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INTRODUCTION (reviewed in reference 40). In addition, dissociation of gp120

Infection with human immunodeficiency virus type 1
(HIV-1) leads to a progressive loss of CD4" T cells, resulting
in severe immunodeficiency and AIDS. Interaction of the en-
velope glycoprotein of HIV-1, gp160/gp120, with its principal
receptor, the CD4 molecule, leads to infection, syncytium for-
mation, interference with signalling pathways, cytopathic ef-
fects, and priming of T cells for programmed cell death (7, 20,
52, 160, 319, 360, 413). The envelope glycoprotein of HIV-1,
encoded by the env gene, is produced from the enzymatic
cleavage of the precursor protein, gp160, to produce the ex-
ternal gp120 and the transmembrane gp41 proteins (52). gp120
remains noncovalently associated with gp41 as the outer enve-
lope of the virus and is readily shed from the cell surface, as
evidenced by its presence in the culture supernatants of virus-
infected cells (342). The in vivo significance of the contribution
of soluble envelope proteins, gp160 and gp120, in inducing
immunopathological perturbations is supported by the obser-
vation that circulating gp120 is found in sera of HIV-1-infected
individuals (294). Furthermore, cell membrane-associated
gp120-anti-gp120 complexes have been found in CD4™ T cells
of HIV-1-seropositive patients (4, 97).

Several studies have precisely mapped the amino acid resi-
dues on both CD4 molecules and gp120 that are responsible
for the specific interaction (11, 77, 207, 211). These observa-
tions have indicated the requirement of tertiary folding of
gpl120 to form a conformation-dependent CD4-binding site
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and gp41 to expose the fusogenic domain, temperature and pH
changes, and interaction with novel cell membrane proteases
are suggested to play critical roles in viral entry processes
which lead to infection (114, 195, 246, 341).

The various cell types infected by HIV-1 include CD4"
helper T cells, monocytes-macrophages, dendritic cells, Lang-
erhans cells, placental trophoblasts, and neuronal cells (51,
136, 254, 345, 413, 426). Mutational analyses have indicated
that the V3 loop of gp120 plays a role in the determination of
cell tropism (175). Although the interaction of the V3 loop
with the CD26 molecule, expressed on activated T cells, has
been shown to be essential in HIV-1 infection (49), these
studies have been challenged (46). However, a recent study has
reemphasized the role of CD26 as a second receptor for HIV
and shown that it is a key molecule of macrophage-tropic
infections (299). Neutralizing antibodies and cytotoxic T cells
recognizing the V3 loop have been suggested to play a signif-
icant role in the “protective” immune response against HIV-1
(36, 286), leading to the development of several candidate
vaccines involving the envelope glycoproteins. The role of the
envelope glycoproteins of HIV-1 in the infective process, the
variability in viral phenotypes, the tropism in different cell
types, and the epitopes involved in virus neutralization have
been extensively reviewed elsewhere (85, 134, 146, 223, 347).
Here, we review the potent pleiotropic biological effects in-
duced by interaction of gp160/gp120 with cell surface mole-
cules on lymphoid and neuronal cells and with complement
components. The implications of these interactions for the
pathogenesis of AIDS are discussed.

The immunopathogenesis of HIV-1 infection is associated
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with an apparent immune system paradox, with severe immune
system suppression occurring concurrently with immune sys-
tem activation. Immune system suppression, resulting in recur-
rent infections and neoplastic states, has been attributed to the
qualitative and quantitative decline in the number of CD4" T
cells in HIV-1-infected patients. Immune system stimulation in
AIDS is dominated by the demonstration of elevated levels of
inflammatory cytokines, e.g., interleukin-1 (IL-1), IL-6, gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF), on-
costatin M, tumor necrosis factor alpha (TNF-a), and TNF-,
in both serum and cerebrospinal fluid (116). In addition, a
generalized loss of regulation of humoral immune responses
results in a nonspecific increase in the amount of immuno-
globulins (Igs) of the IgG and IgA classes; B cells of HIV-1-
infected patients are concurrently deficient in their ability to
develop antigen-specific antibodies to nominal antigens (e.g.,
tetanus antigen) (209). In this review, we discuss the diverse
biological effects on lymphoid cells resulting from the interac-
tion of the HIV-1 envelope glycoproteins with CD4" cells
(e.g., induction of cytokine secretion, unresponsiveness, and
apoptosis). The envelope glycoproteins may influence lym-
phoid and neuronal cells by two mechanisms: (i) directly, either
by blocking CD4-major histocompatibility complex (MHC) class
II interactions and/or by transducing signals induced through
the gp120-CD4 interaction, and (ii) indirectly, by the action of
soluble and/or cell-associated factors mediated by the gp120-
CD#4 interaction. Profound detrimental effects of the HIV-1
envelope glycoproteins occurring as a result of specific inter-
action of the HIV-1 envelope glycoproteins with CD4 mole-
cules influence various cells, including but not limited to CD4™
T cells.

HIV-1 gp120-CD4 Interaction

One of the hallmarks of AIDS is the selective depletion of
CD4™" T cells (120, 122, 210), attributed primarily to the ability
of HIV-1 to infect CD4™ T cells (52, 93, 198, 211). The 58-kDa
CD4 molecule on T cells has an extracellular domain of 370
amino acids, a hydrophobic transmembrane domain of 25
amino acids, and a highly charged cytoplasmic domain of 38
residues. There are four recognized domains in the extracel-
lular region of CD4 (D1 to D4) (75, 240, 241, 340). The four
extracellular domains of CD4, which belong to the immuno-
globulin supergene family, share a basic structure comprising a
stable fold of two B-pleated sheets composed of antiparallel B
strands. Crystal structures of the D1 and D2 domains of CD4
have confirmed these observations (338, 405). The cytoplasmic
domain of CD4 is strongly conserved across mammalian spe-
cies (228). In contrast, extracellular and transmembrane re-
gions show overall homologies of only 55% between humans
and mice. Murine CD4 does not bind HIV-1 gp120, and mice
are not infected by HIV-1. This difference has been exploited
to map the residues important in the CD4-gp120 interaction.
Several experimental strategies, including random saturation
mutagenesis coupled with complement-mediated selection of
escape mutants (315), insertional mutagenesis (271), and ho-
molog-scanning mutagenesis (76, 77), have been used to iden-
tify the residues on CD4 that are important for gp120 binding.
Residues in the V2 domain of CD4 (amino acid residues 40 to
55) are critical for binding of gp120 to CD4 molecules, and this
site overlaps the binding of CD4 to its natural ligand, MHC
class II molecules (47, 77, 128, 172, 271, 315). Studies with
synthetic peptides have indicated that amino acid residues 25
to 58 (179, 225) and 81 to 92 (187) on CD4 molecules block the
interaction of HIV-1 with CD4™" T cells at steps after the initial
binding. These observations suggest that conformational changes
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involving flexible hinges between D2 and D3 on CD4 mole-
cules may play an important role in the interaction of the
HIV-1 envelope glycoproteins with CD4™" T cells.

The identification of the binding site of HIV-1 envelope
glycoproteins on T cells had led to trials with soluble CD4 as an
immunotherapeutic agent (348). While laboratory strains of
HIV-1 were neutralized efficiently by soluble CD4 prepara-
tions, primary HIV-1 isolates were relatively resistant to neu-
tralization by soluble CD4-based reagents (252). The failure of
soluble CD4 to block HIV-1 infection in vivo has been attrib-
uted to the complex mechanisms of viral entry. Soluble CD4
induced shedding of gp120 from the virions, thus exposing the
fusogenic transmembrane gp4l region and leading to en-
hanced infection rather than blocking (29, 40).

The envelope glycoproteins of HIV-1 are initially synthe-
sized as a single polypeptide precursor, gp160, which is cleaved
at a cluster of basic residues by a cell-associated enzyme to give
the extracellular protein, gp120, and the integral transmem-
brane protein, gp41 (154). Mutational analyses have indicated
that the cleavage of gp160 to gp120 and gp41 is critical for viral
infectivity (256). The primary amino acid sequence of gp120
predicts a 60-kDa polypeptide with several glycosylation sites.
The carbohydrate residues of gp120 contribute significantly to
the affinity of the gp120-CD4 interaction (30, 123, 253, 256,
270). The affinity of the gp120 binding to CD4 on the cell
surface is 4 X 1072 M (211). Studies of amino acid sequences
from different strains of HIV-1 have shown that gp120 contains
five conserved regions (C1 to C5). A proteolytic fragment of
gp120, containing most of the third, fourth, and fifth conserved
domains, at least partially retains the ability to bind CD4
(293). Consistent with these studies, the use of linker insertion
mutations has revealed that regions in the third (residues
333 to 334), fourth (residues 388 to 390), and fifth (residues
442 to 443) conserved domains of gp120 abolish CD4 binding
(10).

The amino acid sequences of envelope regions of different
HIV-1 isolates show an extraordinary degree of variability
(>30%), which is localized in five hypervariable regions (V1 to
V5). The source of variation is the infidelity of reverse tran-
scriptase, which has no editing mechanism for transcriptional
errors (267). Efficient CD4 binding is dependent on discontin-
uous elements derived from the third (aspartic acid 368 and
glutamic acid 370) and fourth (tryptophan 427 and aspartic
acid 457) conserved regions (52, 211). Intramolecular disulfide
bonds in gp120 result in the inclusion of the first four variable
regions (V1 to V4) in large, loop-like structures. Antibody-
mapping studies indicate that the linear epitopes on the gp120
glycoprotein, those located in the V2 and V3 regions, consti-
tute the most highly exposed elements on the HIV multimeric
envelope glycoprotein complex. Antibodies directed to the V3
loop of gp120 (the principal neutralizing domain) neutralize
HIV infection; however, these antibodies are more type spe-
cific and do not possess broad neutralizing capacity (286).
Variations in the V2 and V3 regions of the envelope glycopro-
tein have been suggested to induce the ability of the virus
strains to infect different cell types, e.g., T lymphocytes and
macrophages (371). In addition, the variation results in changes in
biological properties of viruses, e.g., syncytium and nonsyncy-
tium inducing, and slow-low and rapid-high strains of virus
isolates (reviewed in references 85, 146, 223, and 347). Exten-
sive genotypic and phenotypic characterization of the envelope
regions of these viral strains has suggested that these variations
contribute significantly to the pathogenesis of the disease (150,
355).



388 CHIRMULE AND PAHWA

HIV-1 ENVELOPE GLYCOPROTEINS AND
LYMPHOID PROGENITORS

The hematopoietic differentiation process is known to occur
in discrete and well-orchestrated steps. Beginning in fetal life,
hematopoietic stem cells and their progeny develop in the fetal
liver. The developing thymus collects hematopoietic stem cells
in two to four stages that commit cells to the T-cell develop-
mental pathway. Expression of the CD4 and CD8 molecules on
these T cells, induced by the differentiation processes in the
thymus, is controlled by complex regulatory pathways. After
development, these immature cells are found within the pe-
ripheral blood lymphoid organs, where they play important
roles in the control and pathogenesis of disease. Interaction of
the envelope glycoproteins of HIV-1 with lymphoid progenitor
cells has been suggested to have profound influences on dif-
ferentiation processes both in vitro and in vivo (257).

CD34" Stem Cells

HIV-1 infection results in a variety of hematological abnor-
malities (368). On the one hand, it has been suggested that the
hypercellularity and dysplastic morphology of bone marrow
cells are caused by hyperplasia of granulocytic, erythrocytic,
and megakaryocytic precursors; on the other hand, it has been
suggested that HIV-1 infection of progenitors contributes to
thrombocytopenia, granulocytopenia, anemia, and lymphope-
nia, resulting in the loss of CD4* T cells in the periphery in
patients with AIDS (257).

The experimental data concerning pathologic mechanisms
involved in the hematopoietic dysfunction of AIDS are in con-
flict (129). A central issue in the dispute about the primary
cause of AIDS-related bone marrow dysfunction is the suscep-
tibility of CD34" progenitor cells to infection with HIV-1.
Studies of cell surface markers on progenitor cells in the bone
marrow have shown that the CD4 molecule is expressed on
very early cells, which are CD34" CD38~ (231). Despite in
vitro infection of these progenitor cells (130), several studies of
HIV-1 infection of bone marrow progenitor cells in vivo have
not yielded consistently positive results (9, 98, 108, 273, 372,
401, 431). Thus, infection of CD34™ cells may not be necessary
for the HIV-1-mediated cytopathicity.

Several investigators have demonstrated the effects of enve-
lope glycoproteins on uninfected CD34* progenitor cells. The
stimulatory influences of HIV-1 on hematopoietic cells, result-
ing in increased myeloid-cell colony formation, CFU-GM (14),
has been one of the proposed mechanisms of the hypercellu-
larity. To investigate this possibility, we tested the effects of
gpl160 on colony formation by hematopoietic precursors in
normal human cord blood lymphocytes. Culture of cord blood
mononuclear cells with soluble HIV-1 gp160 resulted in en-
hancement of the in vitro growth of myeloid hematopoietic
progenitors (380). This enhancement of myeloid-cell differen-
tiation did not result from a direct effect of gp160 on CD34™"
progenitor cells but from an indirect effect through induction
of the soluble cytokines IL-3, GM-CSF, and IL-6 by interaction
with CD4™ T cells (388). The enhancing activity of gp160 was
mediated through the CD4 molecules, since it was abrogated
by preincubation of gp160 with soluble CD4. These observa-
tions suggest that gp160 may induce secretion of colony-stim-
ulating factors in the bone marrow of HIV-1-infected individ-
uals and provide an explanation for the hypercellularity of the
bone marrow that is frequently observed in HIV-1 infection.

Impaired colony formation by hematopoietic cells in HIV-
1-seropositive individuals has been extensively documented
(219, 373, 428). HIV-1 gpl120 inhibits hematological colony
formation as measured by erythroid burst-forming units and

MICROBIOL. REV.

CFU-GM (237). Here, gp120 caused its inhibitory effects by
inducing the secretion from mononuclear phagocytes of
TNF-a, which is a potent inhibitor of hematopoiesis in vitro;
the addition of anti-TNF-a antibody abrogated the inhibitory
effects of gp120. Interaction of gp120 with CD34™ cells weakly
expressing CD4 molecules increases protein kinase C activity
and reduces intracellular calcium levels (427). The binding of
gp120 to hematopoietic progenitor CD34™ cells also has direct
cytopathic effects on these cells (429, 430) by mechanisms
involving apoptosis (328). Taken together, the engagement of
CD4 receptor by gp120 may induce aberrant cytokine secretion
and/or apoptotic cell death, contributing to the depletion and
dysfunction of uninfected CD34" progenitor cells in HIV-1
infection.

Thymocytes

The development of the T-cell repertoire is a complex pro-
cess of positive and negative selection events, involving inter-
action of several pairs of cell surface molecules with their
ligands. T cells enter the thymus lacking expression of both
CD4 and CD8 molecules. After a transient low-level expres-
sion of CD4 and CDS8 molecules, genes encoding the T-cell
receptor (TCR) rearrange, and cells become TCR* CD4™"
CD8™ triple-positive cells and undergo selection processes that
eliminate self-reactive T cells and select MHC class I- and class
II-responsive cells. Thymocytes failing to interact with self
MHC molecules die in the thymus, cells with moderate affinity
for self MHC structures survive (positive selection), and cells
with high affinity for self MHC molecules are eliminated (neg-
ative selection). This results in a T-cell repertoire that has the
capacity to react with foreign antigen bound to self MHC but
is tolerant to self MHC alone. It has been postulated that the
coordinate engagement of the TCR and CD4 molecules with
MHC class II at the double-positive stage instructs the extinc-
tion of CD8 expression. Thymocytes bearing the MHC class
I-specific TCR would coengage CDS, and this would elicit a
different signal turning off CD4 expression. Alternatively, the
generation of single-positive cells is a stochastic process that is
part of a program of T-cell maturation (182, 333).

It is clear that CD4 molecules are essential in the maturation
of T cells. In vivo administration of monoclonal antibodies
(MADs) to CD4 in newborn mice abolishes the development of
mature CD4" T cells in the periphery (326). In addition, the
use of CD4~ and MHC class II knockout mice has shown that
interaction of CD4 and MHC class II molecules is essential for
proper development of normal T cells (152, 325).

The influence of HIV-1 infection on thymocyte differentia-
tion has been extensively studied in mice with severe combined
immunodeficiency (SCID mice) that have human thymic tissue
transplants and in thymuses of HIV-1-infected patients. Inves-
tigation of thymuses obtained at autopsies of HIV-1-infected
children and adults revealed varied results; in some studies,
severe involution of both thymus and epithelial tissue was
found, and in others, only 30% of the thymuses were affected
by HIV-1 (89, 245, 305, 384). In vitro infection studies have
shown that immature CD4* CD8* thymic lymphocytes are
highly susceptible to HIV-1 infection and replication (101, 164,
395). In addition, CD3~ CD4~ CDS§" triple-negative thymo-
cyte precursors have been demonstrated to be infectible in
vitro (344). The ability of HIV-1 to infect thymocyte precursors
in vivo results in altered thymocyte differentiation in SCID-hu
mice (severe combined immune deficiency mice engrafted with
progenitor cells of the human hematopoietic system) (271, 37).
HIV-1-infected SCID-hu mice showed a significant variability
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TABLE 1. Signals induced by interaction of HIV-1 envelope glycoproteins with cells expressing CD4 molecules
Substrate® Cell type® Stimulus Reference
CD4 (YP) Alloantigen-specific CD4™" cloned T cells Whole virus 125
and CD4* PB T
Arachidonic acid metabolites Monocytes gp120 403
Calmodulin PB lymphocytes gpl60 369
p56lck env' CD4" T-cell line env’ cells plus CD4" cells 423
Jurkat gp160 (2 pg/ml) 366
CD4* PB T, Hut78 gp160, gp120, peptides 166
p34cdk2 env’ Jurkat env” cells plus CD4" cells 84
Ca®", 1P, CD4" PBT gp120 (1 pg/ml) 204
PKC T cells gp120 435
Lymphocytes gp120 156
PI-3K, PI-4K HPB ALL Anti-CD4 MAb 321
raf-1 K HPB ALL, Rex, Molt-15, PB T cells, HeLa gp120, anti-CD4 MAb 322
CD4, U937
shc, Grb2/Sos, ras Jurkat CD4* T cells gp120 plus anti-gp120 Abs, anti-CD4 MAb 18
PKA/cyclic AMP PBMC HIV proteins 169
NFAT Jurkat CD4* T cells gp120 plus anti-gp120 Abs, anti-CD4 MADb 17
NF-«xB Jurkat, CD4 PB T, H9, Molt-4 gp160, gp120, anti-CD4 64
AP-1 Jurkat, CD4 PB T, H9, Molt-4 gp160, gp120, anti-CD4 61

“ YP, tyrosine phosphorylation; IP5, inositol triphosphate; PKC, protein kinase C; PKA, protein kinase A.

b PB, peripheral blood.

of the TCRVp subpopulation, with a selective increase in
some, e.g., TCRVB2. Infection of these mice with different
HIV-1 strains has shown that the effect of HIV-1 infection on
thymocyte maturation may vary among different strains (188,
203, 378). While minimal effects were observed after chronic
infection with two primary isolates, HIV-1,4 and HIV-1,, sig-
nificant thymocyte depletion was detected with HIV-1,;,5 and
HIV-1 strains (203). Furthermore, rapid-high, syncytium-
inducing isolates of HIV-1 induced cytopathicity of SCID-hu
thymocytes, while slow-low, non-syncytium-inducing strains
had minimal effects (188). The major mechanism of the HIV-
1-induced cytopathicity of thymocytes may be due to indirect
killing of uninfected cells by apoptosis (379).

Conceptually, binding of gp120 with high affinity to CD4
molecules may result in interference in interaction of thymo-
cytes with cells of the thymic microenvironment, resulting in
aberrant positive and negative selection (332). Decreased pos-
itive selection (induced by gp120 binding to CD4 molecules)
may result in depletion of CD4™ T cells in the periphery, as
observed previously with administration of anti-CD4 MAbs in
mice (326). Inappropriate negative selection may result in es-
cape of self-reactive T cells, resulting in autoimmune phenom-
ena. Further in vivo studies with experimental animal models
(131) or thymic organ cultures must be done to address the
effect of envelope glycoproteins on the thymus in the immu-
nopathogenesis of HIV-1 infection.

HIV-1 ENVELOPE GLYCOPROTEINS AND
MATURE T LYMPHOCYTES

T-cell responses involve activation of naive lymphocytes that
recognize foreign antigens with their TCRs. These responding
cells, which recognize antigen, proliferate to increase their
frequency and differentiate into effector cells capable of elim-
ination of the pathogens that provoked the response. However,
antigen recognition by T lymphocytes can result in divergent
biological consequences, namely, stimulation, anergy (unre-
sponsiveness), or cell death (by apoptosis). Anergy is suggested
to be an important event in the induction and maintenance of
tolerance to self antigen. Much of the understanding of anergy
has been gained by in vitro studies with specific models, in-

cluding “incompetent” antigen-presenting cells (APC) lacking
costimulatory molecules, cross-linking anti-CD3 or anti-TCR
antibodies, and altered peptide ligands (350, 359, 415). We and
several other investigators have demonstrated that pretreat-
ment of CD4™ T-cell clones with the envelope glycoprotein of
HIV-1 (gp120) or anti-CD4 MAb induced antigen-specific T-
cell unresponsiveness. On the other hand, binding of gp120 to
CD4 molecules itself induces partial T-cell activation, as mea-
sured by tyrosine phosphorylation, activation of transcription
factors, and induction of IL-6 and TNF-a secretion. Cross-
linking of the CD4 molecules with gp120 or anti-CD4 MAb
results in intracellular signalling, which primes T cells for ac-
tivation-induced apoptosis. These biological consequences, al-
though diverse, help to explain findings which have been dem-
onstrated for HIV-1-infected individuals. Regulation of these
events may be critical in disease progression.

T-Lymphocyte Activation

Cellular activation plays a major role in the ability of HIV-1
to remain latent or establish productive infection in T cells
(12). Activation of T cells by foreign antigen is under stringent
control and involves presentation of antigens by MHC class I
and II molecules. Once activated, T cells develop into cells
whose differentiation function can be that of releasing cyto-
kines (412), which in turn influence the functions of other cells
and ultimately lead to productive HIV-1 infection. HIV-1 itself
has been shown to induce activation of T cells by interaction of
its envelope glycoproteins with the CD4 molecule. This inter-
action of gp120 with the CD4 molecule could potentially trans-
duce signals, which could lead to unresponsiveness or death of
CD4™" T cells.

Tyrosine phosphorylation participates directly in the regulation
of cellular functions mediated through the TCR-CD3/CD4 cell
surface molecular complex (313). Binding of antigen to the TCR
leads to rapid tyrosine phosphorylation of the TCR { chain and
several other substrates involving the CD45 phosphatase and
tyrosine kinases csk, Ick, fyn, syk, and ZAP-70 (412). Associa-
tion of a GTP-binding protein with CD4 (385) and activation
of the serine-threonine raf-1 kinase (322) suggest that signals
transduced through CD4 molecules may contribute to the
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TCR-mediated signalling (summarized in Table 1). The inter-
action of HIV-1 envelope glycoproteins with CD4 molecules
transduces positive signals to T cells, as evidenced by protein
kinase C-dependent phosphorylation of the CD4 molecule
(125). Several investigators have demonstrated that binding of
gp120 to CD4 molecules induces an increase in enzymatic
activity and autophosphorylation of Ick at amino acid 394 (166,
366, 423). The CD4-mediated activation of Ick activity induces
phosphorylation of fyn and can be regulated by csk (16). The
stimulatory effects of the envelope glycoproteins can also be
mimicked by synthetic peptides encompassing the CD4-bind-
ing region of gp120 (166). Autophosphorylation of Ick at res-
idue 394 induces its kinase activity (412), substrates of which
include phosphatidylinositol 3 (PI-3) and PI-4 kinases (321)
and raf-1 kinase (322). Cross-linking of CD4 molecules by
gp120 and anti-gp120 antibodies induces increased tyrosine
phosphorylation of both isoforms of the adaptor protein Shc
(p46, p52), resulting in recruitment of the Grb2-mSos com-
plexes, activation of ras-GDP to ras-GTP (383a), and transac-
tivation of the transcription factor, NFAT (16-18). We have
also observed that culturing of peripheral blood CD4* T cells
and CD4™" T-cell lines with gp160 results in induction of nu-
clear binding proteins, NF-kB (64) and AP-1 (61). By using
pharmacological inhibitors of serine-threonine and tyrosine
kinases, the gp120-CD4 interaction-mediated signalling events,
involving phosphorylation of intracellular substrates, have
been shown to be involved in viral entry (125), syncytium
formation, and HIV-1-mediated cytopathic effects (84, 423). In
addition to phosphorylation of intracellular substrates, the ad-
dition of gp120 to CD4™ cells induces an increase in intracel-
lular calcium levels and hydrolysis of PI to inositol trisphos-
phate (204), as well as activation of protein kinase C (156, 435);
however, other researchers have failed to induce T-cell activa-
tion by gp120 when using cloned T cells (193, 300). The pos-
sible differences could be attributed to the different cell types,
anti-CD4 MADs, and envelope glycoprotein preparations. In
this respect, a recent report has demonstrated that functionally
distinct epitopes on the CD4 molecule are involved in the
activation of the ras/protein kinase C and calcium mobilization
pathways (17). In addition, treatment of cells with anti-CD4
MADs specific for the CDR3-like region of the CD4 molecule
but not MAbs directed to the CDR2-like domains inhibits
proviral transcription activity (24), whose mechanism has been
attributed to the inhibition of HIV-induced mitogen-activated
protein kinase activity (26).

Figure 1 shows a schematic representation of the signal
transduction events induced as a result of interaction of gp120
with CD4 molecules. These signals, transduced by gp120 to
CD4™ T cells and monocytes/macrophages, result in a variety
of cellular events including induction of mRNA expression and
secretion of cytokines including IL-1B, IL-3, IL-6, IL-10,
TNF-a, gamma interferon (IFN-y), and transforming growth
factor B (TGF-B); priming for apoptosis; increased hemato-
poiesis; and B-cell differentiation. These biological events in-
duced by envelope proteins are discussed separately in this
review.

T-Lymphocyte Unresponsiveness (Anergy)

Depression of antigen-specific T-cell responses is a relatively
early feature of HIV-1 infection and precedes the quantitative
decline of CD4 cells (122, 158, 268, 353). In addition to the
cytopathic effects, several indirect mechanisms for CD4 cell
destruction have also been proposed, including syncytium for-
mation and killing of gp120-coated cells by cytotoxic T cells
and antibody-dependent cytotoxic cells (122). In vitro studies
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FIG. 1. Intracellular signals transduced through the CD4 molecule. Ligation
of the CD4 molecules on T cells results in activation of nonreceptor tyrosine
kinases, which activate downstream events in the signalling cascade, resulting in
activation of Ras. Signals downstream of Ras lead to activation of transcription
factors, which induce the secretion of cytokines. The pathways indicated are
partly hypothetical and have not all been experimentally proven.

of HIV-infected T cells have demonstrated marked abnormal-
ities in signal transduction of the T-cell activation pathway.
These studies have indicated defective TCR-mediated calcium
fluxes, membrane depolarization, levels of inositol phosphates,
and tyrosine phosphorylation of intracellular molecules (138,
155-157, 226, 291). The role of the CD4 molecule in regulation
of T-cell activation through the TCR has been extensively
documented (21, 105, 181, 303, 396). Since HIV-1 gp120 binds
to the CD4 molecule, the possible role of envelope glycopro-
teins in the inhibition of normal T-cell functional responses has
been studied. Several investigators have demonstrated the in-
hibitory effects of gp120 on normal T-cell functions (48, 54, 55,
62, 63, 67, 72, 86, 103, 144, 145, 169, 185, 205, 220, 243, 244,
298, 301, 335, 349, 352, 391, 402, 411, 423). The gp120 effect
was selective for the CD3-TCR complex, since proliferative
responses induced through CD2 and CD28 and those induced
by phorbol myristate acetate plus ionomycin were not inhibited
by gp120. Pretreatment of CD4™ T cells with gp120 resulted in
inhibition of the costimulatory molecules CD40 on T cells and
B7-1 on APC (67). The amount of gp120 required to induce
immunosuppressive effects in vitro is equivalent to the amount
found in vivo in HIV-1-infected individuals (294). The func-
tional responses of CD4™ T cells that are inhibited by gp120
include proliferation, cytokine secretion, cytolytic activity, and
chemotaxis. These findings suggest that soluble gp120 may
induce the selective qualitative defects in antigen-responsive
CD4™" T cells, characteristic of early HIV-1 infection.

The mechanism for the qualitative defect of T cells induced
by gp120 has been shown to involve impairment of antigen-
driven signal transduction events, i.e., increase in intracellular
calcium levels, hydrolysis of PI and activation of protein kinase
C (54, 269). The inhibition of TCR-mediated tyrosine phos-
phorylation by gp120, which involves the CD4-associated ki-
nase Ick (55, 90, 185, 190), has also been demonstrated by using
anti-CD4 MAbs (142, 295). In this respect, treatment of T cells
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with gp120 resulted in down-modulation of CD4 and Ick mol-
ecules, concomitant with kinetically enhanced dissociation of
Ick from CD4. The precise mechanism by which gp120-medi-
ated signals modulate the delicate interactions of the kinases at
the cell membrane (e.g., syk, lck, fyn, csk, and ZAP-70) and
CD45-associated phosphatases, which are activated upon TCR
ligation, needs further clarification.

The reduced proliferative responses caused by gp120 treat-
ment were attributed to inhibition of mRNA for IL-2 and IL-2
secretion, since addition of exogenous IL-2 restored prolifer-
ative responses (301). gp120 treatment of CD4™ T cells, how-
ever, did not affect CD3-TCR-induced IL-2 receptor a-chain
mRNA expression (301), demonstrating that two distinct sig-
nalling modules, one CD4 dependent and the other CD4 in-
dependent, are transduced through the CD3-TCR. The depen-
dence of involvement of the adapter protein Shc in CD4- but
not CD3-mediated signals in activation of ras-dependent
NFAT (16-18) has clearly shown that signals transduced
through these two molecules in regulating functional responses
of T cells are distinct. The interaction of the envelope glyco-
protein with the CD4 molecule has also been shown to mod-
ulate the lateral interaction with the TCR-CD3 complex (104,
309). gp120 did not affect TCR-CD23-induced proliferative re-
sponses of purified CD8™" T cells or affect antigen presentation
functions in this culture system (66). The inhibitory effects of
gp120 were mediated through the CD4 molecule, since addi-
tion of soluble CD4 abrogated its inhibitory influences.

The envelope glycoproteins of HIV-1 have also been shown
to induce immune system suppression through regions other
than the CD4-binding site. By using the synthetic peptide ap-
proach, the minimal suppressive amino acid subunit has been
localized to several regions of the HIV transmembrane glyco-
protein, gp41. These peptides, with amino acid sequences en-
compassing positions 735 to 752 and 846 to 860, caused pro-
found inhibition of TCR-mediated immune function in vitro
(56, 336, 404). These peptides were also found to impair IL-
2-dependent proliferation of murine CTLL-2 cell lines and NK
cell activity. Amino acid sequence homology was found be-
tween the HIV-1 gp41 peptide 581 to 597 and an immunosup-
pressive peptide (P15E) of feline leukemia virus (74, 334). This
peptide was demonstrated to inhibit anti-CD3 MAb- and IL-
2-induced lymphoproliferation by inhibiting protein kinase C
activity and intracellular calcium mobilization in T cells (74).
Immune system suppression induced by these synthetic pep-
tides was independent of CD4 molecules, and inhibitory effects
were observed in both CD4" and CD8™" T cells (407). It has
been suggested that these soluble proteins of HIV-1 induce an
increase in the level of cyclic AMP, which in turn inhibits T-cell
functions (169). In addition, the carboxyl terminus of gp4l
binds to calmodulin and inhibits T-cell activation by influenc-
ing calmodulin-regulated proteins (369). That defective signal
transduction in T cells of HIV-infected individuals contributes
to the pathogenesis of the disease has been corroborated by
the observation that the peripheral blood lymphocytes of HIV-
1-infected individuals have defective tyrosine phosphorylation,
cyclic AMP levels, and PI hydrolysis in vivo (53, 170, 292).

The failure of T cells to secrete IL-2 upon stimulation by the
TCR has been termed anergy. Recent studies have indicated
that anergized T cells fail to secrete IL-2 as a result of dys-
function of IL-2 gene transcription, the molecular mechanisms
of the latter being attributed to a lack of AP-1 activity (183,
189, 398). We have recently observed that exposure of CD4* T
cells to gp160 results in aberrant activation of AP-1 binding
(61). While the AP-1 complex induced by gpl60 consisted
primarily of junB, the complex induced by anti-CD3 MADb
contained c-jun and junD. It is tempting to speculate that the
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stimulation of T cells by gp160 induces repression of the AP-1
site in the IL-2 gene promoter. Repressive members of the fos
and jun family have been described (191); they might result in
a “pre-occupation” of the AP-1 site in the IL-2 promoter and
finally in inhibition of IL-2 gene transcription. Studies have
also indicated that gp120 may inhibit activation of other tran-
scription factors, e.g., NFAT and NF-«kB, resulting in inhibition
of IL-2 secretion (178). In addition to inhibition of TCR-
induced signal transduction by gp120, binding of gp120 to
CD4™" T cells has been shown to induce secretion of cytokines
(Table 2). These cytokines in turn may modulate the T-cell
functional responses. In this respect, gp120-induced secretion
of TGF-B and IL-10 may result in down-modulation of T-cell
signals (6, 38, 174a). Taken together, the mechanisms by which
envelope glycoproteins can inhibit T-cell functions are complex
and probably involve two pathways: (i) direct interference with
TCR-induced signals by gp120-CD4-mediated signals, and (ii)
indirect effects of gp120-induced activation of T cells, which
results in cytokine secretion and hence affects T-cell functions.
The influence of these cytokines on T-cell responses in vivo has
recently generated interest in the pathogenesis of disease pro-
gression. Understanding the precise mechanism of the failure
of T-cell functional responses will give an insight into devel-
opment of novel therapeutics to reverse such a defect.

Cytokine Dysregulation

Dysfunction of cytokine secretion has been suggested to play
a central role in the immunopathogenesis of HIV-1 infection
(81, 334). It is now abundantly clear that cytokines play a
fundamental role in the regulation of many biological re-
sponses in vivo (278). Over the past several years, the increased
understanding of the importance of cytokines and the immune
system has heightened our appreciation of the complexities of
the interrelationships between cytokines and the cells that pro-
duce and/or respond to them. On the basis of the cytokine
produced, a response (or the cell producing it) can be classified
as being of the Th1 or Th2 type, with IL-2 and IFN-y being the
Thl cytokines regulating delayed-type hypersensitivity and
IL-4 and IL-5 being the Th2 cytokines linked to antibody
production (378). A cell producing a combination of Th1 and
Th2 cytokines is termed ThO0. Other cytokines, such as TNF-q,
GM-CSF, IL-6, and IL-10, may be produced by either cell. A
major source of these other cytokines is the macrophage, which
also secretes IL-12, an important regulator of the cytokine
cascade, which favors the Thl-type response (58). In addition
to CD4 cells, CDS cells can secrete many of the Thl or Th2
types of cytokines (100). The major facilitator of a Thl re-
sponse is IL-12, and that of a Th2 response is IL-4; the major
down-regulator of a Thl response is IL-10, and that of a Th2
response is IFN-y (5, 58, 100, 276). Preferential activation of
the Th1 or Th2 response in certain bacterial or viral infections
and upon encounter with helminths or allergens, respectively,
has prompted an intense investigation of cytokine biology in
HIV-1 infection, with apparently disparate results that fall in
three groups. First, Clerici, Shearer, and coworkers have pro-
posed that a switch from Thl- to Th2-type responses occurs
with disease progression (78, 81) on the basis of results show-
ing reduced IL-2 and IFN-vy secretion and increased IL-4 and
IL-10 secretion in antigen- or mitogen-activated peripheral
blood mononuclear cell (PBMC) cultures of samples from
HIV-1-infected adults. Second, in several studies (121, 137,
242) examining constitutive cytokine mRNA expression, acti-
vated PBMC responses and levels of cytokines in plasma have
failed to show an increase in the amount of IL-4; the IL-2 level
has been decreased, and other cytokines, namely, IFN-v,
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TABLE 2. Induction of cytokines in various cell types by envelope glycoproteins of HIV-1¢
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Cytokine Cells Stimulus Amt Reference
IL-1a PBMC ep120 220 pg/ml 6
IL-1B Mononuclear phagocytes HIV proteins 30 U/ml 19

THP-1 cells HIV 450 pg/ml 260
Monocytes gpl20 5,736 pg/ml 6
Monocytes gpl20 3,700 pg/ml 403
IFN-a PBMC gp120 74 pg/ml 6
Monocytes gp120 4,800 U/ml 133
IFN-y PBMC Anti-CD4 MAb 638 pg/ml 305
PBMC gp120 15 U/ml 6
TNF-a PBMC Anti-CD4 MAb 1678 pg/ml 305
Mononuclear phagocytes HIV proteins 104 pM 260
THP-1 HIV 1,250 pg/ml 6
PBMC gp120 3,274 pg/ml 39
B cells gp160 plus IL4 211 pg/ml 388
CEM cells, PBMC peptides 410-511 5,000 ng/ml 432
IL-3 Cord blood T cells gpl60 198 pg/ml 388
GM-CSF Cord blood T cells gpl60 831 pg/ml 388
Cord blood monocytes gpl60 8 pg/ml 388
IL-6 PBMC gp120 13.5 ng/ml 6
PB CD4" T cells gp120, gp160 3.0 U/ml 302
PBMC gp160, gp120 3.9 U/ml 302
Cord blood T cells gpl60 143 pg/ml 388
Cord blood monocytes gpl160 1,733 pg/ml 388
PBMC Peptides 410-511 20 U/ml 432
B cells gp160 plus IL-4 263 pg/ml 39
TGF-B Monocytes gp160 4.5 ng/ml 174a
IL-10 PBMC gp120 1,772 pg/ml 6
Monocytes gp120 38

“IL-2 and IL4 have been tested, but they were not detectable (6, 305).

TNF-q, IL-6, and IL-10, appear to be up-regulated (57, 79, 82,
137, 159). Of interest is the finding that IL-2 and IFN-v, hith-
erto considered to be coordinately controlled, are affected
differently in HIV-1 infection (137). These findings thus argue
against a Thl-to-Th2 shift and are more compatible with ab-
errant immune system activation instead. A third concept that
has been put forth is that of a Th1-to-ThO shift, on the basis of
studies performed with T-cell clones established from HIV-1-
free and HIV-1-infected individuals (121, 242).

The aberrant cytokine secretion patterns in vivo have been
attributed to (i) increased replication, leading to rapid progres-
sion of disease (e.g., TNF-a); (ii) qualitative depression of
T-cell functions (e.g., TGF-B, IL-10); (iii) decreased cell-me-
diated and increased humoral immune responses in vivo (e.g.,
IL-2, IFN-y, IL-4, and IL-10); and (iv) increased apoptosis
(e.g., IFN-y, TNF-a).

We and several other investigators have been studying the
influences of envelope glycoproteins in PBMC from normal
individuals. Table 2 summarizes the cell culture systems used
to study the various cytokines induced by envelope glycopro-
teins. We have investigated the role of envelope glycoproteins
on helper T-cell subtypes by using CD4" T-cell lines, secreting
primarily either IFN-y or IL-4. Pretreatment of CD4" T-cell
clones with gp160 inhibited IFN-vy secretion but augmented
IL-4 secretion (174). Whether signals transduced following
binding of gp160 to the CD4 molecules on these T cells con-

tribute to the mechanism of the Thl-to-Th2 shift at the IL-2
and IL-4 gene transcription level must be further investigated.
In this respect, regulation of cytokine secretion upon binding
of the ligand to its receptor involves complex signal transduc-
tion pathways. IL-2 secretion occurs following TCR stimula-
tion, through an intracellular calcium- and protein kinase C-
dependent, cyclosporin A-sensitive pathway (397). Secretion of
IFN-vy occurs by stimulation with phorbol myristate acetate
alone (419); c-rel, but not NF-«B, binds to a site related to an
IFN-stimulable response element in the IFN-y promoter
(357). IL-4 secretion, on the other hand, occurs in the presence
of intracellular calcium alone, and the promoter is regulated
primarily by four NFAT-binding domains (73). Further studies
at the gene transcriptional level should indicate whether sig-
nals transduced through the CD4 molecule contribute to the
dysregulation of cytokines associated with HIV-1 infections.

Apoptosis

Apoptosis, or programmed cell death, is a physiological sui-
cide mechanism that preserves homeostasis, in which cell death
naturally occurs during normal tissue turnover (196, 279). This
phenomenon is characterized by histological changes of nu-
clear and cytoplasmic condensation and fragmentation of DNA
into nucleosome-sized multimers of 200 bp. In most cases,
apoptosis occurs after activation of a calcium-dependent en-
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dogenous endonuclease (417). Several investigators have dem-
onstrated that T cells from HIV-1-infected patients undergo
enhanced spontaneous apoptosis in vitro (127, 148, 151, 224,
249, 264, 386, 393). Addition of activating agents, e.g., phyto-
mitogens, exacerbates T-cell apoptosis in HIV-1-infected pa-
tients. Both CD4" and CD8" T cells from HIV-1-infected
individuals undergo apoptosis (264). Meyaard et al. (265) have
reported that the degree of apoptosis is not restricted to a
specific subset of T cells and does not change significantly with
disease progression. Muro-Cacho et al. (282) showed that the
degree of apoptosis in lymph nodes from HIV-positive patients
was four times higher than that in lymph nodes of HIV-nega-
tive persons. The degree of apoptosis in this study correlated
with the activation state of the lymphoid tissue but not with the
clinical state of HIV disease or the viral burden. Another study
has indicated that the apoptosis rate correlated with both dis-
ease severity and progression (310). Furthermore, the in-
creased rate of lymphocyte death was mediated by impaired
cytokine production, because the apoptosis could be prevented
by addition of exogenous IL-2. It has now been shown that
apoptosis of T cells infected with HIV-1 is blocked by Thl
cytokines (IFN-vy, IL-2, and IL-12) but not by Th2 cytokines
(IL-4 and IL-10) (81, 334).

Several reports over the past few years have drawn attention
to the high viral burden in individuals with HIV-1 infection and
strongly indicated the role of HIV-1 replication in the patho-
genesis of AIDS (115, 167, 410). In contrast, recent findings
have indicated that DNA fragmentation (apoptosis) is rarely
observed in HIV-1-producing infected cells, arguing in favor of
indirect mechanisms of cytopathic effects of HIV-1 rather than
direct killing of CD4™ T cells by HIV-1 (127). It has been sug-
gested that HIV-1 may not kill its host cells but may use this
viral factory as a base to kill uninfected bystander cells (126).
The interaction of the envelope glycoproteins of HIV-1 with
CD4 molecules of uninfected cells has been suggested to con-
tribute to apoptosis in vivo. In this respect, T cells transfected
with the env gene undergo apoptosis by mechanisms suggest-
ed to involve the occlusion of nuclear pores by intracellular
gp160-CD4 complexes, which may activate endonucleases (233).
Furthermore, expression of HIV-1 envelope glycoproteins at
the cell surface of transfected cells triggers apoptosis by inter-
action with CD4 molecules (87, 214). Cross-linking of soluble
gp120 bound to CD4 molecules on purified T cells with anti-
gp120 antibodies has been shown to prime T cells for apopto-
sis; activation of T cells through the TCR induces apoptosis
(20). It has been observed that cross-linking of gp120 with
anti-gp120 antibodies by itself is sufficient to induce apoptosis
in peripheral blood lymphocytes of normal individuals (132,
304, 305). It has been suggested that circulating anti-gp120
antibodies in HIV-1-infected individuals (4, 97, 294) may cross-
link gp120 bound to CD4™ T cells and prime them for apo-
ptosis in vivo. This hypothesis has been experimentally con-
firmed with human CD4-transgenic mice given injections of
gp120 and sera from HIV-1-infected patients (407). However,
this phenomenon itself (of CD4 cross-linking by gp120) cannot
explain the loss of CD8™ T cells, which also undergo sponta-
neous apoptosis in HIV-1-infected patients (264). Our studies
with cross-linking CD4 molecules on PBMC, which results in
apoptosis of both CD4* and CD8" T cells (304, 305), have
suggested a possible essential role of accessory cells in apopto-
sis. In this context, it is of interest that the chimpanzee, despite
being infectible by HIV-1, does not develop AIDS. The key
difference between chimpanzees and other primates is that
chimpanzee monocytes are resistant to apoptosis (119). A sim-
ilar difference between CD4" cells of humans and chimpan-
zees occurs in syncytium formation and has been localized to a
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single amino acid difference in the extracellular domain of the
two CD4 molecules. It is possible that differences in CD4
molecules of animal species and differences in various strains
of gp120 together result in altered binding that leads to either
pathogenic or nonpathogenic infection (126).

Several molecular mechanisms have been proposed for the
induction of apoptosis in lymphoid cells (399). Interaction of
Fas antigen with the Fas ligand has been suggested to play a
major role in induction of apoptosis in peripheral blood T cells
(91). Fas antigen is a transmembrane member of the TNF-a
family, whose cross-linking leads to apoptosis (422). Mutations
in the Fas antigen and Fas ligand in mice with lymphoprolif-
erative and generalized lymphoproliferative autoimmune dis-
orders, respectively, have shown that these cell surface mole-
cules are involved in the regulation of autoreactive and
perhaps normal peripheral T-cell survival (383, 408). gp160-
transfected T cells (233) and cross-linking of CD4 molecules
on T cells by gp120 or anti-CD4 MAbs induce up-regulation of
Fas mRNA and Fas antigen expression in normal lymphocytes
(305) in vitro and in vivo (406). We have observed that the
Fas-bright population of cells contain the majority of the cells
undergoing apoptosis whereas the Fas-negative/dimly positive
cells contain few apoptotic cells (306). Cytokines have been
shown to regulate apoptotic mechanisms (80). In this respect,
while IFN-y and TNF-a augmented gp120-induced apoptosis
(306), IL-2 and IL-12 inhibited apoptosis induced by CD4
cross-linking with gp120 (324). CD4 cross-linking also resulted
in induction of the cytokines IFN-y and TNF-a (without IL-2
and IL-4 secretion), which contributed to the up-regulation of
Fas antigen on CD4* and CD8™ T cells. Thus, increased ex-
pression of Fas antigen, induced by cross-linking of CD4 mol-
ecules by gp160, may contribute at least in part to the mech-
anism of apoptosis in AIDS. Interaction of Fas antigen with its
ligand (FasL) results in cell death (102), and this mechanism is
involved in the apoptosis induced by gp120-CD4 interactions
(414). It is presently not clear which population of cells in
HIV-1-infected patients up-regulate FasL. and mediate cell
death, expressing increased levels of Fas antigen. In this re-
spect, we have demonstrated increased Fas expression on T
cells of HIV-1-infected patients; the increase in the percentage
of CD4™" T cells expressing Fas correlated with decreased CD4
T-cell counts (255). Katsikis et al. (192) have shown that both
CD4" and CD8* T cells from HIV-1-infected patients un-
dergo apoptosis in response to anti-Fas antibodies; L-selectin-
positive memory cells were especially susceptible to anti-Fas-
induced apoptosis. Regulation of Fas-FasL interaction may be
interlinked with other anti-apoptotic mechanisms (339). Thus,
additional mechanisms which need further investigation in-
clude involvement of the bcl-2 gene family members (bcl-2,
bcl-x;, and bax), ced3/ced9 genes, the pS3 gene, c-myc, the
nur-77 genes, and the ICE gene family (232, 354, 375, 400,
416). Pharmacological agents, protease inhibitors, cyclosporin
A, and tyrosine phosphorylation inhibitors inhibit the induc-
tion of apoptosis (8, 222, 248). Further studies of signalling
pathways which result in cell death by apoptosis may have
relevance for designing novel immune system-based therapeu-
tic strategies and vaccines against HIV infection.

Superantigens

Recently, considerable attention has been paid to the puta-
tive role of a superantigen, either encoded by HIV-1 or derived
from unrelated agents, in the immunopathogenesis of AIDS
(180). Superantigens are characterized by their ability to bind
to a wide range of the T-cell repertoire that has a specific
region of the variable B chain of the TCR (109). Unlike con-
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ventional antigens, superantigens need to bind only to non-
polymorphic regions of MHC class II, without the requirement
for antigen processing. Therefore, superantigens can induce
massive stimulation and expansion of T cells bearing VB de-
terminants, followed by deletion of those cells.

Several investigators have reported that HIV-1-infected in-
dividuals exhibit perturbations of specific Vp-bearing T-cell
subsets (23, 95, 147, 168, 176, 250, 329, 364, 365, 370), although
the results obtained by different groups are different (15, 42,
288, 320). Alternate hypotheses suggest that particular VB-
expressing T cells may support HIV-1 replication more effec-
tively than others (213) or may induce deletion (22) or anergy
(92) of particular TCR VB-bearing T cells. In primary infec-
tion, an increase in the number of CD8™ T cells with restricted
VB chain usage was found (186, 311). However, this might not
reflect the involvement of a superantigen but may (more prob-
ably) reflect the oligoclonality of cytotoxic T-lymphocyte re-
sponses against HIV-1. Various HIV-1-encoded proteins, in-
cluding pol (35) and env (1, 2), have been implicated as
possible candidates as superantigens. The viral envelope gly-
coprotein has several subregions sharing structural homology
with MHC class I and II proteins (94). It has been hypothe-
sized that a sequence of gp41/gp120 may interact with a par-
ticular TCR (409). Addition of soluble envelope glycoproteins
of HIV-1 to cultures of normal peripheral blood lymphocytes
induces increased expression of mRNA for a particular TCR
VB in both CD4" and CD8™ T cells (1). Further investigation
is needed to determine whether this activation is the result of
superantigenic effects (2).

The varied results of the TCR Vp repertoire changes in
HIV-1l-infected individuals suggest that it is not likely that
HIV-1 encodes a specific superantigen itself; superantigens
encoded by other bacteria or viruses, however, may influence
the composition of the TCR Vf repertoire in HIV-1-infected
individuals. In this respect, expansion of the V12 T cells has
been shown to be due to cytomegalovirus infection of mono-
cytes in HIV-infected patients (107).

HIV-1 ENVELOPE GLYCOPROTEINS AND
B LYMPHOCYTES

B-Cell Hyperactivity

Hypergammaglobulinemia and increased B-cell activation
are characteristic features of B-cell dysfunction in HIV-1 in-
fection as evidenced by elevated levels of Igs in serum, the
presence of circulating immune complexes and autoantibodies,
and increased numbers of spontaneously Ig-secreting cells (3,
8, 275). The B-cell hyperactivity has been attributed, at least in
part, to in vivo stimulation of B lymphocytes by HIV-1 and its
soluble proteins by mechanisms involving direct stimulatory
effects on B cells (39, 346), T-cell-dependent activation (236,
308, 420), and soluble factors (43, 302).

We have demonstrated the ability of gp160 envelope glyco-
proteins of HIV-1 to stimulate normal B cells to differentiate
into Ig-secreting cells in a T-cell-dependent manner (68). With
CD4™" T-cell clones as the source of helper cells, we observed
that physical contact with B cells was essential for the gp160-
induced B-cell differentiation response (69). Stimulation of
CD4" T cells with gp160 induced moderate up-regulation of
CD40 ligand (CD40L) expression, and antibody to CD40L
abrogated the gp160-mediated helper T-cell function. Cell sur-
face molecules LFA-1, ICAM-1, HLA-DR, and B7 were also
involved in the T-cell-B-cell interaction, since MAbs to these
molecules inhibited the gp160-mediated B-cell differentiation
response. The T-cell-B-cell interaction induced by gp160 re-
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sulted in up-regulation of CD23 and IL-6 receptor expression
on B cells, enabling them to become responsive to soluble
factors, e.g., IL-6.

The concomitant enhancement of IL-6 levels in serum and
spontaneous IL-6 production by peripheral blood lymphocytes
of HIV-1-infected patients (34, 159, 285) and the ability of
HIV-1 and its envelope glycoproteins to induce IL-6 in periph-
eral blood lymphocytes, monocytes, and T cells (302) suggest
that up-regulation of IL-6 and the IL-6 receptor plays a key
role in the polyclonal B-cell responses in this infection. Inter-
action of membrane TNF-a on HIV-1-infected T cells with the
TNF-a receptor on B cells has also been implicated in the
polyclonal B-cell responses (235). Demonstration of the role of
the Th2 subclass of CD4™ helper T cells (which help B-cell
differentiation) in HIV-1 infection (81, 100) suggests that com-
plex intercellular signals and newly discovered functions of
IL-9, IL-10, IL-12, IL-13, and IL-15 may contribute to the
B-cell dysfunction in this disease.

In an attempt to identify the epitope of the envelope in-
volved in the B-cell differentiation response, we have used
several recombinant proteins representing the complete enve-
lope region (65). Our studies indicated that the carboxyl ter-
minus of gp41l (amino acids 739 to 863) could induce poly-
clonal B-cell activation of normal B lymphocytes, causing them
to differentiate into Ig-secreting cells. Thus, the region of the
B-cell stimulatory activity appears to be localized in the gp41
transmembrane region; this is corroborated by the observation
that gp120 failed to induce IgG secretion by B cells. Studies of
identification of the B-cell-stimulatory regions have demon-
strated that gp41 (positions 560 to 639), p24 (positions 87 to
276) fusion proteins (env-gag) (284), the nef protein (70), and
the tat protein (327) also have B-cell-stimulatory activity. How-
ever, binding of gp120 to the VH3 domain of surface IgM on
B cells has been shown to result in T-cell-independent B-cell
differentiation, suggesting a possible role of envelope proteins
of HIV-1 as B-cell superantigens (28).

Taken together, the above observations suggest that several
B-cell-stimulatory regions may exist in HIV-1 and that they
may all participate in the polyclonal B-cell activation and may
play a role in the B-cell malignancies in HIV-1-infected pa-
tients.

B-Cell Dysfunction

Concurrent with the ongoing in vivo B-cell activation, HIV-1
infection is also characterized by impairment of responses to
primary vaccinations, neoantigens, or recall antigens and by
impairment of isotype switching (31, 307). The mechanism of
the impaired antigen-induced B-cell response has been attrib-
uted to decreased T-cell help, intrinsic B-cell defects, and
excessive B-cell activation (9). B-cell responses to pokeweed
mitogen are lost early during the course of the disease (387),
suggesting a qualitative decline in CD4™" cell functions.

The process by which T cells help B cells to differentiate into
Ig-secreting cells has been divided into two phases: the induc-
tive phase and the effector phase (312). In the inductive phase,
resting T cells recognize foreign antigen presented by B cells.
This cell-to-cell contact involves association of the TCR-CD4
on T cells with MHC class II and processed antigen on B cells.
In the T cells, the TCR-CD4-mediated signals result in cyto-
kine secretion and up-regulation of cell surface molecules, e.g.,
CD40L (216). In the effector phase, activated T cells drive
B-cell differentiation by mediating signal transduction through
contact-dependent interactions of cell surface molecules on
activated T cells and those on B cells (50). Once activated, B
cells express receptors, e.g., B7 family receptors, cytokine re-
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ceptors, and become responsive to contact-dependent interac-
tions and cytokines secreted by activated T cells.

Pretreatment of resting CD4™" antigen-specific T cells with
gp120 (inductive phase) was found to impair their ability to
help autologous B cells to secrete IgM and IgG. Only fraction-
ated small B cells (which are T cell dependent in their func-
tions) manifested impaired responses when cultured with
gp120-treated T-cell clones (68). These observations indicate
that gp120 inhibits T-cell activation, which is the inductive
phase of T-cell-dependent B-cell differentiation.

To analyze the influence of gp120 on the effector phase of
T-cell help, the inhibitory effect of gp120 on the inductive
phase was bypassed by first activating T cells for 24 h. gp120
treatment of antigen/pokeweed mitogen-activated CD4* T
cells resulted in impairment of IgG secretion by autologous B
cells but did not affect IgM secretion significantly (71). Thus,
binding of gp120 to CD4 molecules on T cells might inhibit
CD4-MHC class II interaction, which is important for IgG
secretion. The MHC class II-induced signals in B cells involve
the cyclic AMP pathway (283). Addition of forskolin, an acti-
vator of adenylate cyclase, could overcome the inhibitory effect
of gp120 on IgG secretion. That CD4-MHC class II interaction
is important in the T-cell-B-cell interaction-induced IgG se-
cretion by B cells was corroborated by our studies with MHC
class II-deficient B cells from a patient with bare lymphocyte
syndrome (71). B cells from this patient failed to secrete IgG in
response to T-cell-dependent and T-cell-independent B-cell
stimuli. The observation that MHC class II-induced signals in
B cells may be important for IgG secretion is also supported in
vivo by studies showing that bare lymphocyte syndrome pa-
tients (149) and MHC class II knockout mice (152) have de-
creased levels of IgG but normal levels of IgM. In conclusion,
HIV-1-gp120 may contribute to the impaired T-cell-depen-
dent B-cell dysfunction, prevalent in HIV-1 infection, by mech-
anisms involving blocking of CD4-MHC class II interactions.

HIV-1 ENVELOPE GLYCOPROTEINS AND
MACROPHAGES

Several studies on tropism of HIV-1 have indicated that
macrophage-tropic HIV-1 infection is central to the pathogen-
esis of AIDS (259, 277). These strains (i) are more readily
transmitted in mother-to-infant transmission, (ii) are transmit-
ted during sexual activity, and (iii) cause rapid CD4" T-cell
depletion in hu-PBMC SCID mice. Macrophage tropism is
conferred by unique sequences in the gp120 HIV-1 envelope
protein, particularly in the highly variable immunodominant
V2 and V3 domains (150, 355, 371). Monocytotropic virus
variants can be isolated during all stages of HIV-1 infection
and are predominant in the asymptomatic stage (117). Several
studies have evaluated the APC functions of macrophages
from HIV-1l-infected patients (117). Thus, monocytes from
symptomatic and long-term asymptomatic HIV-1-infected in-
dividuals have decreased accessory cell function for T-cell
functions in monocyte-dependent proliferation assays (117,
177, 212), decreased oxidative burst responses (280), and de-
creased IFN-a secretion (139). However, some studies have
found normal monocyte functions in patients (289, 314). In
vitro infection of monocytic cell lines and peripheral blood
monocytes results in decreased accessory cell functions (19,
316, 367). Addition of exogenous IL-1 and IL-6 restored APC
functions (206).

As for T cells, a very small number of monocytes is infected
with HIV-1 in vivo (345), suggesting that monocyte functions
in HIV-1l-infected patients are impaired by indirect mecha-
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nisms. T cells and monocytes bear the same CD4 antigen (376).
However, the presence of a differential effect of HIV-associ-
ated down-regulation of CD4 gene expression on these two cell
types suggests that different signals may be transduced through
these molecules. In this respect, several investigators have
shown that envelope glycoproteins of HIV-1 can induce secre-
tion by monocytes/macrophages of cytokines, including IL-1e,
IL-1B, IL-6, TNF-a, IFN-vy, IL-10 (6, 38, 83, 111, 113, 133, 140,
260, 272, 403). On the other hand, it has been demonstrated
that binding of HIV-1 gp120 to CD4 molecules on macro-
phages may be insufficient for the stimulation of monokine
secretion and that primary protein structure and posttransla-
tional modifications may be necessary for its stimulatory effects
(83). A shortage or excess of cytokines could disturb APC
function and thereby induce T-cell dysfunction. In this respect,
overexpression of TGF-B in HIV-1 infection has been shown
to result in decreased APC functions (194). Aberrant secretion
of IL-10 has been suggested to contribute to the balance of Th1
and Th2 cell types (82, 346). Direct effects of envelope glyco-
proteins on monocyte functions have also been documented.
Envelope proteins down-regulate chemotactic ligand receptors
and chemotactic functions of peripheral blood monocytes
(402). Synthetic peptides homologous to gp4l suppress the
respiratory burst activity of human monocytes (161). Addition
of gp120 to monocyte cultures was shown to significantly re-
duce accessory cell function and to stimulate autologous lym-
phocytes with anti-CD3 MAb (208) or intracellular growth of
Mycobacterium avium (356). The mechanism of the reduced
Iytic function of macrophages has been attributed to the de-
creased glutathione concentrations, resulting in decreased an-
tioxidant activity (370). Binding of gp120 to CD4 molecules on
monocytes results in production of nitric oxide (318). It has
been speculated that a nonphysiological overproduction of ni-
tric oxide exhausts the antioxidant defenses of the macro-
phages, which may favor the spread of the virus through over-
expression of viral transcripts.

Macrophages from HIV-1-infected patients express de-
creased levels of costimulatory B7 molecules (246, 266). In this
context, we have demonstrated that binding of gp120 to CD4
molecules may in fact impair sequential intermolecular inter-
actions between T cells and APC, resulting in decreased ex-
pression of B7-1 expression on APC (67). Thus, pretreatment
of T cells with gp120 may inhibit CD40 ligand expression,
resulting in abrogation of CD40-mediated B7 expression and
consequently in induction of costimulatory signals through the
CD28 molecules. These observations are corroborated by find-
ings showing that hyporesponsive T cells from HIV-1-infected
asymptomatic patients can be stimulated by exogenous stimu-
lation through the costimulatory molecules CD28 and CD27
(263). Thus, interaction of HIV-1 envelope glycoproteins on
monocytes may have profound effects on modulation of T-cell
functions and on pathogenesis of disease progression.

HIV-1 ENVELOPE GLYCOPROTEINS AND
NEURONAL CELLS

Infection of the brain with HIV-1 often leads to devastating
effects on mental faculties (reviewed in references 13 and 261).
HIV-1 is selectively localized within the perivascular and infil-
trated parenchymal blood-derived brain macrophages and mi-
croglia (60, 199, 261, 418). The major target for HIV-1 in the
brain is the macrophage; neurons, astrocytes, oligodendroglia,
and brain microvascular endothelial cells are rarely infected.
Although astrocytes are not significantly infected with HIV-1,
marked dysfunction of astrocytes in late stages of HIV-1 in-
fection has been observed (118). Earlier studies indicated that
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glial cells express CD4 molecules and could be infected with
HIV-1 (239). Subsequently, CD4" cells, including CD4~ gli-
oma cell lines, were shown to be infectable (58, 59). The
galactocerebroside (GalC) molecule has been implicated as an
HIV-1 receptor in the brain (31, 173), since antibodies to GalC
inhibited HIV-1 infection of CD4 ™ glioma and neuroblastoma
cell lines (32). The GalC-binding site of gpl20 has been
mapped to amino acids 206 to 275, outside the CD4-binding
domain (32, 33).

The mechanism of the destruction of neuronal cells has not
been completely elucidated. HIV-1 infection of brain ma-
crophages produces high levels of neurotoxins. These include
eicosanoids, platelet-activating factor, TNF-o, IL-1B, IL-6,
quinolinate, and nitric oxide (290, 421). These molecules are
potent neuromodulators, and overexpression may result in al-
tered neuronal function and neuronal dropout. Cytokines have
also been suggested to participate in the central nervous sys-
tem injury. TNF-a contributes by increasing voltage-depen-
dent calcium currents; stimulating astrocytosis, myelin damage,
and lysis of oligodendrocytes; and up-regulating nitric oxide
(44, 218, 274, 323, 351, 362). IFN-y has been shown to induce
quinolinate and platelet-activating factor in macrophages (165,
331). In conjunction with IL-1B, IFN-y has been shown to
induce NO in astrocytes (202, 287). These observations have
indicated that the neuropathology in AIDS is mediated by
inflammatory cytokines and by induction of neurotoxic agents
that can lead to the severe neurological damage observed in
HIV-1-infected patients.

The role of envelope glycoproteins in inducing dysfunction
of neural tissue has been extensively investigated. Most studies,
carried out in vitro in a rodent neuronal cell culture system,
have indicated that picomolar concentrations of gp120 have
profound neurotoxic effects (45, 99, 110, 153, 227, 281, 343).
Some of these studies have suggested that gp120 exerts its toxic
effects by CD4-independent mechanisms, through interactions
with GalC (44). Several mechanisms of the toxicity have been
attributed to gp120-mediated neurotoxic effects. These include
antagonism of vasoactive intestinal polypeptide function and
gp120-mediated elevation of intracellular calcium levels. Treat-
ment of rat and human astrocytes with gp120 activates Na*-H™"
exchange by tyrosine phosphorylation-dependent mechanisms.
The gp120-mediated effects resulted in an increase in intracel-
lular pH and activation of K* channels (27). Induction of NO
has been implicated in the gpl20-mediated neurotoxicity of
primary cortical cultures (99). Interaction of gp120 with neu-
rons leads to apoptotic cell death. The N-methyl-pD-aspartate
receptor has been implicated in the gp120-mediated neurotox-
icity, since N-methyl-p-aspartate antagonists block gp120-in-
duced neurotoxicity (99, 227, 281, 323).

The importance of the role of gp120 in neuropathogenesis
was demonstrated in studies with transgenic mice expressing
gp120 in astrocytes (394). The mice showed typical morpho-
logical changes resembling those of HIV encephalitis; these
include a decrease in the number of neurons, extensive vacu-
olization of dendrites, and a decrease in synaptodendritic com-
plexity with widespread reactive astrocytosis (394). In addition,
subcutaneous administration of radiolabelled gp120 to neona-
tal animals led to the presence of toxic fragments of gp120 in
the developing brain. These multidisciplinary studies of the
actions of gp120 on the central nervous system predict that the
loss of cognitive and neurological functions in patients with
AIDS is attributed to the interference with critical brain func-
tions by the envelope glycoprotein, gp120.
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HIV-1 ENVELOPE GLYCOPROTEINS AND
COMPLEMENT

Interaction of HIV-1 with components of the complement
system is closely involved in the infectious process. Although
complement is not lytic for HIV-1, the interaction enhances
infection in the absence of antibody and turns neutralizing
antibodies into agents which increase viral infectivity (106).
The interaction of envelope glycoproteins with the comple-
ment system has been demonstrated by several groups (112,
162, 234, 361, 377, 389, 390, 392). Detailed analyses have re-
vealed that gp41 is involved in activation of the classical com-
plement cascade (112, 361, 392). Binding of recombinant sol-
uble gp41 with the globular heads and collagen-like region of
Clq was shown to be dependent on the presence of Ca*" ions.
Fine epitope-mapping studies with peptides encompassing
gp41 have localized the primary Clq-binding site to amino acid
residues 601 to 613 (389). In addition, the regions from 625 to
655, 526 to 538, and 559 to 613 have been suggested to con-
tribute to the interactions between Clq and gp41 (106, 135). It
has recently also been shown that gp120 is capable of activating
the classical complement pathway in an antibody-dependent
manner (41, 162, 381). This interaction is triggered by the
binding of Clq or another serum protein of the collectin fam-
ily, mannan-binding protein, to gp120 (106, 162).

The interaction of HIV-1 with complement, however, does
not lead to complement-mediated lysis. The mechanism of
protection from the lytic effects of complement has been dem-
onstrated to involve decay-accelerating factors and CDS59.
These factors, which inhibit the formation of and accelerated
decay of C3 and C5 convertases, are acquired by HIV during
the budding process (247).

The interaction of HIV with complement and complement
receptors is involved in the infectious process. In this respect,
expression of CR2 and CR3 (on macrophages and T cells) has
been shown to enhance infection in a complement-dependent
manner (247, 361). In addition, localization of HIV particles
on the surface of follicular dendritic cells in lymph nodes is
dependent on interaction with complement-complement re-
ceptors (106). Thus, in conclusion, HIV-1 has adapted itself
to make use of the complement system: specific interactions
of complement components with envelope glycoproteins de-
crease the ability of HIV-1 to avoid lytic effects of complement
by incorporating decay-accelerating factors and enhance the
infectivity of cells.

HIV-1 ENVELOPE GLYCOPROTEINS AND
MOLECULAR MIMICRY

Molecular mimicry involves epitopes of viruses which mimic
products of normal cellular genes. It is increasingly being rec-
ognized to be an important process in the pathogenesis of viral
infections (296). Virus-bearing structures analogous to those
present on the surface of normal cells could present such
regions to the immune system, such that they are recognized as
foreign antigens and hence elicit an immune system response
which attacks normal cells. Alternatively, these regions, ex-
pressed on the virus, may allow the virus to escape immune
system surveillance. Homology of viral proteins to a variety of
normal cellular growth factors could induce aberrant cellular
functions. The HIV-1 envelope glycoproteins contain examples
of each of these types of molecular mimicry, as well as other
mechanisms by which they can cause destruction or impair-
ment of normal cells.

Several amino acid sequences of the HIV-1 envelope glyco-
proteins are homologous to cellular proteins. Homology of the
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carboxyl terminus of gp41 to IL-2 had been suggested to play
a role in the stimulatory effects of HIV-1 envelope proteins on
T-cell functions (330). Several investigators have documented
the homology of regions of MHC class I and II gene products
to regions on the envelope glycoprotein (88, 143, 230). In
addition, the presence of circulating anti-MHC class II anti-
bodies (to HLA-DR) in HIV-l-infected individuals was re-
ported to impair normal immune system functions (96, 144).
By virtue of the CD4-binding site and sequence and the struc-
tural homologies with HLA-DR and HLA-DP within the en-
velope region, it has been suggested that gp120 could be an
“alloepitope.” This concept suggests that TCRs recognizing
the alloepitope determinants of HIV-1 envelope glycoproteins
can activate antigen-specific T-cell clones, for which gp120 is
the restriction element, in place of MHC class II antibodies.
The results of such aberrant T-cell activation (seen in patients
with HIV-1 infection) have been suggested to closely resemble
graft-versus-host disease (160).

Homology of the gp41 region to neuroleukin, a nerve growth
factor, has been suggested to result in neurological damage
associated with HIV-1 infection (170, 217). Homology of the
SLWDQ amino acid sequence in both gp120 and the CD4
molecule has been suggested to have immunological conse-
quences (425). A pentapeptide corresponding to this sequence
was found to inhibit in vitro T-cell responses profoundly. In
addition, sera from HIV-1-infected patients contained anti-
bodies and cytotoxic T lymphocytes directed to the SLWDQ
peptide (424). Homology of the gp120 to the Fas antigen
(inducer of apoptosis) has been implicated in the deleterious
effects on cellular functions (382). It is possible that antibodies
directed to the VEINCTR region (Fas homology) act as a Fas
ligand, thus inducing Fas antigen-mediated apoptosis of cells
in HIV-1-infected individuals.

Several investigators have shown that HIV-1-infected pa-
tients experience autoimmune diseases, which include idio-
pathic thrombocytopenic purpura, Coombs positive hemolytic
anemia, peripheral neuropathies, multiple sclerosis-like abnor-
malities, and rheumatological manifestations (358). Because of
the homology of several cellular molecules to gp120, it has
been postulated that HIV-1 disease has an autoimmune com-
ponent that results from immune system responses to such
gp120 sites. In this context, autoimmune mice (MRL Ipr/lpr)
and alloimmune mice (mice that were exposed to cells from
another mouse strain) were shown to make antibodies against
HIV-1 gp120 and p24, although these mice were not exposed
to HIV-1 (197, 229). It can be postulated that regions of HIV-1
gp120 containing amino acid sequences homologous to normal
cellular proteins are capable of activating an idiotypic network
in producing autoimmune antibodies. An autoimmune reac-
tion against uninfected CD4 " T cells may also result in target-
ing these cells to destruction by anti-HIV-1 envelope antibod-
ies, adding to the indirect mechanism of T-cell destruction in
HIV-1 infection.

HIV-1 ENVELOPE GLYCOPROTEINS AS VACCINES
AND IMMUNOTHERAPEUTICS

Significant effort has been devoted to the development of an
effective vaccine against HIV-1 infection. The vaccines tested
in clinical trials to date have been based on the envelope
glycoprotein, which is the principal target for neutralizing an-
tibodies (201, 337). Unfortunately, the potential success of the
vaccines derived from envelope preparations was limited (238),
since new information on pathogenesis indicated (i) the pres-
ence of multiple subtypes of HIV-1 circulating concomitantly
in different parts of the world (252) and (ii) the capacity of the
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virus to infect by means of cell-free as well as cell-associated
forms (317) and the potential for selected regions of the en-
velope to induce immunosuppression or enhance pathological
effects (86, 161, 251, 336). Recommendations for the develop-
ment of an ideal AIDS vaccine have been suggested (200);
these include safety; generation of a long-lasting, protective
immune response (both cell mediated and humoral); and pro-
tection against subtypes and variants. The studies on the use
and efficacy of the envelope glycoproteins (or their antibodies)
as vaccines or passive therapeutics have been reviewed exten-
sively (163, 208, 221, 262). Recent issues concerning HIV-1
vaccine development that have been proposed include studies
in other animal models (e.g., primates), new strategies for
vaccine development (e.g., DNA vaccines), and important as-
pects of evaluation of the vaccine in clinical trials (252).

However, the use of envelope glycoproteins as both prophy-
lactic and immunotherapeutic vaccines should be approached
with caution. Interaction of gp120 with CD4 molecules may
result in detrimental effects in normal cells. In this respect,
several studies of administration of anti-CD4 MAD in animal
models and in patients with autoimmune diseases have shown
profound immunological perturbations (124, 141, 171, 184,
258, 297). Thus, in vivo treatment of chimpanzees (184) or
sheep (141) with MAbs to CD4 resulted in prolonged deple-
tion in the number of circulating CD4™ T cells, associated with
a loss of antigen-specific functions. Mice given injections of
anti-CD4 MADb, resulting in depletion of CD4* T cells and in
immune system suppression, have been shown to be suscepti-
ble to Pneumocystis carinii pneumonia (124). Furthermore,
treatment of mice with a dose of anti-CD4 MADb, resulting in
partial CD4 depletion, caused decreased IFN-y production
and increased IL-4 secretion by activated splenocytes, consis-
tent with a Th2-like function (171). Taken together, in vivo
administration of anti-CD4 MADb (although suggested to be
beneficial in autoimmune diseases) may be harmful in normal
subjects. It is conceivable that gp120, used as an immunother-
apeutic agent in immunization, could activate latently infected
cells by transducing signals through the CD4 molecule, result-
ing in induction of productive infection (25). Thus, designs of
an effective vaccine containing envelope glycoproteins of
HIV-1 should consist of epitopes important for eliciting a
protective immune system response (433, 434) and should be
devoid of the potentially harmful “immunomodulatory” epi-
topes.

CONCLUSIONS

The envelope glycoproteins of HIV have been under intense
investigation for their use as vaccines against HIV-1 infection.
It has been difficult to exploit the potential importance of the
V3 loop in development of a vaccine because this loop is highly
variable. The therapeutic potential of HIV-1 vaccines in in-
fected individuals is also being explored. Extensive in vitro
studies have demonstrated that envelope glycoproteins of
HIV-1 exert profound influences on various cell types of the
immune system, including progenitors, mature T and B lym-
phocytes, macrophages, neuronal cells, and complement com-
ponents. Demonstration of envelope proteins both free in the
circulation and bound to the surface of CD4™ cells indicates
that these interactions could influence cellular functions in
vivo. Studies involving administration of anti-CD4 MAbs to
animal models indicate that perturbation of CD4 molecules in
vivo affects functional responses. The profound influences of
the HIV-1 envelope on the immune system must be carefully
scrutinized in vaccine trials involving gp120 or gp160. Identi-
fication of appropriate protective epitopes of the envelope
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proteins, which induce cytotoxic T cells and neutralizing anti-
bodies, may provide an effective strategy without harmful ef-

fects.
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