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The interaction between sheep and the nematodeTeladorsagia circumcincta is one of the best
understood of all host–parasite interactions. Following infection, there is considerable
variation among lambs in the number of nematode eggs produced, the number of early
fourth-stage larvae and the number of adult worms in the mucosa. These traits have a high
variance to mean ratio (i.e. they are overdispersed or aggregated among hosts), they are
skewed and approximately negative binomially distributed. The sources of overdispersion are
differences among lambs in the ingestion of infective larvae and the immune response. Both
forces can produce aggregation but their relative importance is unknown. The key
components of variation can be identified by variance analysis. The sum of the average
effects of polymorphic genes is known as additive genetic variation and this increases
essentially from zero at one month of age to quite high values at six months of age. The major
mechanism underlying genetic variation appears to be the differences among individuals in
immune responses. Two of the major sources of variation in immune responses are differences
in antigen recognition and differences in the type of cytokines produced. Genes that influence
both these sources of variation are associated with differences in resistance to nematode
infection. Therefore, much of the heterogeneity among animals in parasite transmission
appears to be due to genetic variation in immune responsiveness.
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1. INTRODUCTION

Nematodes represent a major disease challenge to most
mammals, although their importance is often under-
estimated because they are seldoma problem for humans
in the Western world. They are among the most impor-
tant diseases affecting livestock (Perry & Randolph
1999; Nieuwhof & Bishop 2005) and consequently they
have been intensively studied. Their genetics (Stear et al.
1997a), immune defence mechanisms (Stear et al. 1999b;
Balic et al. 2000), pathology (Stear et al. 2003) and
methods of disease control (Sayers & Sweeney 2005;
Stear et al. 2007) have recently been reviewed. Gastro-
intestinal nematodes in livestock represent one of the
most fully understood of all host–parasite systems
(Grenfell et al. 1995a; Stear et al. 1996).
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In cool, temperate areas of the world such as the
United Kingdom and southern Australia, the dominant
nematode is Teladorsagia circumcincta (Stear et al.
1998). Other common taxa in the UK include Trichos-
trongylus vitrinus, Trichostrongylus axei, Nematodirus
battus, Nematodirus filicolis, Nematodirus spathiger
and Cooperia spp. (Stear et al. 1998). Among nematode
eggs, only Nematodirus spp. are readily distinguishable
from the other species and are routinely counted
separately. There are several methods that have been
used to differentiate the eggs from the remaining species
of parasitic nematodes, including culture of eggs to
third-stage larvae (Stear et al. 1990), analysis of the size
and shape of the eggs (Christie & Jackson 1982) and
rate of embryonic development at different tempera-
tures (Gruner et al. 2002, 2004). However, these
methods are not in routine use and eggs from the non-
Nematodirus species are usually counted together.

This review focuses on T. circumcincta and other
non-Nematodirus species in cool, temperate areas. It
J. R. Soc. Interface (2007) 4, 767–776
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summarizes the transmission dynamics of nematodes in
livestock, the distribution of nematodes among hosts, the
sources of aggregation, the key components influencing
the heterogeneity among hosts, the influence of genetic
variation on parasite transmission and the potential for
combining genetic and modelling approaches.
2. TRANSMISSION DYNAMICS OF NEMATODES
IN LIVESTOCK

The life cycle of the most important nematodes of
livestock, such as T. circumcincta or Haemonchus
contortus involves only one host (Urquhart et al. 1987).
Eggs are produced in the gastrointestinal tract and are
then deposited on pasture in the faeces. The eggs hatch
into first-stage larvae and subsequently moult into
second-stage larvae. Both first- and second-stage larvae
feed on bacteria in the faeces. The third-stage larvae
leave the faeces and some of these larvae are ingested by
sheep during grazing. Within the host the third-stage
larvae undergo two further moults to fourth- and fifth-
stage larvae. The latter are young adults and once they
mature, they breed at species-specific sites within the
gastrointestinal tract.

Mature sheep are relatively immune to nematode
infection and in the UK, most breeding ewes produce
significant numbers of eggs only during the peripar-
turient period (Donaldson et al. 1998; Coop et al. 2001;
Huntley et al. 2004; Houdijk et al. 2006). The infection
of naive lambs is initiated by the ingestion of infective
larvae. These infective larvae arise from the small
number of parasites overwintering on pasture and the
development of eggs deposited by ewes during the
periparturient period. Infection levels increase as
warmer weather hastens the development of eggs into
infective larvae and as ingested larvae develop into
adults and themselves contribute to egg output.

There is considerable variation among regions and
farms in husbandry arrangements. In a typical Scottish
upland farm, lambs are born in lateMarch to early April,
kept with their mothers until three to four months of age
and then grazed with other lambs until the end of the
grazing season when they are six to seven months of age.
At this point transmission of nematodes ceases or falls to
low levels. Often, egg counts peak inmid-season, then fall
but rise again in October (Thomas & Boag 1972; Stear
et al. 2006). However, this pattern is dependent on the
weather and the frequency of anthelmintic treatment and
is not observed on all farms in all years.

The decline from the mid-season peak has been
explained by the onset of immunity in lambs (Stear
et al. 1999a). However, different rates of development
among nematode species in response to the prevailing
weather appear to be responsible for the second late
peak in October (Stear et al. 2006).
3. THE DISTRIBUTION OF PARASITES
AMONG HOSTS

A good description of the data is not only important for
summarizing and comparing results but also for
analysis and modelling purposes. A minimally adequate
description of a parasite population would include the
J. R. Soc. Interface (2007)
mean, variance and a description of the class of
distribution of parasites among hosts (e.g. Poisson,
Weibull, negative binomial or zero-inflated negative
binomial and so on). The distribution of parasites also
influences the transmission dynamics and the intensity
and prevalence of infection and disease. Therefore, the
distribution has received considerable attention.

If the infective stages of nematodes are uniformly
distributed across the pasture, if there are no differences
among grazing lambs and if infection is due to a random
encounter between host and parasite, then the distri-
bution of parasites among hosts should follow a Poisson
distribution. The variance of Poisson distributions is
equal to the mean. However, for most parasite distri-
butions the variance is greater than the mean (Shaw &
Dobson 1995); parasites are aggregated among their
hosts.Analternativewayofdescribing the phenomenon is
to say that the distribution of parasites is overdispersed.

Taylor’s power law states that varianceZa!meanb

(Taylor 1961) where a and b are population-specific
parameters. It has been widely used to describe the
relationship between themean abundance of a population
and the variability in population size over space and time
(Anderson et al. 1982; Keeling 2000). For most natural
populations the exponent b lies between 1 and 2 (Taylor
1961).For sheep inScotland, the exponentwas 1.23G0.08
for the relationship between variance and themean faecal
nematode egg count (Stear et al. 2006), suggesting that
sheep show substantial variation in egg output and their
high level of variation is typical of many populations.

Figure 1 shows the variation among 6.5-month-old
naturally infected lambs in egg output expressed as
eggs per gram (epg) of faeces. The distribution of egg
counts in lambs is typically skewed and overdispersed;
most hosts have relatively low egg counts while a small
proportion have relatively high egg counts. These
individuals with high egg output make a dispropor-
tionate contribution to environmental contamination
and therefore parasite transmission between hosts.

Many but not all responses to parasitic infection
are overdispersed. Figure 2 shows the distribution at
six to seven months of age among the same animals
in the number of adult nematodes of the species
T. circumcincta; the distribution of nematode numbers
among lambs is also overdispersed. In contrast, figure 3
shows that the distribution of the lengths of adult
female T. circumcincta is approximately symmetrical
around the mean. This trait has a strong curvilinear
relationship with nematode fecundity; longer females
lay more eggs per day (Stear & Bishop 1999).

Ever since the pioneering work with nematode egg
counts in Scottish sheep (Hunter & Quenouille 1952)
and head lice in Indian prisoners (Bliss & Fisher 1953),
the negative binomial has been widely used to provide a
mathematical description of parasite distributions. The
negative binomial is defined by two parameters: mean
and k, an inverse index of overdispersion. This distri-
bution has also been used to describe several indirect
indicators of infection. For example, mean egg counts in
a flock of naturally infected Scottish sheep ranged from
50 to 570 eggs per gram over the grazing season and k
ranged from 0.09 to 2.59 (Stear et al. 1995a). There is a
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Figure 1. Frequency distribution of faecal egg count in 6.5-
month-old lambs from a single commercial farm in central
Scotland. Naturally infected sheep were necropsied in each of
4 successive years in late October or early November.
Nematode eggs were counted in faeces from 530 sheep. The
distribution is overdispersed.
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Figure 2. Frequency distribution of adult T. circumcincta in
6.5-month-old lambs at necropsy. All lambs came from a
single commercial farm in central Scotland. Naturally
infected sheep were necropsied in each of 4 successive years
in late October or early November. Nematodes were counted
in the gastrointestinal tract from 533 sheep. The distribution
is overdispersed.
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Figure 3. Frequency distribution of adult female T. circum-
cincta length in 6.5-month-old lambs at necropsy. Naturally
infected sheep were necropsied in each of 4 successive years in
late October or early November. Nematodes were measured in
samples from 533 sheep. All lambs came from a single
commercial farm in central Scotland. The distribution is
approximately unimodel and symmetrical.
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strong relationship between the mean egg count and k
(Scott 1987; Grenfell et al. 1995).

In contrast, there have been few attempts to directly
examine the distribution of parasites (Shaw & Dobson
J. R. Soc. Interface (2007)
1995), particularly in livestock (Barger 1985; Stear
et al. 1998, 2004). In Australian lambs (Barger 1985),
mean nematode burdens were 2102, 5451, 1820 and 506,
while k values and their standard error of the mean were
1.22G0.16, 1.46G0.19, 1.49G0.19 and 1.41G0.18
for adult H. contortus, Ostertagia spp. (predominantly
T. circumcincta), intestinal Trichostrongylus spp.
(predominantly Trichostrongylus colubriformis) and
Nematodirus spp. (predominantly N. spathiger),
respectively. In Scottish lambs (Stear et al. 1998), the
mean number of adult T. circumcincta over 4 successive
years were 6570, 2778, 1548 and 2996 while k values and
their standard errors were 1.90G0.24, 1.79G0.24, 1.63G
0.17 and 1.90G0.20, respectively. The similar k values
indicate similar levels of aggregation in the different
studies from the two countries. In contrast, the distri-
bution of fourth-stage larvae among lambs was much
more aggregated (Stear et al. 2004). Themean number of
fourth-stage larvae was 5738, 528, 705 and 3124 while k
values and 95% confidence limits in the same Scottish
sheep were 0.57 (0.45–0.75), 0.29 (0.22–0.40), 0.22
(0.18–0.28) and 0.52 (0.42–0.67), respectively.

The use of the negative binomial distribution is largely
empirical but the use can be justified. If the contributions
of different genetic and non-genetic mechanisms are
multiplicative then the underlying variation among
animals in egg output would be lognormally distributed.
The counting process is also likely to produce additional
variation; replicate egg counts from the same sample will
not necessarily give the same result. This variation in the
counting process is likely to follow a Poisson distribution.
The combination of the lognormal and Poisson distri-
butions could produce a negative binomial distribution
(Hunter & Quenouille 1952). Alternatively, if the
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underlying variation among animals followed a gamma
distribution, the combination of gamma and Poisson
distributions would also follow a negative binomial
distribution. The distribution of underlying genetic
effects is unknown and traditionally assumed to follow a
normal distribution (Falconer & Mackay 1996), but
recent analysis suggests that the size of gene effects may
follow a gamma distribution (Hayes & Goddard 2001).

However, the negative binomial distribution does
not always provide an adequate description of nema-
tode egg counts among lambs (Stear et al. 1995a, 2006).
In part, this may reflect the fact that the observed
distributions, particularly of egg counts, are often
mixtures of distributions, reflecting different contri-
butions from different species of nematode. Hetero-
geneous negative binomial distributions, when
combined together, do not necessarily produce a
negative binomial distribution (Grafen & Woolhouse
1993). A comparison of different distributions found
that the Weibull distribution often provided a better
empirical description of the data than the more widely
used negative binomial distribution (Gaba et al. 2005).
4. SOURCES OF AGGREGATION

Aggregation arises because there are differences among
hosts in the infection process or in the response to
infection (Shaw&Dobson1995).These twoprocesseswill
be reviewed and discussed separately. For grazing sheep,
the infection process is the ingestion of grass or other
pasture plants contaminated with infective larvae.

Each mouthful of grass ingested by grazing sheep can
be considered a Poisson sample of the infective larvae in
the immediate vicinity. However, faeces and infective
larvae are not uniformly distributed on pasture and
appear to follow a negative binomial distribution (Boag
et al. 1989). Therefore, over a short period of time, the
intake of larvae is likely to be aggregated among sheep;
most sheep will ingest relatively low numbers of infective
larvae but some sheepwill ingest large numbers of larvae.
Therefore, it is plausible that variation in larval ingestion
is responsible, at least in part, for the observed aggrega-
tion in nematode numbers (figure 2).

There are differences among sheep in grazing
behaviour (Boag et al. 1989). For example, faster-
growing sheep may eat more grass. These sheep might
ingest more infective larvae. This would produce
positive correlations between growth rate and intensity
of parasitic infection. However, for natural, predomi-
nantly T. circumcincta infections, there are only weak
phenotypic and strong negative genetic correlations
between faecal nematode egg count and growth rate
(Bishop et al. 1996; Bouix et al. 1998). Sheep may
modify their grazing behaviour in response to natural
infection (Stear et al. 2001; Hutchings et al. 2003).
Parasitized sheep might eat fewer (Kyriazakis et al.
1998) or richer foods (Hutchings et al. 2003) during
infection and these might be adaptive responses to
reduce or control infection (Hutchings et al. 2003).
Aggregation would decline if heavily infected animals
modified their grazing habits to reduce infection but the
modifications may not be consistent over time.
J. R. Soc. Interface (2007)
In the absence of consistent differences among sheep in
grazing behaviour, the ingestion of infective larvae will
tend to homogenize over longer periods of time. Sheep
that ingest higher than average numbers of larvae on one
day may ingest lower than average numbers on another
day. However, in sheep undergoing continuous natural
infection, the survival time of adult nematodes is quite
short (Kao et al. 2000). Aggregated distributions of adult
nematodes could still arise if the majority of parasites
were recently ingested. In other words, the long-term
tendency tohomogenization is overwhelmedbythe short-
term survival of ingested larvae. Temporal variation in
the number of infective larvae on pasture (Stear et al.
2006) would magnify the aggregation effects of grazing.
Experimentation alone is unable to quantify larval
intakes and the precise balance between death rates and
homogenization of larval intakes over time. This is an
area where more modelling could be fruitful. One
promising approach models exposure as a non-
homogeneous Poisson process (Isham 1995).

The second force promoting aggregation of the
numbers of adult nematodes in sheep is the immune
response. In natural, predominantly T. circumcincta
infection of lambs, the steadily increasing heritability of
egg counts suggests that resistance is largely acquired
rather than innate (Stear et al. 1997a). Resistant sheep
have fewer adult nematodes, more inhibited larvae and
shorter and less fecund adults (Stear et al. 1997a).
Sheep with more globule leucocytes (discharged mast
cells) have fewer adult T. circumcincta (Seaton et al.
1989; Stear et al. 1995b) and the working hypothesis is
that immediate hypersensitivity reactions prevent the
establishment of incoming larvae and possibly expel
some adults. Variation in globule leucocyte numbers
accounts for about one-third of the variation in worm
numbers (Stear et al. 1995b).

Immunity to nematodes depends upon exposure and
is likely to be more intense in more heavily infected
individuals (Dineen 1963). This would tend to reduce
aggregation (Galvani 2003). However, in natural,
predominantly T. circumcincta nematode infection,
differences in immunity due to exposure are likely to be
relatively small and swamped by genetic variation in
immune responsiveness (Strain et al. 2002).

Sheep with increased mucosal IgA activity against
fourth-stage larvae have shorter and less fecund adult
worms as well as more inhibited fourth-stage larvae
(Stear et al. 1995b, 2004; Strain et al. 2002). This
extends previous reports of increased numbers of
inhibited larvae and IgA positive cells in efferent gastric
lymph in older when compared with younger animals
(Smith et al. 1984). IgA activity in the abomasal
mucosa also varies extensively among animals. IgA
activity in the mucosa is correlated with globule
leucocyte numbers (rZ0.4) consistent with both
responses being influenced by Th2-type cytokines
(Grencis 1997, 2001).

The distribution of immune responses mirrors the
distribution of the associated parasitological variables;
globule leucocytes and adult worm numbers are skewed
and overdispersed while both mucosal IgA activity and
adult female worm length were consistent with a
normal distribution. The observed associations and
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the similar distributions suggest that the immune
system may be, at least in part, responsible for the
observed distributions.

Variation in the number of both the ingested larvae
and the immune response appears to be capable of
generating aggregation in worm numbers among lambs.
However, the relative contribution of each to the
observed aggregation is unknown. Variation among
sheep in the number of ingested larvae would be very
difficult to monitor in natural infections. This is another
area where more modelling could be useful.

Egg output is also overdispersed. Several different
species of nematode contribute to the total egg count
and the total egg count can be considered as the sum of
the counts for each separate species. The species for
which egg counts have been most comprehensively
analysed is T. circumcincta. The egg count is
determined by the number of adult female worms and
their average fecundity. There is a density-dependent
effect on fecundity; as the number of adult worms
increases fecundity declines (Bishop & Stear 2000). The
number of worms is skewed and overdispersed for all
major species of sheep nematode (Stear et al. 1998). The
distribution of worm length is approximately normal
(figure 3) and there is a curvilinear relationship
between worm length and fecundity (Stear & Bishop
1999). We assume that the combination of an over-
dispersed distribution for worm number and an
approximately normal distribution for fecundity
would produce an overdispersed distribution of egg
output for each species but modelling is needed to
confirm this. The total egg output is then a combination
of overdispersed distributions.
5. QUANTITATIVE GENETIC ANALYSIS
OF VARIATION

The aim of quantitative genetic analysis is to determine
how much of the variation among animals is due to the
effects of genes and how much is due to other non-
genetic sources (Nicholas 1987; Falconer & Mackay
1996; Lynch & Walsh 1998).

A standard genetic model assumes that continuously
distributed traits are multifactorial, i.e. influenced by
many different factors (Nicholas 1987). Some of these
factors will be different genes; others will be non-genetic
factors including chance, climate and nutrition. All these
non-genetic factors are called environment. The per-
formance of an individual for a particular trait is called
the phenotypic value (P) and this is made up of a genetic
component G (genotypic value) and an environmental
component E (environmental deviation): PZGCE.

The environmental deviation is defined to have a
mean of zero and, consequently, the average per-
formance of a particular genotype is the genotypic
value. The genotypic value can be broken down into the
additive effect (A, also known as the breeding value)
plus a deviation due to dominance (D) and a deviation
due to interaction between genes at different loci
(I, epistatic deviation): GZACDCI.

The additive genetic component is the sum of the
average effects of polymorphic genes. In this context
genes include all relevant polymorphisms that
J. R. Soc. Interface (2007)
contribute to the trait, including variation in coding
regions, regulatory regions and elsewhere in the
genome. Variation in the number of copies of specific
genes and epigenetic changes in DNA such as methyl-
ation are included in the additive effect if they differ
between individuals and are inherited in a stable
manner from the oldest to the youngest generation in
the study.

The additive genetic component is the most import-
ant for selective breeding while the dominance
deviation and epistatic components are used in cross-
breeding schemes. The proportion of the variance that
is due to genotypic values (VG/VP) is heritability in
the broad sense. In contrast, heritability in the narrow
sense is the proportion of the variance that is
attributable to variance in breeding values (VA/VP).
It is the narrow-sense heritability (h2) that predicts the
response to selection and this is the term of most value
to animal breeders and livestock farmers. The term
‘heritability’ usually refers to the narrow-sense herit-
ability. The heritability of a trait and the breeding
value equations can vary between populations, depend-
ing on gene frequencies, type of gene action and
environmental effects.

The statistical procedure most commonly employed
to estimate heritability is variance analysis. Mixed
model methodology has been widely used to partition
the variance into genetic and non-genetic components.
Animal models, which take all known pedigree
relationships into account, are preferred (Lynch &
Walsh 1998). A simple but relevant general linear
mixed model can be described with matrix notation:
YZXßCZuCe. Y is a column vector describing the
phenotypic values for a trait measured in n individuals,
X is the n!p design matrix, ß is a p!1 vector of fixed
effects, Z is an n!q incidence matrix, u is a q!1 vector
of random effects and e is an n!1 column vector of
residual deviations.

There is substantial evidence for genetic variation in
humans (Quinnell 2003) and livestock (Stear et al. 1997a;
Dominik 2005) in resistance to nematodes. The narrow-
sense heritability for a single faecal egg count increases as
lambs mature (Bishop et al. 1996; Stear et al. 1997a). In
older calves and lambs, the heritability usually falls
between 0.1 and 0.4 (Albers et al. 1987; Bishop et al. 1996;
Windon et al. 2000; Bisset et al. 2001; Gruner et al. 2001;
Woolaston &Windon 2001; Gauly et al. 2002). However,
there have been surprisingly few attempts to estimate the
heritability of nematode numbers in sheep or nematode
fecundity. An examination of 530 lambs from a single
commercial farm in Scotland found that the heritability
and standard error of adult T. circumcincta was only
0.14G0.10 while the heritability and standard error of
adult female worm length (which is strongly associated
with fecundity) was much higher at 0.62G0.20 (Stear
et al. 1997b). In contrast, heritability estimates following
deliberate infection withH. contortus were 0.54G0.20 in
29 Rhön lambs and 0.06G0.14 and 0.11G0.11 in 79
Merinoland lambs, while the heritabilities of worm
length were not significantly different from zero (Gauly
et al. 2002).

One of the most comprehensive quantitative genetic
analyses available for any parasitic infection is a study in
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from five-month-old lambs from a single commercial farm in
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lambs was followed but deaths, lost tags, missing or incorrect
records meant that only 902 lambs were included in the
analysis. Genetic refers to additive genetic variation which
accounts for 30% of the variance. DoB is date of birth which
accounts for 1% of the variance. Earlyfec is the faecal egg
count at one month of age. Young lambs with high egg counts
have lower than average egg counts at five months of age.
Twin lambs have higher egg counts than singletons. Merror is
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counts on the same aliquot. Unique means factors specific to
each individual while mce refers to maternal genetics and the
maternal common environment.
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approximately 1000 Scottish Blackface lambs (Stear et al.
1996). Figure 4 illustrates the key sources of variation in
faecal egg counts at five months of age. The most
important component in this study was additive genetic
variation. The importance of these components varies
over time; for example, thematernal componentdecreases
as the lambs mature. In contrast, the additive genetic
component is indistinguishable from zero at one and two
months of age but increases to one-third of the total
variation at six and seven months of age. The delayed
development of genetic resistance is consistent with the
hypothesis that resistance is due to the development of
protective immune responses (Bishop et al. 1996). A
heritability of one-third is similar to the heritability of
milk production in dairy cattle or growth rate in beef
cattle.Heritabilities of thismagnitudemean that selective
breeding for decreased egg output is feasible.

These heritabilities refer to a single egg count at each
time point. In practice, a sensible strategy would be to
make replicate counts on each sample and to combine
the results from samples taken at different times. A
combination of multiple counts and replicate samples
would improve the identification of genetically resistant
animals and produce faster responses to selection. The
more rapid response to selection is a consequence of the
fact that the mean of several counts is a better estimate
of genetic effects and is therefore under stronger genetic
control. This observation suggests that resistance to
this parasitic disease is strongly influenced by genetic
variation in the host; the relatively low estimates of
genetic variation in disease resistance may sometimes
J. R. Soc. Interface (2007)
be a consequence of the difficulty in defining and
accurately measuring resistance to disease.

Traditional quantitative genetic analyses successfully
predict the response to selection in production traits such
as milk yield or growth. In the case of parasitic and
infectious diseases, traditional approaches underestimate
the response to selection because they take no account of
the reduced contamination of the environment. For
example, selected animals will produce fewer nematode
eggs and mean egg counts of infected lambs will decrease
over time. The combination of reduced environmental
contamination and increased resistance in hosts has been
addressed using epidemiological models of the trans-
mission dynamics (Bishop & Stear 1997, 2003). The
results from these models predict that the response to
selection will be much greater than that predicted by
traditional genetic theory. There is variation among
animals in the transformation of excreted eggs into
infective larvae. Eggs from resistant sheep develop into
infective larvae less successfully than eggs from suscep-
tible sheep (Jorgensen et al. 1998). This result has still to
be incorporated into models that predict the responses to
selection. It should lead to even greater benefits from
selective breeding.
6. MOLECULAR GENETIC ANALYSIS
OF VARIATION

Identifying the genes underlying immune responses
would improve our understanding of the host–parasite
interaction and allow selective breeding to be enhanced
by the use of genetic markers.

There are two methods of data analysis used in gene
hunting: linkage and association. Their advantages and
disadvantages have been extensively reviewed (Thomas
2004). In brief, linkage analysis involves studying joint
inheritance in families. It is less powerful but more robust
than association analysis which involves the study of
unrelated individuals. Ideally, in families, correlations
between genotypes and phenotypes will be influenced by
causative mutations and linkage, while correlations in
unrelated individuals will be a consequence of causative
mutations and linkage disequilibrium. However, these
distinctions are not so clear-cut in farm animal popu-
lations. On sheep and cattle farms, many animals share
common ancestors and correlations of genotypes with
phenotypes will reflect both linkage disequilibrium and
linkage. Most studies have used either linkage (Davies
et al. 2006) or a combination of linkage and linkage
disequilibrium (Stear et al. 2005). More promising
methods combine multipoint linkage and linkage dis-
equilibrium (Farnir et al. 2002; Meuwissen et al. 2002),
but these have yet to be widely applied.

Two of the major sources of variation in immune
responses are variation in antigen recognition, which
influences the quality of the immune response and
variation in cytokine production, which influences the
quantity of the immune response. There are two
confirmed genetic markers forT. circumcincta. Figure 5
illustrates the influence of heterozygosity at the
major histocompatibility complex class II locus
DRB1. The association between the mhc and nematode
infection has been independently confirmed by several
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Figure 5. Heterozygotes (HET) had lower egg counts than
homozygotes (HOM) for the DRB1 locus within the sheep
MHC. There were 152 homozygotes and 637 heterozygotes.
The animals were naturally infected and parents were bred
without knowledge of mhc genotypes. All animals came from
a commercial farm in southwest Strathclyde. Heterozygous
individuals with two different alleles at the DRB1 locus are
more resistant to nematode infection than individuals with
two copies of the same allele. The y-axis represents faecal egg
counts in September that were transformed by taking
logarithms to the base 10.
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Figure 6. Influence on faecal egg count of different genotypes
at the microsatellite locus within the interferon gamma gene.
All 709 animals tested came from the same commercial farm
in southwest Strathclyde. There are only two alleles in
Scottish blackface sheep. The frequency of the F allele was
0.56. The F allele is dominant and individuals with one or two
copies of the F allele have higher egg counts than individuals
with two copies of the S allele. The y-axis represents faecal egg
counts in September that were transformed by taking
logarithms to the base 10.

Review. Genetic variation in nematode infections M. J. Stear et al. 773
groups (Schwaiger et al. 1995; Paterson et al. 1998;
Buitkamp & Epplen 2001; Charon et al. 2002; Sayers
et al. 2005; Stear et al. 2005; Davies et al. 2006). The
second marker is the interferon gamma locus ifng
(figure 6). At this locus, one of the two or three alleles is
associated with high nematode egg counts. This
association has been independently confirmed by
several groups (Coltman et al. 2001; Abuargob 2006;
Davies et al. 2006). These markers are biologically
plausible candidate genes: the mhc class II region
influences antigen recognition, while interferon gamma
can influence antigen recognition but its main function
is to determine the type of cytokine response (Frank
2002). However for both genes, the causative mutations
have still to be identified.

The F allele at the ifng locus shows dominant
susceptibility in male lambs while the polymorphic
DRB1 locus shows heterozygote advantage for some of
J. R. Soc. Interface (2007)
the traits describing relative resistance to nematode
infection. These loci therefore show non-additive gene
action. The two loci may be markers for other linked loci
in linkage disequilibrium and the non-additive gene
action may reflect gene action at the true disease
resistance loci. Both loci were more strongly associated
with differences in the number of adult T. circumcincta
thanwithdifferences in the number of immature larvae or
in worm length or fecundity (unpublished observations).
Together these two loci accounted for approximately 50%
of the additive genetic variation in worm number.
7. THE POTENTIAL FOR COMBINING GENETIC
AND MODELLING APPROACHES

Genetic approaches complement the modelling
approaches that have been used to study host–parasite
systems. Transmission dynamics have been extensively
studied using epidemiological models that either treat
overdispersed traits phenomenologically (Anderson &
May 1978; May & Anderson 1978; Roberts 1995;
Roberts et al. 1995) or expose potential sources of
heterogeneity that could influence the observed distri-
butions of traits. A combination of observational and
theoretical approaches have shown that these sources
include variability in exposure, acquired immunity,
age, host predisposition and parasite-induced host
mortality (Tallis & Leyton 1966; Anderson & Gordon
1982; Pacala&Dobson 1988;Woolhouse 1992;Hudson&
Dobson 1995; Roberts 1995; Roberts et al. 1995; Smith
et al. 1995). Modelling advances which go beyond the
phenomenological approach to create frameworks from
which the aggregation emerges naturally have incor-
porated spatial heterogeneity and stochasticity in the
infection process, the explicit representation of
acquired immunity, heterogeneity in the host response
to infection, dynamically evolving levels of aggregation
and multiple infections (Grenfell et al. 1995a,b; Isham
1995; Cornell et al. 2000, 2004; Herbert & Isham 2000;
Rosà & Pugliese 2002; Bottomley et al. 2005).

Typically, within these host–parasite transmission
models, host predisposition has been treated simply.
Somewhat surprisingly, only a few models of nematode
infection in livestock have explicitly modelled individ-
ual (Louie et al. 2005) or genetic variation among
individuals (Bishop & Stear 1997). A genetic approach
provides the opportunity to underpin these models with
an explicit bottom-up representation of a key source of
heterogeneity in infection traits. This will assist in the
quantification of the contribution of non-genetic
mechanisms to the generation of aggregation. In
particular, the integration of genetic and modelling
approaches would allow the development of predictive
models of host–parasite transmission and control based
upon a detailed biological understanding of the
interactions between host and parasite.
8. CONCLUSIONS

A genetic approach can assist our understanding of
disease dynamics by identifying genes and mechanisms
that influence variation among animals. However, a
genetic analysis in itself may not be sufficient. The next
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stage is to develop mathematical models that explicitly
formulate and test the assumptions inherent in biological
approaches. In particular, there is a need for amechanistic
model to determine whether our understanding of genetic
and non-genetic variation is sufficient to account for the
variation in immunological responses and whether the
identified protective immunological responses can
account for the observed variation in parasitological
traits following natural and deliberate infection.

All research was approved by the University of Glasgow
Ethical Review Process and licensed by the UK Home Office.
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