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Livestock movement is thought to be a risk factor for the transmission of infectious diseases of
farm animals. Simple mathematical models were constructed for the transmission of
Escherichia coli serogroup O157 between Scottish cattle farms, and the models were used in a
preliminary exploration of factors contributing to the levels of infection reported in the field.
The results suggest that cattle movement can make a significant contribution to the observed
prevalence of E. coli O157-positive farms, but is not by itself sufficient for the persistence of
E. coli O157. The results also suggest that cattle movements involving infected farms with
cattle shedding an exceptional amount of E. coli O157, ‘super-shedders’, also make a
substantial contribution to the prevalence of infected farms. Simulations indicate that F. coli
0157 could have reached the currently observed prevalence levels in less than a decade.
Implications and findings from our models are discussed in relation to possible control of

E. coli O157 in Scottish cattle.
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1. INTRODUCTION

Escherichia coli O157 emerged in the 1980s and can now
be found worldwide in a wide range of animals, including
livestock, domestic pets, wild animals and humans
(Beutin et al. 1993; Willshaw et al. 2001). In humans,
the organism is typically pathogenic, causing conditions
ranging from mild diarrhoea to haemorrhagic colitis and
haemolytic uraemic syndrome (Karmali et al. 1985;
Ackman et al. 1997; Chart 2000; Willshaw et al. 2001).
Although less pathogenic in livestock, F. coli O157 can
also cause diarrhoea in young calves (Sherwood et al.
1985). Escherichia coli O157 infection in humans can
occur through contact with animals or via consumption of
contaminated food products (Trevena et al. 1996; Milne
et al. 1999; Willshaw et al. 2001). Cattle are regarded as a
major reservoir for E. coli O157 (Beutin et al. 1993;
Kobayashi et al. 2001), and studies to determine its
prevalence have been conducted in recent years
(Kobayashi et al. 2001; Kistemann et al. 2004; Matthews
et al. 2006 a; Gunn et al. in press). Recent studies have also
demonstrated that there are associations between the

*Author for correspondence (wliu56@gate.sinica.edu.tw).

One contribution of 20 to a Theme Issue ‘Cross-scale influences on
epidemiological dynamics: from genes to ecosystems’.

Received 15 December 2006
Accepted 25 January 2007

distribution of human FE. coli O157 infections and
the density of cattle farms (Kistemann et al. 2004;
Innocent et al. 2005).

Farms are not closed entities and, in general, a network
of contacts exists between them. The general role of
contact networks in the spread of infectious diseases is
known to have important epidemiological implications
(Lajmanovich & Yorke 1976; Woolhouse et al. 1997,
2005). Contacts can be made between farms if there are
transfers of livestock. However, data on the movements of
cattle have only recently become available (www.defra.
gov.uk). This provides a unique opportunity to examine
some of the processes that govern the distribution of
E. coli O157 at a metapopulation scale. Of course,
contacts between farms can also be made in various other
ways, including movements of vehicles, livestock other
than cattle and wildlife, which are not systematically
recorded for all farms and therefore the level of between-
farm contacts brought about in these ways is not known.

The aims of this paper are twofold. First, to construct a
simple simulation model for the transmission of E. coli
0157 within a Scottish farm-to-farm contact network
that reproduces the level of E. coli O157-positive farms
observed in field studies in Scotland. Second, to explore,
using several variants of this model, the effect of cattle
movements and other factors on the persistence of F. coli
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0157 within the Scottish farm network. The paper is
organized as follows. We first describe the prevalence
data from a field study involving a subset of Scottish
cattle farms, where faecal pats were sampled and tested
for the presence of E. coliO157. This is then followed by a
description of the cattle movement data in Scotland. We
then outline the construction of our simulation models
and show the model results. The paper then finishes with
a discussion that relates our findings to the observed data
and the epidemiological implications of our models.

2. DATA
2.1. Sampling procedure

Between March 2002 and February 2004, 481 farms
were visited throughout Scotland as part of a survey to
examine the prevalence of E. coli O157. Fresh faecal
pats were sampled and tested for the presence of
E. coli O157, and bacterial counts were determined by
using the procedure described by Pearce et al. (2004).
Briefly, 1 g of faeces from each sample was suspended
in 9ml of maximum recovery diluent (Oxoid Ltd,
Basingstoke, UK) and 0.1 ml of suspension was spread
onto each of two CT-SMAC plates, which were then
incubated at 42°C for 24 h. Typical non-sorbitol
fermenting colonies were counted and tested using
anti-FE. coli O157-coated latex reagent (Oxoid, Ltd).
The limit of accurate enumeration using this method
was 100 CFU g~ faeces (Pearce et al. 2004). Of the
481 farms sampled, 91 were positive for E. coli O157.
However, count data were obtained only for 77 of the
91 positive farms. Fourteen farms were excluded from
the analysis, as the level of E. coli O157 shedding was
unknown. All analyses and model simulations per-
formed in this study were therefore performed on a
subset of 467 farms. It was found that some E. coli
O157-positive animals shed exceptional amounts of
E. coli O157 in comparison with other infected
animals. Counts ranged from less than 100 (the limit
of reliable enumeration) to more than 10° CFU g~ ".
Following Naylor et al. (2003), Omisakin et al. (2003)
and Ogden et al. (2004) we define E. coli O157-positive
animals shedding more than 10* CFU g~ "' faeces as
super shedders and the remaining F. coli O157-positive
animals as normally infected animals. Furthermore,
farms that contain super shedders are referred to as
super shedding farms and farms that have no super
shedders but only normally infected animals as
normally infected farms. We define the term infected
farms as a set of farms including normally infected and
super shedding farms.

2.2. Farm prevalence

Out of the subset of 467 farms, 77 farms were tested
positive for E. coli 0157, giving an overall prevalence of
16.5%. Of these, 64 were normally infected farms and 13
were super shedding farms, giving a prevalence of super
shedding farms of 2.8%. There is a seasonal pattern in
the sample farm overall prevalence (figure 1): April has
the lowest sample farm prevalence (4.17%) and August
has the highest (28.57%).
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Figure 1. The prevalence of farms that tested positive for
E. coli O157 for individual months of the year 2003. Seasonal
pattern is evident and the prevalence of infected farms is
highest in August and lowest in April.
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Figure 2. A distribution of on-farm prevalence for 64 sampled
E. coli O157-positive Scottish farms. Note that those farms
contain only normally infected animals.

2.3. On-farm prevalence

We define the on-farm prevalence of a given farm as
the fraction or percentage of animals that tested
positive for FE. coli O157 on that farm. On-farm
prevalence has two components: one is the on-farm
prevalence of normally infected animals and the other
is the on-farm prevalence of super shedding animals.
For normally infected farms, the on-farm prevalence is
the prevalence for normally infected animals. For
super shedding farms, the on-farm prevalence has the
super shedder component and might have a normally
infected component. On the majority of normally
infected farms, less than 10% of cattle are infected
with E. coli O157 (figure 2). Of those 13 super
shedding farms, only one farm had all infected cattle
being super shedders, whereas the majority of infected
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Figure 3. A co-distribution of on-farm prevalence of super
shedding and normally infected animals for 13 sampled E. coli
0O157-positive Scottish cattle farms. Note that those farms
must contain at least one super shedding animal. The dashed
diagonal line indicates where the prevalence of normally
infected and super shedding animals is equal.

cattle in the other 12 super shedding farms were
normally infected (figure 3).

2.4. Movement data

Cattle movement data were obtained from a subset of
the Department of the Environment, Food and Rural
Affair (DEFRA) Cattle Tracing System (CTS) for the
year 2003. Only movements between Scottish cattle
farms were considered (i.e. movements to or from other
establishments, such as markets and abattoirs, and
movements of cattle out of and into Scotland were
ignored). From this dataset, we can extract information
on individual movements between farms. Each move-
ment is defined by the date of movement, the identities
of the source and destination farms, and the number of
animals transferred. There were 108 401 movements
between Scottish cattle farms in the year 2003. Figure 4
summarizes how many times each of Scottish cattle
farms exports (i.e. off-movements) and imports animals
(i.e. on-movements). The data also show that the
majority of movements involve only a few animals
(figure 5). The movement data exhibit a seasonal
pattern, with most movements occurring in April
and October.

3. METHODS
3.1. Modelling framework

Our simulations track the infection status of all 17 198
cattle farms in Scotland, but we do not model the
infection status of individual cattle. A farm can be
susceptible (S5), normally infected (Iy) or super
shedding (Isg). Farms are assumed to acquire infection
either by importing infected cattle or from sources
other than movements between Scottish cattle farms
(we define this as other routes throughout the rest of
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Figure 4. A co-distribution of the numbers of off- and
on-movements for all Scottish cattle farms in the year 2003.
The number of off-movements of a given farm is defined as the
number of times it sends away animals to other farms, while
the number of on-movements of a given farm is defined as the
number of times it receives animals from other farms.

the paper, taken to cover all possible mechanisms of
short- and long-range spread between farms, including
contamination of vehicles, movements of hosts other
than cattle, contamination of feed, water supplies or
shared pasture and imports of infected cattle from
outside Scotland), and we define the following possible
transitions between above-mentioned three states: a
susceptible farm can become either a normally infected
farm or a super shedding farm; a normally infected
farm can become a super shedding farm; a normally
infected farm or a super shedding farm can recover to
become a susceptible farm; or a farm can remain
unchanged in terms of its infectious status (figure 6).
In our modelling framework, we assume that normally
infected farms are short-lived compared with super
shedding farms; therefore, for simplicity, we ignore the
possibility that a super shedding farm becomes a
normally infected farm.

For a given farm, we define py and pgg as the
probabilities of an animal on that farm being a normally
infected or a super shedding animal, respectively. For a
susceptible farm, both probabilities are zero since there
are no infected animals. When a susceptible farm
acquires infection to become a normally infected farm,
then pgg remains zero and py takes a value sampled
randomly from the observed distribution of on-farm
prevalence of normally infected farms (figure 2). If a
susceptible farm becomes a super shedding farm, then
pn and psg take values sampled randomly from the
observed co-distribution of on-farm prevalences of
super shedding farms (figure 3). When an infected
farm recovers to become a susceptible farm, both py
and pgg are reset to zero. We next describe the details of
the model simulations.

The time-interval for the model simulations is one
month. At each time point, we perform the following
operations. First, we construct the movement network



920 Metapopulation model for E. coli

W.-c. Liu et al.

50000 +

40000 ~

30000 |

frequency

20000 ~
10000 ~ I
0 Il.------- [

10 11- 15 16 2021 5051 100>1(}0

number of anlmals transferred

Figure 5. A distribution of the number of animals involved in each cattle movement between Scottish cattle farms in the year 2003.

according to the observed movement data for the
relevant month of the year. For each movement, we
identify from the data the identities of both source and
destination farms, as well as the number of animals
transferred. We then examine the infection status of the
source farm and the transferred animals. There are
three possible outcomes: (i) if the source farm is
susceptible, then no transferred animals are infected,
(ii) if the source farm is normally infected, then there is
a probability py that a transferred animal is normally
infected, or (iii) if the source farm is super shedding,
then a transferred animal is either normally infected
with probability py or a super shedding with prob-
ability pgg. Since the majority of movements involve
only a few animals, we therefore make the assumption
that the on-farm prevalence of normally infected
and/or super shedding animals is unaffected when
animals are moved from a source farm.

Second, we examine the status of individual farms
and decide on any changes to their infection status
before the arrival of imported animals. There are four
possibilities: (i) for a susceptible farm, there is a
probability A of acquiring infection from other sources
and upon infection there is a probability 6 of becoming a
super shedding farm and a probability (1—6) of being a
normally infected farm, (ii) for a normally infected
farm, there is a probability Af of acquiring infection
from other sources to become a super shedding farm,
(iii) for a normally infected farm, there is a probability
vx of recovering to become a susceptible farm, or (iv)
for a super shedding farm, there is a probability ygg of
recovering to become a susceptible farm.

Finally, imported animals reach their destination
farms and further changes to the infection status of the
destination farms can occur. There are four possibili-
ties: (i) if all the animals imported are susceptible, then
the status of the destination farm remains unchanged,
(ii) if the destination farm is a susceptible farm and at
least one of the imported animals is a super shedder,
then the farm becomes a super shedding farm, (iii) if a
destination farm is a susceptible farm and at least one of
the animals received is a normally infected individual
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Figure 6. Possible routes of transitions between different
states of a farm. A susceptible farm (.S) can become either a
normally infected (Iy) or a super shedding farm (Isg). A
normally infected farm can become a super shedding farm, but
a super shedding farm cannot recover to become a normally
infected farm. Both the normally infected and super shedding
farms can recover to become susceptible again.

and none are super shedders, then the farm will become
a normally infected farm, or (iv) if the destination farm
is a normally infected farm, and at least one of the
animals received is a super shedder, then the farm will
become a super shedding farm.

For each model simulation, we assume an initial
condition of one randomly chosen normally infected
farm. Simulations are run from the month of January
for 600 months (50 years). Since we have only the
movement data for 1 year (the year 2003), we re-use
the same movements each year. We note that reusing
the same movement data each year might result in a
less connected network than it may be in practice,
and this, in turn, might affect the ability of E. coli
infection take off in our model simulations. Models are
programmed in DerpHl v. 4 and simulated on a
computer (CPU 1GHz) with Microsoft Windows
operating system.

3.2. Parameter values

The modelling framework requires the following four
parameters: (i) the recovery rate for normally infected
farms, vy, (ii) the recovery rate for super shedding
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Table 1. Values of parameters used in our simulation models.

recovery probability for a normally infected farm, yy (month )

recovery probability for a super shedding farm, ysg (month ')

fraction of farms infected from other sources that are super shedding farms,

rate of acquiring infection from other sources, A, for model 1 (monthfl)

rate of acquiring infection from other sources, 4, for model 2 (month_l)

rate of acquiring infection from other sources, A, for model 3 (infected farm ' month )
rate of acquiring infection from other sources, 2, for model 4 (infected farm ~' month ™)

0.75
0.25
0.057
0.09

0.10
0.000034
0.000037

farms, vss, (iii) the rate at which a farm acquires
infection from other sources, A, and (iv) the fraction of
susceptible farms acquiring infections from other
sources that will become super shedding farms, . We
assume that a super shedding farm remains infected
longer than a normally infected farm, choosing recovery
rates of 0.75 and 0.25 for vy and vygs, respectively. Our
data suggest that 17% of infected farms are super
shedding farms (13 out of 77). As super shedding farms
remain positive for (on average) three times as long as
normally infected farms [(1/0.25)/(1/0.75)], this gen-
erates a suitable value for 6 of 0.057. We are thus left
with one unknown parameter A, which needs to be fitted
such that the simulated prevalence of infected farms is
comparable with the data. All parameter values are
summarized in table 1.

3.3. Baseline models

An important assumption we make is the way in which
a susceptible farm acquires infections from sources
other than the movement of infected animals. In the
above framework, we assume that a susceptible farm
acquires infection from these other sources with a
constant probability, A. However, the risk of acquiring
infection could be dependent on the density of infected
farms (both the normally infected and super shedding
farms). To incorporate this, we allow the probability of
acquiring infections from other routes to be Al,
where [ is the total number of normally infected and
super shedding farms. Such a modification also
assumes that all infected farms contribute equally to
the probability of a susceptible farm acquiring infec-
tion from other sources.

A further assumption we have made is that all farms
have the same risk of acquiring infection from other
sources, but in reality A may vary between farms. To
incorporate this possibility, we use a gamma distri-
bution to characterize the heterogeneity in A. We
explore two cases: (i) there is no heterogeneity (i.e. the
variance is zero) and (ii) there is a large variation in A
between farms and we simply assume that the variance
is the square of the mean. In the latter case, we assign
each farm a risk of acquiring infection sampled from a
gamma distribution, with a mean A and a variance A*.

These alternative assumptions present us with four
baseline models. There are two density-independent
models: one assumes a homogeneous A (model 1), while
the other assumes A to vary between farms (model 2).
There are also two density-dependent models: one
assumes a homogeneous A (model 3), while the other
assumes A to vary between farms (model 4).
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3.4. Variants of the baseline models

We also construct several variants of the baseline
models to explore the effect of certain components of
the baseline models on the persistence of E. coli O157
within the Scottish farm network. Unless stated
otherwise, all parameter values used in the model
variants are the same as those for their respective
baseline models. The model variants are as follows:
baseline, this represents the baseline models as outlined
above; variant 1, this assumes that no infections are
introduced into a farm via routes other than importing
infected cattle (i.e. A=0); variant 2, this assumes that
there are no cattle movements; variant 3, this assumes
that no farm can gain super shedding status from routes
other than cattle movements; variant 4, this assumes
that there are no movements of super shedding animals;
and wvariant 5, this assumes that there are no move-
ments of any animals from super shedding farms.

4. RESULTS

In order to generate a prevalence of infected farms
comparable with that observed in the data, we adjust
the values of A for all the four baseline models. The
estimated values of A are summarized in table 1 and the
resulting prevalences of infected farms are all within
+5% of the observed level. For the density-
independent models, the probability of acquiring
infection from routes other than cattle movement (2)
is 0.09 and 0.10 per month for model 1 (homogeneous A)
and model 2 (heterogeneous 2), respectively. This
implies that a susceptible farm becomes infected from
other sources once every 11 (1/0.09) or 10 (1/0.10)
months. For density-dependent models, this prob-
ability is, on average, approximately 0.000034 and
0.000037 per infected farm per month for model 3
(homogeneous A) and model 4 (heterogeneous 2),
respectively. When density-dependent models are in a
steady state, these two probabilities are multiplied by
the number of infected farms to give a similar
probability of acquiring infection from other sources
as those in the density-independent models.

For the baseline models, the annual averaged
prevalence of infected farms (i.e. averaging 12 monthly
prevalence of infected farms throughout an year) ranges
from 0.155 to 0.158 and the annual averaged prevalence
of super shedding farms ranges from 0.039 to 0.041
(table 2). The large population of farms means that
there was very little variation in outputs between
simulations. For all density-independent baseline
models, the simulated prevalence of E. coli O157
infections settles to a steady state within 2 years
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Table 2. Prevalence values of infected farms for baseline models and their respective variants (see text for their descriptions).
There are two prevalence values per entry, with the left being the prevalence of all infected farms and the right being the

prevalence of super shedding farms.

baseline variant 1 variant 2 variant 3 variant 4 variant 5

model 1 0.155, 0.039 0,0 0.119, 0.020 0.121, 0 0.141, 0.020 0.138, 0.020
model 2 0.155, 0.041 0,0 0.119, 0.022 0.120, 0 0.140, 0.022 0.137, 0.022
model 3 0.158, 0.040 0,0 0,0 0.016, 0 0.091, 0.012 0.068, 0.009
model 4 0.156, 0.041 0,0 0,0 0.036, 0 0.102, 0.015 0.086, 0.012
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Figure 7. Stochastic simulations of baseline models with heterogeneity in A. In (a) the probability of acquiring infection from
sources other than cattle movement is independent of the number of infected farms, whereas in (b) this probability is density
dependent. Both (a) and (b) show three time-series, each of which is a stochastic realization of its respective baseline model. The
inset in (a) is a zoom-in version of the time-series showing typical seasonal patterns in the prevalence of infected farms
throughout a year. Similar time-series can be observed for models with no heterogeneity in A.

(figure 7a). For both the density-dependent baseline
models, approximately 13% of the simulations show
E. coli O157 infections taking place, and it usually takes
5-10 years to build up to the observed prevalence level
(figure 7b). Simulations of all the baseline models show
that once the steady-state level of infection is reached,
then there exists a seasonal pattern in the prevalence
level of infected farms every year, with a larger peak in
October and a smaller peak in May (inset in figure 7a).
However, this seasonal pattern does not correspond well
with the observed seasonality in prevalence (figure 1).
The effects of different components of our models on
the prevalence levels of infected and super shedding
farms are summarized in table 2. The models suggest
that E. coli O157 infection cannot take place and persist
when farms do not acquire infection from routes other
than cattle movements (model variant 1); in other
words, once FE. coli O157 is introduced into the
Scottish cattle population, then it cannot persist
through cattle movements alone. Despite this, our
density-independent models suggest that cattle move-
ments do make some contribution to the steady-state
prevalence of infected farms; and furthermore, our
density-dependent models suggest that cattle move-
ments are essential for the persistence of infection
(compare baseline models with model variant 2). Our
results also show that super shedding infection cannot
persist in the Scottish cattle population if the only route
by which a farm can become a super shedding one is via
importing super shedding cattle (model variant 3).

J. R. Soc. Interface (2007)

The absence of movements of super shedding animals
results in lower prevalence of infected farms with the
prevalence of super shedding farms being reduced
(model variant 4). The absence of movements of all
animals from super shedding farms has a slightly
greater impact (model variant 5).

Whether the rate of acquiring infection from other
routes is density dependent or not also plays an
important role in influencing the prevalence of infected
farms. For all model variants except variant 1 (where
there is no infection at all), the density-dependent
models always generate a lower prevalence of infected
farms than their density-independent counterparts
(table 2). For model variant 2 (no cattle movements),
density-independent models have reduced prevalence of
infected farms while infections fail to take place at all
for density-dependent models. For model variant 3
where farms cannot become super shedding farms via
routes other than cattle movements, the results show
that density-dependent models have their prevalence of
infected farms greatly reduced to 0.016 or 0.036,
whereas their density-independent counterparts have
their prevalence of infected farms reduced slightly to
0.121 or 0.120. Similar effects can also be observed when
there is no movement of either super shedding animals
(model variant 4) or any animals from super shedding
farms (model variant 5): when compared with the
baseline model, density-dependent models always have
a greater reduction in prevalence of infected farms than
their density-independent counterparts.
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For both the density-independent and density-
dependent models, assuming A to be heterogeneous
between farms leads to a slightly higher parameter
estimate than that for homogeneous A. Alternative
model variants indicate that there is an effect of
variation in A on the prevalence of infected farms. The
effect is very slight for density-independent models, but
very marked for the density-dependent counterparts
(table 2). For density-dependent models, the model
variants 3-5 show that having heterogeneous A can lead
to a higher prevalence of infected farms than that for
homogenous A.

5. DISCUSSION AND CONCLUSION

The simple models of E. coli 0157 dynamics developed
here are intended to allow a preliminary exploration of
the quantitative contribution of cattle movements to
the levels of infection in a metapopulation of Scottish
cattle farms. We note that our model is based on a
relatively small number of Scottish cattle farms and
the movement data of a single year, but our result is of
a first step from which further and more detailed
studies can be conducted. The model distinguishes two
kinds of transmission: (i) mediated by the network of
movements of cattle between Scottish farms and (ii) all
other routes including the acquisition of infections
from the wider environment in Scotland (e.g. via
contaminated vehicles, movements of hosts other than
cattle, contamination of feed or water supplies and
imports of infected cattle from outside Scotland).
Parameter values used to illustrate the behaviour of
the model were chosen to be broadly consistent with
(but were not formally fitted to) the data from a field
study in Scotland.

As presented, the models suggest that cattle move-
ments within Scotland alone are not sufficient to
maintain E. coli O157 infection in the metapopulation
(table 2; model variant 1), i.e. other routes of
transmission are likely to be involved. However, it is
possible that movements within Scotland still make a
substantial contribution, but the extent of that
contribution depends crucially on whether transmission
via other routes is dependent or independent of the
proportion of farms infected (cf. variant 2 of models 1
and 2 with the same variant of models 3 and 4). This is
equivalent to saying that the contribution of move-
ments to the level of infection depends on the degree to
which cattle are the main reservoir of infection
(density-dependent models) rather than the external
environment (density-independent models). The
density-dependent models suggest the plausible inter-
val of 5-10 years from the first introduction of E. coli
0157 into Scotland before currently observed levels of
infection are reached. However, none of the models
captures the observed seasonality in the levels of
infection (cf. figure 1 with the inset in figure 7a),
suggesting that seasonal variations in factors other
than Scottish movement rates play a role.

The models used here are structured to reflect the
observation that some infected cattle, so-called ‘super
shedders’, excrete very high numbers of bacteria and
are therefore presumed to be highly infectious
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(Matthews et al. 2006b). The contribution that move-
ments of super shedders or other routes of acquisition of
super shedder infections make to maintaining the
observed levels of infection again depends on the degree
to which cattle are the main reservoirs of infection
(model variants 3 and 4). The models also explicitly
incorporate heterogeneity between farms with regard to
the network of cattle movements. Allowing hetero-
geneity in transmission via other routes has relatively
small effects on the overall dynamics of infection (cf.
models 1 and 2, models 3 and 4).

Some of the model variants considered here mimic
possible effects of preventive measures: (i) restricting all
movements or allowing movements only of uninfected
cattle (variant 2), (ii) allowing movements only of non-
super shedding cattle (variant 4), or (iii) allowing
movements only from farms without super shedders
(variant 5). For the models as presented, although all of
these measures have some impact on the overall levels of
infection, only measure (i) has the potential to lead to a
major reduction when cattle are the main reservoir of
infection (models 3 and 4, variant 2).

These preliminary results indicate a number of issues
that merit more detailed study. Foremost among these
is the suggestion that cattle movements may play a
significant role in maintaining observed levels of E. coli
0157 infection in the metapopulation of Scottish cattle
farms. However, the importance of movements cannot
be quantified without a better quantitative under-
standing of the role of reservoirs of infection outside the
Scottish cattle population. Ultimately, more detailed
and biologically realistic models, formally fitted to
epidemiological data, may prove useful aids to the
design of control or prevention programmes for this
important zoonotic pathogen.

This study was funded by a Wellcome Trust International
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Research Training Fellowship.
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