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Abstract

Background: In malaria parasites (genus Plasmodium), ama-| is a highly polymorphic locus
encoding the Apical Membrane Protein-1, and there is evidence that the polymorphism at this locus
is selectively maintained. We tested the hypothesis that polymorphism at the ama-/ locus reflects
population history in Plasmodium vivax, which is believed to have originated in Southeast Asia and
is widely geographically distributed. In particular, we tested for a signature of the introduction of
P. vivax into the New World at the time of the European conquest and African slave trade and
subsequent population expansion.

Results: One hundred and five ama-/ sequences were generated and analyzed from samples from
six different Brazilian states and compared with database sequences from the Old World. Old
World populations of P. vivax showed substantial evidence of population substructure, with high
sequence divergence among localities at both synonymous and nonsynonymous sites, while
Brazilian isolates showed reduced diversity and little population substructure.

Conclusion: These results show that genetic diversity in P. vivax AMA-I reflects population
history, with population substructure characterizing long-established Old World populations,
whereas Brazilian populations show evidence of loss of diversity and recent population expansion.

Note: Nucleotide sequence data reported is this paper are available in the GenBank™ database
under the accession numbers EF031154 — EF031216 and EF057446 — EF057487

Background for resistance to therapeutic agents by both Plasmodium
Studies of the population diversity of the malaria parasites  falciparum and Plasmodium vivax depends on a thorough
have practical significance for the development for strate-  knowledge of each parasite's genetic diversity in natural

gies of disease control, including vaccine development  populations [2]. The primary factors affecting genetic
[1]. Moreover, the characterization of genes responsible  diversity at such loci are natural selection [3,4], and
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genetic drift. Genetic drift reflects the population history,
including population bottlenecks; and it has a substantial
effect on genetic diversity even at loci subject to balancing
selection [5-7]. Thus, the knowledge of the parasite's pop-
ulation history and its genetic diversity is important for a
full understanding of the epidemiology of malaria and
potential response of the parasite to therapeutic strategies.

P. vivax is widely geographically distributed, being present
in both tropical and temperate areas; this species is
responsible for about 80 million annual cases of human
malaria, especially in Latin America, Asia and Oceania [8].
It is the prevalent species in a great number of countries
and territories, including Brazil, which accounted for
about 81% of the approximately 460,000 cases reported
in 2007 [9]. P. vivax infections rarely culminate in death
of the patient but are a very important cause of morbidity
and social economic loss [10]. P. vivax is believed to have
first entered hominid populations in Southeast Asia and
to have spread from there throughout the Old World
based on its close relation to malaria parasites of non-
human primates from Southeast Asia [11]. However,
there is archaeological evidence supporting the hypothe-
sis that both P. vivax and P. falciparum were absent from
the New World in pre-Columbian times and were intro-
duced after European colonization, presumably as a result
of the African slave trade [12]. Thus P. vivax in the New
World might be expected to have a somewhat reduced
effective population size and thus reduced genetic diver-
sity in comparison to Old World populations, as a result
of founder effects in the sampling of Old World popula-
tions. Microsatellite markers have shown evidence of a
substantial reduction of genetic diversity in the case of
South American P. falciparum [13]. On the other hand, in
P. vivax, microsatellite markers showed revealed only a
rather modest reduction in genetic diversity in South
America in comparison to Asia [14].

In addition to microsatellites [14-18], several polymor-
phic protein-coding loci have been used to examine
genetic diversity of P. vivax populations, including genes
encoding the merozoite surface proteins (MSP) [19-28];
the circumsporozoite protein (CSP) [21,24,26,28-30];
and the locus encoding apical membrane antigen 1 (AMA-
1) [20,31-36]. AMA-1 is an immunogenic type 1 integral
membrane protein [37-40] that is present in all Plasmo-
dium species so far examined, with at least 16 cysteine res-
idues incorporated into eight intramolecular disulfide
bonds, forming the three domains of the protein [41].
This protein is synthesized late in the development of sch-
izonts [42] during the last four hours of the erythrocytic
phase [38]. AMA-1 may have a role in the beginning of the
invasion process of the erythrocyte and may be directly
responsible for reorientation of the merozoite; and it may
initiate the junctional contact between these two cells,
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which is presumably dependent on Duffy binding pro-
teins [43].

At the ama-1 locus in P. falciparum, polymorphisms occur
non-randomly along the coding region, and the highest
polymorphism is found in the three ectodomains, espe-
cially in domain I [44]. Moreover, the number of nonsyn-
onymous nucleotide substitutions per nonsynonymous
site (dy) exceeds that of synonymous nucleotide substitu-
tions per synonymous site (dg), providing evidence that
positive Darwinian selection has acted at this locus [4].
Combined with the evidence of a high level of polymor-
phism at this locus, this result supports the hypothesis
that balancing selection has acted to maintain polymor-
phisms at this locus [4]. It has been proposed that host
immune system pressure is responsible for this selection
[4]; and, consistent with this hypothesis, there is evidence
that polymorphisms at this locus are responsible for eva-
sion of host antibody-mediated inhibition in P. falciparum
[45]. In P. vivax, dy has been found to exceed d, in partial
ama-1 sequences [20], suggesting that this locus is subject
to balancing selection in P. vivax as well.

Extensive data on ama-1 polymorphism in P. wvivax
(pvama-1) have been obtained from Asia, Oceania and
Africa [20,31-33,35,36], but there is a relative lack of data
from South America, including Brazil. The only sequence
data from Brazil involves domain I of 20 isolates; 13 pol-
ymorphic sites and eight haplotypes were reported in
three Brazilian states [34].

The intention of the present study was to characterize the
worldwide genetic diversity of the polymorphic domain
of pvama-1. In addition to published sequences from
throughout the world, we obtained sequences from
patients in different endemic areas in the Brazilian Ama-
zon. By examining polymorphism at this locus in Brazil
and comparing it to other populations throughout the
world, we tested the hypothesis that the pattern of genetic
diversity at pvama-1 reflects population history, in partic-
ular a reduction of the effective population size of P. vivax
in the New World. Theoretically, it is expected that effec-
tive population size will be the major factor determining
gene diversity even at a locus under balancing selection, if
the mutation rate and selection coefficient are constant [ 5-
7]. A more complete understanding of the parasite's his-
tory in the New World in turn has implications for the epi-
demiology and control of this parasite in Brazil, where it
has become a major public health problem in recent years
due to the rapid peopling of the Brazilian Amazon [46-
49].

Results
We obtained 105 Brazilian pvama-1 sequences, covering
bases 274-759 of the PH-84 isolate, corresponding to
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amino acids 92-253 (GenBank accession nos. EF031154
- EF031216 and EF057446 - EF057487 - see Additional
file 1). The Brazilian isolates included 28 polymorphic
nucleotide sites, leading to 26 amino acids replacements.
Eight polymorphic sites were not previously described,
including a synonymous substitution and seven non-syn-
onymous substitutions (see Additional file 2). From 93
unique sequences, 27 haplotypes were identified (see
Additional file 3). The nucleotide and haplotype diversi-
ties among Brazilian samples were 0.016620 + 0.00073
and 0.91800 + 0.00019, respectively.

A phylogenetic tree of Brazilian and worldwide sequences
(Figure 1) showed no tendency toward geographic cluster-
ing of isolates. Rather, isolates from different parts of the
world were found throughout the phylogenetic tree (Fig-
ure 1). The Brazilian sequences thus appeared to represent
a sample from worldwide genetic diversity, rather than
from any particular lineage of worldwide pvama-1
sequences.

In order to compare nucleotide diversity within geo-
graphic regions, we computed 7, g, and 7y, for all pairwise
comparisons within Brazilian states and within and
worldwide regions (Figure 2). Likewise, we computed
mean d, dg, and d, for all pairwise comparisons between
Brazilian states and between worldwide regions. In world-
wide comparisons, mean 7 7, and ©ty within regions were
always significantly lower than the corresponding values
of d, dg, and d, between region (Figure 2). By contrast,
mean 7, Ty, and «t,, within Brazilian states were not signif-
icantly different from the corresponding values of d, d,
and d between states (Figure 2). Thus, these results show
that pvama-1 did not show the degree of sequence diver-
gence among the Brazilian states that was seen among dif-
ferent regions in the world. Mean =, ng, and my within
Brazilian states were significantly lower than the corre-
sponding values within world regions (Figure 2). Likewise
mean d, dg, and dy between Brazilian states were signifi-
cantly lower than corresponding values between world
regions (Figure 2). These results show that sequence diver-
gence in pvama-1 among states in Brazil was low than that
in comparisons of different Old World populations.

Similar results were obtained from estimation of pairwise
Fgr, which provides an index of the genetic differentiation
between populations. Fg; values among different world
regions were often significantly greater than zero, indicat-
ing genetic differentiation between populations (Table 1).
By contrast, estimates of Fg; among Brazilian states were
never significantly different from zero, indicating a lack of
genetic differentiation among the Brazilian states (Table
2).
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We plotted Fgagainst the geographical distance between
the sites where samples were collected separately for data
from Brazil and data from Asia and Oceania (Figure 3). In
the data from Asia and Oceania, there was not a signifi-
cant correlation between Fgand geographical distance (r
=-0.196; n.s.; randomization test; Figure 3). By contrast,
in Brazil, there was a strong positive correlation between
Fgr and geographical distance (r = 0.780; P < 0.01; rand-
omization test; Figure 3). The correlation coefficient for
the Brazilian data was significantly different from that for
the Asian and Oceanian data (p < 0.01; randomization
test).

The range of geographical distances among the Brazilian
samples (450-2340 km) overlapped only with the lower
nine values from the Asian and Oceanian sample (range
600-2240; Figure 3). If we considered only the nine data
points in the Asian and Oceanian sample that overlapped
the Brazilian data, there was again no significant correla-
tion between Fg; and geographical distance (r = 0.091;
n.s.; randomization test; Figure 3). Moreover, for the nine
Asian and Oceanian comparisons with geographical dis-
tances comparable to those in Brazil, mean Fg; (0.111)
was significantly greater than that for the 10 Brazilian
comparisons (mean Fgp=-0.011; randomization test; P <
0.01).

Discussion

Here, we characterized the polymorphic gene pvama-1
domain I in Plasmodium vivax isolates from patients in the
Brazilian Amazon, where this species poses an important
public health problem and compared those sequences
with previously published sequences from the Old World.
Although most branches in a phylogeny of pvama-1
sequences were not well resolved, it was clear that Brazil-
ian sequences did not cluster separately from Old World
sequences (Figure 1). This pattern supports the hypothesis
that any reduction in population size accompanying the
invasion of the Americas [12] was not so severe that only
one or a few lineages of pvama-1 alleles survived in the
New World. Rather, pvama-1 sequences from Brazil were
found throughout the phylogenetic tree, consistent with
the hypothesis that the alleles that became established in
the New World represented a sample of worldwide genetic
diversity at this locus. There was evidence of reduced
genetic diversity at the pvama-1 locus in Brazil, consistent
with some reduction in effective population size of P.
vivax in the New World after its introduction.

There were very low values of Fg; among the Brazilian
states, with none being significantly greater than zero. The
latter was in marked contrast to the Old World, particu-
larly Southeast Asia, where high Fg; values were consist-
ently observed. Of course, the geographical distances
among the Brazilian states sampled were low in compari
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Means of (A) =, (B) 7, and (C) ny within Brazilian
states and within worldwide regions; and of (A) d, (B)
ds, and (C) dy between Brazilian states and between
worldwide regions. Test of the hypothesis that a value for
Brazil equals the corresponding value for worldwide compar-
isons: * P < 0.05; *** P < 0.001. Tests of the hypothesis that
mean value within regions equals the corresponding value
between regions: +++ < 0.001.
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son to many of the geographical distances among samples
from Asia and Oceania (Figure 3). Nonetheless, mean Fg;
among the Brazilian samples was much lower than that
among those samples from Asia and Oceania taken from
comparable geographical distances. Thus, pvama-1 shows
strikingly less geographical differentiation in Brazil than
in Southeast Asia, consistent with a recent and rapid
spread of the parasite in Brazil.

There is evidence that the polymorphism at the ama-1
locus is selectively maintained in P. falciparum, with host
immune recognition likely being responsible for that
selection [44]. Given the high polymorphism and preva-
lence of nonsynonymous polymorphisms at the pvama-1
locus, it seems likely that the same is true in P. vivax [20].
An alternative hypothesis to account for the reduced pol-
ymorphism in Brazilian pvama-1 sequences might be that
selection at this locus has been relaxed in the New World.
In the Brazilian Amazon, P. vivax has achieved high levels
of infection in an ethnically diverse and rapidly growing
host population [46]. If the selection on pvama-1 arises
primarily from interaction with the human host immune
system, it seems unlikely that selection would be relaxed
under such circumstances. However, as long as the basis
of natural selection on pvama-1 remains poorly known, it
is impossible to rule out some role of natural selection in
the pattern of sequence diversity observed in the New
World.

In spite of the overall low Fg;values in the Brazilian sam-
ples, there was evidence in Brazil of a strong positive rela-
tionship between Fg. and geographical distance. By
contrast, in the Old World, even though Fg; values were
high, there was no correlation between Fg; and geograph-
ical distance. The latter was observed both in an extensive
sample of populations from Asia and Oceania and when
we examined only populations whose geographical dis-
tances were comparable to those among Brazilian states.
The results from Brazil can be explained as reflecting
effects of recent spread of the parasite, whereas those from
the Old World appear to reflect a very ancient selectively
maintained polymorphism. In the latter case, different
populations are expected to show substantially different
allelic frequency distributions due to divergent popula-
tion histories, including the effects of genetic drift. Such a
pattern is seen, for example, in the case of vertebrate
major histocompatibility complex loci [50], at which high
levels of polymorphism are maintained by balancing
selection [51,52].

Conclusion

Our results are consistent with the hypothesis that pat-
terns of genetic diversity at highly polymorphic protein-
coding loci of malaria parasites can show the effects of
population history. Polymorphism at loci such as pvama-
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Table I: Fg;values at the pvama-I locus among world regions.
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Brazil Africa India SriLanka China S. Korea Thailand Morong ADS Palawan PNG Solomon Is.
Africa 0.233 **
India 0.012 0.135
Sri Lanka o.101 0.230 -0.075
China 0.124 % 0.194* -0.040 -0.217
S. Korea 0.078 0.641 **  0.120 0.393 ** 0.278
Thailand 0.198 % 0311 * 0.102 * -0.016 0.197 * 0.401 **
Morong 0.245 #6013 #0147 ¥ 0.124 0.194 k0,345 % 0,187 **
ADS 0.249 *  0.118 0.135*  0.065 0.115%* 0.450 #0212 % 0.144 =
Palawan 0.173 % 0.098 0.065 0.009 0.069 0.3327%6€ 0,171 ** 0.121 *.0.006
PNG 0.200 *  0.147 * 0.070 * 0.042 0.040 0276 *  0.120 * 0.123 ¥ 0.176 *¥  0.150 ***
Solomon Is. 0.236 % 0224 * 0.068 * -0.083 -0.027 0.370 * 0.108 0.114 0.196 * 0.156 * -0.089
Indonesia 0.039 0.080 -0.065 -0.102 -0.076 0.170 * 0.165 0.106 * 0.102 * 0.030 0.030 -0.028

Significance of Fg: * P < 0.05; ** P < 0.01; ** P < 0.001.

1 that are evidently subject to immune-driven selection
may be an important factor in the epidemiology of infec-
tion by P. vivax. Understanding the factors governing the
extent and pattern of polymorphism at such loci may thus
have implications for the development of effective control
strategies [53].

Methods

Study population

One hundred and five blood samples were collected from
patients resident at Cuiaba district, capital of the state of
Mato Grosso, northwestern Brazil (S 15°36'36", W
56°05'24"), where active malaria transmission does not
occur. Patients had acquired malaria infection in different
areas of the Brazilian Amazon comprising six different
Brazilian states between April and August 1996 and
between May 2001 and January 2006: 8 samples origi-
nated from Acre; 13 from Amazonas; 31 from Mato
Grosso; 20 from Pard; 32 from Rondonia; and one from
Roraima. Patient infections were confirmed by micro-
scopic analysis of conventional thick smear method in a
health facility (Hospital Jdlio Miiller, Universidade Fed-
eral de Mato Grosso). The age of patients ranged between
4 and 78 years old, with mean age of 37.6 + 14.1.

DNA extraction and amplification of pvama- |
Blood samples were stored in guanidine 4 M and kept at -

20°C. The manufacturer's instructions for 300 puL. whole

Table 2: Estimates of Fgr among Brazilian states!.

Acre Amazonas Mato Grosso Para
Amazonas -0.054
Mato Grosso  -0.023 -0.026
Para 0.044 -0.040 0.014
Ronddnia -0.042 -0.017 -0.007 0.045

IRoraima state was excluded because there was only one isolate from
Roraima.
None of the Fg;values was significant at the 5% level.

blood extraction from Genomic DNA Purification Kit
(Puregene®) were followed. The pvama-1 gene was ampli-
fied following a previously described protocol [20]. We
added 0.26 pmoles of each primer [PvAR11 (5-TCC TAA
ATT TTT ACG GGG GCA3) and PvAF11 (5-AGA ATT CCA
GCT CCA AGA TG-3)], 0.2 mM of dNTPs, Taq buffer 1x
(Phoneutria, MG, Brazil), 1.5 mM of MgCl,, 1.25 U of Taq
polymerase (Phoneutria) and 5 pL of DNA totalizing 50
pL of mixture for the first round of amplification. One
cycle of 95°C for 5 min, 2 cycles of 95°C for 30 s, 45°C
for 50 s and 72°C for 40 s, 33 cycles of 95°C for 30 s,
55°C for 50 s and 72°C for 40 s, followed by 72°C for 10
min. The second round of amplification used the same
conditions as the first one, except for the primers [PvAR11
and PvAF05 (5-GTA TCG TCA TAG AGA ATT CCG-3')]

05 —
L
04 — L] .
- L ]
03 — N .
L ]
= 02 . ‘ :.. . : oe® ¢
E 01 . I ) ..
p L ] ..... . L L J
0.0 — » . . . o
01 — . ° ‘e . .
02 — .
T T T
0 5000 10000
Distance (km)
Figure 3

Plot of Fs; vs. geographical distance for Brazilian
samples (green) and samples from Asia and Oceania
(red). In the data from Brazil, there was a significant correla-
tion between F¢;and geographical distance (r = 0.780; P <
0.01; randomization test). In the data from Asia and Oceania,
there was not a significant correlation between F¢;and geo-
graphical distance (r = -0.196; n.s.; randomization test).
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and quantity of DNA used (2 pL of the first round ampli-
fication product). The amplification conditions included
one cycle of 95°C for 5 min, 2 cycles of 95°C for 30 s,
45°C for 50 s and 72°C for 40 s, 23 cycles of 95°C for 30
s, 55°C for 50 s and 72°C for 40 s, followed by 72°C for
10 min. The fragment size of approximately 400 bp was
visualized on a 6% polyacrilamide gel.

Purification of PCR products and pvama-| sequencing
PCR products were purified using the GFX PCR DNA and
Gel Band Purification Kit (Amersham Biosciences®, Little
Chalfont, UK), following the manufacturer's instructions
and were visualized on a 1% agarose gel to determine the
DNA concentration. For the sequencing reaction, we used
4 puL of Dyenamic ET Dye Terminator Cycle Sequencing
kit (Amersham Biosciences®) for MegaBace DNA Analysis
Systems, 1 pL of primer and 5 pL of purified DNA. For
each DNA sample, we created two sequences using both
AR11 and AFO5 primers.

Sequence analysis

New sequences from Brazil were combined with a data-
base of 215 sequences from Asia, Africa, and Oceania (see
Additional file 1) and aligned with the ClustalW Software
[54]. A 399-bp region was analyzed, corresponding to
bases 322-720 (amino acid residues 108-240) of Gen-
bank accession L27503. We used the MEGA 3.1 program
[55] to estimate nucleotide diversity and evolutionary dis-
tances and to build phylogenetic trees by the neighbor-
joining method [56], using the Jukes-Cantor distance
[57]. The reliability of clustering patterns in the phyloge-
netic trees was assessed by bootstrapping [58]: 1000 boot-
strap pseudo-samples were used. Before conducting the
phylogenetic analysis, we tested for inter-allelic recombi-
nation using the maximum chi-square method [59] as
implemented in the RDP2 program [60]. No recombina-
tion events were detected. The number of nucleotide sub-
stitutions per site (d) was estimated by Jukes and Cantor's
method [57]. The numbers of synonymous nucleotide
substitutions per synonymous site (dg) and the number of
nonsynonymous substitutions per nonsynonymous site
(dy) were estimated by Nei and Gojobori's method [61].

In order to examine patterns of nucleotide diversity
within Brazil, we computed means of d, dg, and dj, for all
pairwise comparisons within and between the six Brazil-
ian states from which we obtained sequences. Similarly,
in order to examine patterns nucleotide diversity between
regions throughout the world, we computed means of d,
dg, and dy for all pairwise comparisons between the fol-
lowing geographic regions: Africa (5 sequences); Agusan
del Sur, Philippines (abbreviation: ADS; 21 sequences),
Brazil (93 sequences); China (8 sequences); India (15
sequences); Indonesia excluding Irian Jaya (5 sequences);
Irian Jaya (1 sequence); Morong, Philippines (111

http://www.biomedcentral.com/1471-2148/8/123

sequences); Myanmar (1 sequence); Palawan, Philippines
(17 sequences); Papua New Guinea (abbreviation: PNG;
22 sequences); Solomon Islands (5 sequences); South
Korea (4 sequences); Sri Lanka (3 sequences); Thailand (7
sequences); Vanuatu (2 sequences). Finally, in order to
analyze nucleotide diversity within geographic regions
other than Brazil, we computed means of d, dg, and d,, for
all pairwise comparisons within each of the above regions
that was represented by at least two sequences. Following
general usage, means of d, dg, and dy within populations
were designated respectively w, ng, and my,.

Pairwise comparisons of d, dg, and dy are not statistically
independent. Therefore, we tested hypotheses about the
means of these variables using randomization (Monte
Carlo) tests. Given N comparisons categorized (e.g., as
within-region or between-region) by a classificatory varia-
ble X, in order to conduct simultaneous pairwise compar-
isons between categories with respect to the median of
some continuous scalar variable Y measured on each of
the N units (e.g., d, dg, or dy), we created 1000 pseudo
data sets of N units each by randomly sampling (with
replacement) independently from the vector of X values
and from the vector of Y values. For a two-tailed test, the
level of significance of the difference between two group
medians was obtained by comparing the observed abso-
lute difference with the distribution of absolute differ-
ences obtained for the corresponding groups in the 1000
pseudo data sets.

We used a similar randomization procedure to test the sig-
nificance of correlation coefficients between pairwise
measures of Fg and geographical distance. We created
1000 pseudo data sets by sampling at random from
replacement in order to generate a null distribution
against which observed values were compared. We used a
similar procedure to test the equality of mean Fgin the
Brazilian data with those from Asian and Oceanian popu-
lations of comparable geographic distance.
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