. The
increased accumulation of BODIPY-taxol or rhodamine 123 in
deep regions of TS*¥" in the presence of nicardipine suggests that
the P-gp inhibitor displays significant activity and penetration in
the central regions of the tissue. The highly localised distribution
pattern may be due to the large diffusion gradient for calcein-AM
into cells in the TS periphery being constantly maintained by the
rapid cleavage to calcein, thereby appearing to ‘sequester’
fluorophore within this cell layer (Homolya et al, 1993).

The results presented for calcein-AM and those for doxorubicin
(Wartenberg and Acker, 1996; Tunggal et al, 2000) show that P-gp
is able to prevent the accumulation of compounds with a relatively
‘restricted’ distribution pattern. Does it afford a similar effect on
the penetration of compounds with different physico-chemcal
properties? Unlike doxorubicin, the penetration of another antic-
ancer agent, paclitaxel, is extensive throughout 3-D histocultures
of patient tumours (Kuh et al, 1999) and the multicellular layer
model (Nicholson et al, 1997). However, the rate of penetration
through the tissue is thought to be considerably slower than
doxorubicin or tirapazamine (Nicholson et al, 1997; Phillips et al,
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1998). These investigations were facilitated by the availability of
radiolabelled paclitaxel; however, the measurement of [3H]drug
distribution by autoradiography is limited by the need to fix the
tissue, which may itself affect the drug distribution profile. To
counter this problem, a confocal microscopy approach was used to
measure the distribution of BODIPY-taxol in TS. BODIPY-taxol
has previously been demonstrated to interact with microtubules
and this association is competitively inhibited by the parent
compound paclitaxel (Bicamumpaka and Page, 1998; Melan, 1998).
This compound may therefore be considered to provide a faithful
representation of paclitaxel actions in a cellular environment. This
was borne out by the finding that BODIPY-taxol labelled numerous
cytotosolic sites including the nuclear membrane in MCF7"" cells
both in monolayer and 3-D cultures, similar to the intracellular
localisations previously reported (Bicamumpaka and Page, 1998).
As described above, the fluorescent paclitaxel derivative behaves as
a transported substrate of P-gp, and consequently did not
accumulate significantly at any location in TS*¥, a situation
analogous to that observed in monolayer cultures (Martin et al,
1999). Further proof of a direct involvement for P-gp in
maintaining lower cellular drug concentrations was the restoration
of accumulation, by inhibition of P-gp, to levels seen in TS" ™. In
addition, the distribution of BODIPY-taxol in nicardipine pre-
treated TS*%" was relatively homogeneous at all tissue depths
examined, indicating that effective inhibition of P-gp is possible
within a solid tissue mass. The pivotal role for P-gp in determining
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drug pharmacokinetic profiles has also been demonstrated in
normal noncancerous tissue through prevention of paclitaxel and
BODIPY-taxol passage across the blood-brain barrier (Fellner
et al, 2002).

In summary, the results presented in this paper show that the
expression of P-gp in 3-D organisation of cells does affect the
overall accumulation of a variety of compounds. While the
penetration or distribution of compounds throughout solid tissue
is strongly dependent on the physico-chemical properties of a drug
(e.g. doxorubicin vs paclitaxel), a reduction in accumulation within
specific cellular compartments by efflux pumps such as P-gp will
also contribute to the global pharmacokinetic characteristics.
Thus, it seems that the notion of dismissing P-gp to ‘bystander’
status in drug-resistant solid tumours appears unfounded, and
some attention to overcoming its actions in chemotherapeutic
strategies will remain a priority.
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