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The spread of H5N1 avian influenza and the recent high numbers of confirmed human cases
have raised international concern about the possibility of a new pandemic. Therefore,
antiviral drugs are now being stockpiled to be used as a first line of defence. The large-scale use
of antivirals will however exert a strong selection pressure on the virus, and may lead to the
emergence of drug-resistant strains. A few mathematical models have been developed to
assess the emergence of drug resistance during influenza pandemics. These models, however,
neglected the spatial structure of large populations and the stochasticity of epidemic and
demographic processes. To assess the impact of population structure and stochasticity, we
modify and extend a previous model of influenza epidemics into a metapopulation model
which takes into account the division of large populations into smaller units, and develop
deterministic and stochastic versions of themodel.We find that the dynamics in a fragmented
population is less explosive, and, as a result, prophylaxis will prevent more infections and lead
to fewer resistant cases in both the deterministic and stochastic model. While in the
deterministic model the final level of resistance during treatment is not affected by
fragmentation, in the stochastic model it is. Our results enable us to qualitatively extrapolate
the prediction of deterministic, homogeneous-mixing models to more realistic scenarios.
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1. INTRODUCTION

Recent human cases of H5N1 avian influenza have
raised public concern. It is now considered an estab-
lished fact that another influenza pandemic will occur
sooner or later (e.g. Webby & Webster 2003). Given
that our world is highly interconnected and interde-
pendent (Hufnagel et al. 2004), this pandemic will
certainly spread fast and widely.

Two types of antiviral drugs currently exist: the
M2-inhibitors (M2I) and the neuraminidase inhibitors
(NAI). M2Is target the M2 protein, an ion channel
enabling the uncoating of the virion within the cell,
which is a key step of the replication process. M2Is are
only effective against influenza A (Stiver 2003). NAIs
belong to a new class of antivirals including oseltamivir
(Tamiflu), and zanamivir (Relenza). These drugs target
the neuraminidase, which is required to release the
budding virus from the cell and to prevent viral particles
from clumping. NAIs therefore attenuate the infection.

A consequence of the use of antiviral drugs, however,
is the emergence of drug resistance. Drug resistance in
general is an urgent public health problem, costing
human lives and money (Heymann 2006). Resistance
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against M2Is has risen rapidly over the past few years
(Bright et al. 2006). The increasing incidence of M2I-
resistant influenza A seems to be due to a high de novo
resistance rate associated with low transmission fitness
costs (Regoes & Bonhoeffer 2006). Given the chemical
structure of oseltamivir, structural studies predicted
some time ago that resistance to the drug could
develop, allowing the NA to maintain its function
(Moscona 2005). Several clinical cases have recently
confirmed this prediction (de Jong et al. 2005). More
alarmingly, transmission studies in ferrets and in vitro
show that oseltamivir-resistant virus variants may
differ in fitness and transmissibility. The R292K
mutation, which also shows cross-resistance to zana-
mivir, hampers growth and transmission of the virus,
because it reduces the sialidase activity. Viruses
carrying the E119V mutation, however, have growth
and transmission rates similar to wild-type viruses
(Yen et al. 2005). In addition, it cannot be ruled out
that a compensatory mutation could restore the fitness
of other drug-resistant viruses.

These recent findings, combined with the fact that
NAI drugs are being stockpiled world-wide underline
the need for in vivo, in vitro and in silico studies to
assess the emergence and spread of drug-resistant
influenza viruses, under different public health inter-
ventions and patterns of drug use. In particular,
computer simulations can provide guidelines for the
J. R. Soc. Interface (2007) 4, 893–906
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Figure 1. Structure of the population. The grey circle
represents the whole population, white circles represent
patches, arrows represent migration of individuals between
patches. S, I and R stand for susceptible, infected and
removed, respectively. The bottom-left patch is still disease-
free, while the patch on the left has just been colonized. The
parasite is locally extinct in the patch on the right.
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most effective use of antiviral drugs (Stilianakis et al.
1998; Smith 2003), in terms of limiting both new
infections and the emergence of drug resistance.

Recently, many complexmodels have been developed,
that investigate the outcome of different public health
interventions for controlling an influenzapandemic at the
source (Ferguson et al. 2005; Longini et al. 2005), or for
mitigating it once it has started to spread (Ferguson et al.
2006; Germann et al. 2006). These interventions
include treatment and prophylaxis with antiviral drugs,
vaccination, quarantine, restrictions on travel, school
closure and other non-pharmaceutical interventions.
Although these studies often mention the risk of the
emergence and spread of drug-resistant viruses, none of
them explicitly investigates the dynamics of resistance
emergence. Somemodels, however, have already assessed
the potential spread of drug-resistant viruses for
M2Is (Stilianakis et al. 1998) as well as oseltamivir
(Ferguson et al. 2003; Regoes & Bonhoeffer 2006).
None of these studies took into account the spatial
population structure, although Ferguson et al. (2003)
incorporated population structure in terms of risk groups
and age structure.

In this paper, we investigate the emergence and
spread of oseltamivir-resistant influenza virus in a
population structured into subpopulations (metapopu-
lation), when different public-health interventions are
performed. The work extends the studies of Stilianakis
et al. (1998) and Regoes & Bonhoeffer (2006). First, we
modify the initial model, and then extend it to a
metapopulation. Then, we develop a stochastic version
of the model. We implement spatial structure in a very
abstract and generic way, rather than attempting to
mimic the real world situation. This allows us to
qualitatively investigate how spatial structure influ-
ences the epidemic and the efficacy of interventions.
Figure 2. Population structures. (a) Different types of
connections among subpopulations: (i) island and (ii) spider
(these names were used by Hess (1996)). The black node is the
one where the infection starts. (b) From the left to the right,
increasing heterogeneity of mixing: (i) the number of
subpopulations increases and (ii) the migration coefficient
decreases. Throughout the paper, we assume that the total
population size is NZ500.
2. MODELS AND METHODS

We extended a previously published model describing
an influenza outbreak in a school (Stilianakis et al.
1998) into a metapopulation model, i.e. we linked
multiple epidemic foci by allowing individuals to
migrate between them. We developed deterministic
and stochastic versions of this metapopulation model.
2.1. Structure of the community

Different metapopulation structures can be studied in
epidemiology, depending on what is defined as a patch
(Hess et al. 2002). Given the organization of humans in
well-defined spatial structures such as families, villages
and towns (Grenfell & Harwood 1997), patches are
groups of hosts in our model. Colonization of a patch
corresponds to the establishment of an infection in a
patch harbouring susceptible individuals. Local extinc-
tion of the disease occurs when all the infected hosts
within the patch are removed (through recovery or
death). It is also assumed that there is a homogeneous
mixing within each subpopulation (figure 1).

We connect the disease dynamics within the patches
by allowing individuals to migrate from one patch to
the other. Mathematically, the migration process of
J. R. Soc. Interface (2007)
individuals between patches is described as migration
matrix MZðmi;jÞ 1!i!n;

1%j%n

, where mij is the rate of

migration of individuals from population i to popu-
lation j. This matrix determines the topology and the
strength of the connections between the patches.

We model different population structures. Through-
out this paper, the term population structure refers to the
number of subpopulations, and to how they are
connected (i.e. which subpopulations are connected,
and what is the value of the migration rate). For a given
number n of subpopulations, two types of subpopulation
connections are investigated here (figure 2a). In the
island-type of connections, all the subpopulations are
interconnected; in the spider-type, nK1 subpopulations
are connected only to a central one, and the infection
starts in a peripheral subpopulation. For a given



Table 1. R0 values of the sensitive (s) and resistant (r) viruses
for different interventions.

no drugs treatment prophylaxis

Rs
0 4.5 2.6 0.2

Rr
0 f 0.45 0.45
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structure, a range of migration coefficients (the nonzero
coefficients in the migration matrix) and of number of
subpopulations (the size of the matrix) are investigated
(figure 2b).We assume thatmigration is the sameamong
connected subpopulations, which means that

cði; jÞ2f1;.;ng2;

mi;j Z
0 if subpopulations i and j are not connected

m otherwise
;

(

and that all subpopulations have the same size N/n,
where N is the total number of individuals and n the
number of subpopulations. We chose a population size
of NZ500 because larger population sizes would have
rendered simulations too long to run. A population of
500 individuals might not seem realistic for an
influenza pandemic. We made sure, however, that
the size of the population had no impact on our
conclusions. (See appendix C2 for simulations with a
bigger population size.)

There is no age or social structure in the population
and no seasonal variation of parameters (because we
focus on the first 100 days of the epidemic only).
2.2. Epidemic parameters

The parameters of the model are listed in appendix A
and were chosen to match with recent studies on
oseltamivir-resistant viruses (Gubareva et al. 2001;
Kiso et al. 2004).

R0, the basic reproductive number, is a key concept
in epidemiology (Heffernan et al. 2005). It is defined as
the number of secondary cases produced by a single
infected individual during its entire infectious period, in
a fully susceptible population (Diekmann et al. 1990;
Anderson &May 1991). The transmission rates (the bs)
are scaled so that the basic reproductive number of the
sensitive strain,Rs

0, is equal to 4.5withoutdrugs, andR
r
0,

the basic reproductive number of the resistant strain,
equals 0.45. The next generation method (Diekmann
et al. 1990; Heffernan et al. 2005), which is described in
appendix B, was used to determine the Rs

0 under
different interventions (table 1).

OurRs
0 is high when compared with the range used in

recent models (always lower than 2.5 in Ferguson et al.
(2005, 2006), Longini et al. (2005), Germann et al.
(2006)). However, our value was estimated by
Stilianakis et al. (1998) from data collected during an
outbreak in a boarding school. It may be higher because
a boarding school population is more homogeneously
mixed than that of an entire town. If one estimatedRs

0 on
the basis of data generated by our model (withRs

0Z4:5)
using a homogeneously mixed model (e.g. Mills et al.
2004), the estimate of Rs

0 would be lower than 4.5
because the disease spreads slower in our model than
in a homogeneous-mixing model. Hence, our choice of
Rs

0Z4:5 is not inconsistent with epidemiological data.
For Rr

0 we assumed a 10-fold resistance cost. Given
the fact that oseltamivir-resistant strains found in
humans to date are not transmissible (Herlocher et al.
2002, 2004), our Rr

0 may appear too high. However,
because the large-scale use of oseltamivir may soon
J. R. Soc. Interface (2007)
select for transmissible resistance, and compensatory
mutations may reduce potential costs even further, one
may argue that our Rr

0 is too low to describe
oseltamivir-resistant influenza strains that may emerge
during a future pandemic. With our choice of Rr

0 we try
to strike a compromise between these two opposing
views. Our results, however, seem to be robust with
regard to the value of Rr

0 (see simulations performed
with higher values of Rr

0 in appendix C1).
2.3. Deterministic model

Although containing many more classes, the model that
we use to study the emergence of resistance is based on
the classical SIR model (Kermack & McKendrick
1927). The set of equations describing the epidemic
without any public health intervention corresponds to
an SIIsR model. Infected people are divided into
asymptomatic (I ) and symptomatic (Is) classes. Both
of them are infectious, but their infectiousness varies,
and only those who develop clinical symptoms will be
treated, when treatment is provided. See appendix A
for a complete description of the equations.

Two kinds of interventions will be considered.

—Treatment. All symptomatically infected individuals
receive treatment (oseltamivir).

Infected people receiving treatment are less
infective, develop symptoms more slowly and
recover faster.

—Prophylaxis. In addition to treatment of all sympto-
matic individuals, uninfected as well as asymptoma-
tically infected individuals (as they appear to be
uninfected) receive prophylaxis (oseltamivir).

Prophylaxed susceptibles become less susceptible
to infection, while asymptomatically infected people
are less infectious and recover faster.

While treatment is a continuous intervention,
prophylaxis is not. At a given time, all the
susceptible and asymptomatically infected individ-
uals receive prophylaxis, and are then moved to the
corresponding treated class.

Neither treatment nor prophylaxis has any effect on
people infected by a resistant virus. Note that
throughout the paper, a resistant virus refers to a
drug-resistant virus, and that a resistant case refers to
an individual shedding drug-resistant viruses.

More classes are required when interventions are
performed, in order to represent individuals receiving
treatment or prophylaxis.

— Infected individuals are distinguished according to
whether they are symptomatically infected (s) or
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if they had received prophylaxis (i.e. if they were Spr).
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not, treated (tr) or not, and have developed
resistance (r) or not (figure 3).

— Susceptible individuals can receive prophylaxis (pr)
or not.

For each class C, C2{S,Spr,I,.,Is,r,tr}, Ci refers to
the number of individuals of this class present in
subpopulation i, 1%i%n. Moreover, migration terms
are added to the equations described in Regoes &
Bonhoeffer (2006). For Ci , this migration parameter is
of the following form:

MðCiÞZK
Xn
jZ1

mi;j$Ci C
Xn
jZ1

mj;i$Cj : ð2:1Þ

The first term refers to individuals of class C leaving
subpopulation i for subpopulation j, while the second
term refers to individuals arriving (see appendix A3 for
the whole equations).

TheODEswere solved numerically using R’s odesolve
package (R Development Core Team 2005; Setzer 2005).
We also determined howmany people are infected during
an epidemic (i.e. ‘total number of infected cases’), among
them, howmany shed resistant viruses (i.e. ‘total number
of resistant cases’), and among the latter, what is the
proportion of resistance that appeared de novo (i.e.
appeared during infection, as opposed to transmitted
resistance). See appendix A3 for formulae.
2.4. Stochastic model

The deterministic version of the model is made
stochastic by using an implementation of the Gillespie
algorithm (Gillespie 1976), which numerically
simulates a Markov process. The Gillespie algorithm
was coded in R for the purpose of this study. For each
J. R. Soc. Interface (2007)
set of parameters, at least 100 stochastic simulations
are run using this algorithm.

Since computing time increases exponentially with
the division of the population (i.e. the number of
subpopulations, or the number of different equations),
simulations were run on a cluster of computers.
Parallelization was performed by hand, by submitting
different jobs corresponding to different sets of
parameters to individual nodes of the computer cluster.
3. RESULTS

3.1. Deterministic model

In this section, we investigate the impact of population
structure and of different interventions on the dynamics
and the final outcome of the epidemics, focusing on the
development of drug resistance. The deterministic
version of the model is used here.
3.1.1. Dynamics and final outcome of the epidemics
after treatment. How does the structure of the
population affect the dynamics of the epidemic as
compared with a homogeneously mixed model? To
answer this question, and for the sake of simplicity, we
use the epidemic’s peak time and value (i.e. the
maximal instantaneous number of infected individuals
in the whole population) to characterize the dynamics
of the epidemic.

Figure 4 shows dynamical and final features of the
epidemic for different population structures. For a
larger population of 5000 individuals, figure 4 does
not change. This is due to rescaling of the trans-
mission rates such that the basic reproductive number
remains the same (equation A 9). Figure 4a,b,d,e
shows that the epidemic peak decreases and occurs
later with decreasing migration rates. This means
that the epidemic is less explosive in a fragmented
population than in a homogeneous population. Treat-
ment slows down the epidemics and reduces its peak.
As expected, the level and the timing of the peak
converge to the homogeneous mixing case for high
migration rates.

Some results in figure 4 might appear counter-
intuitive: the peak time and value with 15 sub-
populations (crosses) are between the values for 1
(circles) and 5 (triangles) subpopulations. As discussed
later in §3, when the population is subdivided into more
than one subpopulation connected according to the
island model, there are two peaks, corresponding to
epidemics in the focal subpopulation (first peak) and
later in the peripheral subpopulations (second peak).
The second peak in a model with a fragmented
population is generally smaller than the only peak in
a model with a homogeneous population because the
total number of susceptible individuals in the periph-
eral subpopulations is smaller than that of the total
population. This explains why the peak value in the
non-fragmented population is highest. With increased
numbers of subpopulations, however, the total number
of susceptible individuals in the peripheral sub-
populations increases. That is why the peak value is
higher for 15 subpopulations than for 5 (figure 4b,e).
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Figure 4. Impact of population structure and of public health interventions on the dynamics and final outcome of the epidemic.
Structures: island (a–c), spider (d–f ); interventions: no drugs (dark grey), treatment (grey); number of subpopulations:
1 (circle), 5 (triangle) and 15 (cross). The total size of the populations is NZ500. (a) Time of the epidemic’s peak as a function
of migration, in days. (b) Value of this peak. (c) The total number of infected and resistant cases. Note that the results of
the prophylaxis intervention are not shown here because they depend strongly on the number of subpopulations and the
migration coefficient.
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The results with regard to the time of the peak can be
explained as follows: in a single subpopulation, the
speed of the epidemic decreases with its size. Hence, if
the population is more fragmented the epidemics
spread faster in each subpopulation. This accounts for
the result concerning the peak time (figure 4a,d).

The fragmentation of the population, however, has
no impact on the final outcome of the epidemic, in
terms of the total number of infected and resistant
cases (figure 4c,f ). This is due to the fact that the
J. R. Soc. Interface (2007)
total numbers of infected (I ) and resistant (R) cases
solely depend on the basic reproductive number, R0, of
each strain, which is independent of the migration
rate. Without drugs almost everyone (98.8%) gets
infected. Treatment slightly decreases this value to
91%. Nevertheless, treatment also allows the emer-
gence of resistant cases, which represent 3.8% of the
infected cases.

These results raise the following questions: can
prophylaxis more efficiently decrease the total number
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of infected cases? Does it lead to more resistance than
treatment? And lastly, when should prophylaxis be
performed?
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Figure 6. Impact of the timing of prophylaxis compared to
treatment (a) on the proportion of resistance and (b) on the
total number of infected and resistant cases. There are 10
subpopulations, the total size of the population being NZ500
individuals, and migrationZ10K3. Grey, treatment; black,
prophylaxis. Solid line, infected cases; dashed line, resistant
cases; dot-dashed line, proportion of resistant cases among
the infected.
3.1.2. Prophylaxis: the impact of timing. The total
number of infected and resistant cases during the
epidemic is lower when prophylaxis is performed
(figure 5). The results are similar with a bigger
population size. Unlike with treatment, the outcome of
prophylaxis depends on the structure of the population.
The higher the degree of fragmentation of the host
population is, the fewer is the number of people getting
infected during the epidemic (figure 5a). For instance,
with our parameters, and with proph.startZ15 (where
proph.start denotes the time at which prophylaxis is
initiated), 80% of the population finally gets infected
during the epidemic in a homogeneously mixing
population, while only 5% gets infected when the
number of subpopulations is high or the migration is
low. In both cases, around 4% of infected people shed
resistant viruses. This is due to the shape of the epidemic
curve: the higher the degree of fragmentation, the more
peaks there are. Note that there are at most two peaks
with an island shape: the first peak corresponds to the
focal subpopulation, where the epidemic starts, and the
second peak to all the other subpopulations, which are
directly linked to the focal one.Note also that if themean
distance to the focal subpopulation is greater than 1 (e.g.
with the spider shape, data not shown), there are more
than two peaks. The state of the epidemic at which it is
‘hit’ by prophylaxis (peak or trough, figure 5b–e)
depends on the structure of the population. After
prophylaxis is initiated bothRs

0 andR
r
0 become abruptly

less than 1, and the epidemic wanes, because both
resistant and sensitive variants cannot sustain the
epidemic anymore.

Owing to the fact that the structure of the population
influences at which state the epidemic is hit by
prophylaxis, the timing of prophylaxis has an impact on
resistance emergence (figure 6). The earlier the prophy-
laxis is initiated, the fewer are the infected and resistant
cases during the epidemic and the greater the proportion
of infected people shedding resistant viruses. The fact
thatRr

0ORs
0 when everybody receives drugs accounts for

this higher proportion of resistance when proph.start is
smaller. Even though unable to trigger a real epidemic,
the resistant variant outcompetes the sensitive one. We
also determined the proportion of transmitted resistance
versus de novo resistance. This proportion is substan-
tially higher when proph.start is small, again because
sensitive variants are outcompeted earlier.
3.2. Stochastic model
3.2.1. The impact of population structure. Even in
homogeneous populations, stochastic simulations differ
from deterministic ones in some respects. First, around
40% of the simulations did not generate any secondary
case (the first infected is an I, asymptomatic, non-
treated, shedding sensitive viruses). Then, due to local
extinctions, the stochastic model predicts fewer
infected cases on average than the deterministic model
(figures 7 and 8). Furthermore, the total number of
J. R. Soc. Interface (2007)
infected people during the epidemic is lower in the
stochastic than in the deterministic model (e.g.
approximately 80% of the population compared with
98.8% with the deterministic version).

Unlike the deterministic model, the structure of the
populationhas an impact on the outcomeof the epidemic
even without drugs or under treatment (figure 9). The
higher the degree of fragmentation of the host popu-
lation, the less the infection spreads. When the number
of subpopulations is high, or when migration between
subpopulations is low, the epidemic is often restricted to
a small number of subpopulations (most of the time to
only the one where the epidemic started). Comparing
the effect of different interventions, we find that
treatment does not substantially reduce the total
number of infected cases, but leads to the emergence of
resistance (figure 9). On the other hand, as in the
deterministic model, prophylaxis has a strong impact on
the total number of resistant cases.We also find that the
proportion of resistant cases among infected people is
higher with prophylaxis (between 3 and 6% when
proph.startZ10). This result is, as in the deterministic
case, due to the change of the basic reproductive
numbers when different interventions are performed.
3.2.2. Prophylaxis: impact of timing. In spite of the
variance in the prediction due to stochasticity, the
impact of prophylaxis timing is qualitatively the same
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as in the deterministic model. The earlier prophylaxis
starts, the smaller is the number of infected
and resistant people during the epidemic (figure 10).
For a larger population of NZ5000 we obtain very
similar results (see figure 13 in appendix A).

The result concerning the proportion of resistant
cases is less clear in the stochastic model. Although, as
in the deterministic model, the mean number of
J. R. Soc. Interface (2007)
resistant cases is higher for prophylaxis starting early,
the variance is also higher. In some simulations,
the proportion of resistance is very low (for instance
R : IZ0 : 10 in one simulation), while it is very high in
some others (R : IZ6 : 9 in another). Moreover, among
simulations that led to the emergence of resistance, the
proportion of transmitted resistant strains decreases
with the timing of prophylaxis: approximately 30% of
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transmitted resistance when prophylaxis starts at day
0, approximately 20% at day 5, but less than 5% at day
20 (data not shown). Note that there is almost no
transmitted resistance when treatment is performed. In
brief, if resistance appears when prophylaxis starts
early, resistant strains are more likely to be transmitted
than if prophylaxis is initiated later.
4. DISCUSSION AND CONCLUSION

The planned, widespread use of NAI for treatment and
prophylaxis during influenza pandemics is likely to
lead to the emergence of drug-resistant influenza
strains. In this study, we investigated the effect of
population structure on the emergence of drug
resistance during pandemics using mathematical
models. To this end, we constructed deterministic
and stochastic metapopulation models describing the
spread of pandemic influenza strains.

We show that epidemic outbreaks in fragmented
populations are less explosive. In a deterministic
model, however, the fragmentation of the population
has no influence on the final level of drug resistance
in the population when nothing is done or when
J. R. Soc. Interface (2007)
drugs are given to symptomatic individuals. In
contrast, when antivirals are delivered prophylacti-
cally to non-symptomatic individuals in addition to
treating symptomatic individuals, population
structure and the timing of prophylaxis interact
synergistically in resistance development and influ-
ence the proportion of resistance due to the
transmission of resistant variants.

The results of the stochastic model are different in
some respects. First, 40% of the epidemics go extinct
very rapidly. Moreover, when the epidemic does not go
extinct, the number of infected and resistant cases is
still lower than in the deterministic model. This is due
to an interaction of stochasticity and migration. In
addition, the final level of resistance after treatment
only is affected by the structure of the population, and
not by stochasticity.

This study should be considered as a conceptual
work, aiming to study qualitative trends, rather than to
make quantitative predictions. Even though many of
our model parameters are based on published studies on
influenza (see Regoes & Bonhoeffer (2006) for a
justification of the parameters), the topological features
and parameters describing the structure of the
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population are unrealistic. However, the main aim of
our paper was to study the effect of population
fragmentation in isolation, rather than predict the
level of resistance for a realistically structured popu-
lation. To this end, we extended one of the simplest
published influenza models (Stilianakis et al. 1998) into
one which allowed for varying degrees of population
fragmentation. This conceptual study has its justifica-
tion because it allows us to extrapolate the predictions
of simple models—assuming homogeneously mixed
host populations and deterministic dynamics—to situ-
ations in which spatial population structure and
stochasticity are important. To make this model more
realistic, one could analyse more realistic network
topologies and population structures. Additionally, one
could also include aspects of the within-host dynamics
of influenza infection and age structure, in particular
because some key parameters of influenza epidemics
vary with age (Ferguson et al. 2003; Doherty et al.
2006).

In spite of the lack of realism of the population
structure in our model, our conclusions are similar to
the ones made using very detailed models of pandemic
influenza. Ferguson et al. (2005, 2006), Longini et al.
(2005) and Germann et al. (2006) show that targeted
antiviral prophylaxis is the best medical intervention,
J. R. Soc. Interface (2007)
and that if R0 is high, a combination of medical and
non-medical interventions (such as social distancing)
have to be adopted to mitigate the pandemic.
Considering social distancing as a measure that
increases population fragmentation, we show that
prophylaxis is the best intervention and that its effects
are increased by population fragmentation (figures
5 and 9). Lipsitch et al. (2007) also studied the
emergence of resistance, albeit without incorporating
any spatial structure of the population. One of their key
results is that resistance levels are higher when non-
drug interventions are adopted. Hereby, they modelled
non-drug interventions by simply reducing the basic
reproduction number R0 of the pandemic strain. In our
model, we can model non-drug interventions, such as
social distancing or quarantine, by increasing the
population fragmentation. In a more fragmented
population, similar to Lipsitch et al. (2007), we observe
that the prevalence of resistance is reduced, while the
proportion of resistance increases (figure 11). This is
due to the fact that in a fragmented population the
epidemic spreads slower and prophylaxis hits the
epidemic during an earlier state (figure 5c–e).

Only few studies on the containment or mitigation of
an influenza pandemic investigate the emergence of
resistant viruses, but most authors acknowledge the
challenge that the emergence of resistant viruses
represents (Ferguson et al. 2005, 2006; Germann et al.
2006). We hope that the potential emergence of drug
resistance will be incorporated into more mathematical
studies (especially the very detailed ones) so that we
can face up to this challenge.
APPENDIX A. DETERMINISTIC MODEL:
EQUATIONS

A.1. Dynamics without drugs

Without any public health intervention, the course of
the disease is modelled by using an SIISR model, which
has been extended to a metapopulation

ci2 1;.;nf g;

_Si ZKðb1;iIi Cb2;iIs;iÞ$Si CMðSiÞ;
_I i Z ðb1;iIi Cb2;iIs;iÞ$SiKðd1 Cg1Þ$Ii CMðIiÞ

_I s;i Z d1$IiKg2$Is;i CMðIs;iÞ;

;

8>><
>>:

ðA 1)

where for each class C, _CZdC=dt and Ci refers to the
number of individuals of this class present in sub-
population i, 1%i%n. Refer to table 2 for the
description of the variables and table 3 for the values
of the parameters. As defined in the main text, the
migration parameter M is

MðCiÞZK
Xn
jZ1

mi;j$Ci C
Xn
jZ1

ðmj;i$CjÞ: ðA 2)

The total number of individuals in the population,N,
is constant, because no demographic process is
considered. Then, always, SCICISCRZN. This is
the reason why the equations for the recovered class R
are not written here.



Table 2. Variables of the models.

variable no. of .individuals

S susceptible
Spr susceptible, receiving chemoprophylaxis
I infected, untreated, asymptomatic
Is infected, untreated, symptomatic
Ir infected, untreated, asymptomatic, shedding resistant virus
Is,r infected, untreated, symptomatic, shedding resistant virus
Itr infected, treated, asymptomatic
Is,tr infected, treated, symptomatic
Ir,tr infected, treated, asymptomatic, shedding resistant virus
Is,r,tr infected, treated, symptomatic, shedding resistant virus

log (m
igrat

ion)

–5
–4

–3
–2

–1
0

no. of subpops.

4
6

8
10

12
14

no. of subpops.

4
6

8
10

12
14

no. of subpops.

4
6

8
10

12
14

R

10

12

14

16

migrat
ion

–5
–4

–3
–2

–10pr
op

or
tio

n 
of

 r
es

is
ta

nc
e

0.035

0.040

0.045

0.050

migrat
ion

–5
–4

–3
–2

–1
0

pr
op

or
tio

n 
of

tr
an

sm
itt

ed
 r

es
is

ta
nc

e

0.05
0.10

0.15
0.20

0.25

(a) (b) (c)

Figure 11. Impact of population fragmentation on the emergence of resistance, when prophylaxis is performed. Prophylaxis starts on
day 5, island structure. NZ500.(a) Effect on the total number of resistant cases. (b) Effect on the proportion of resistant cases among
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Table 3. Parameters of the models. (Refer to Regoes & Bonhoeffer (2006) for justification of the chosen values, as well as
Stilianakis et al. (1998).)

parameter description value

b1
b2

transmission rate between I and S
transmission rate between Is and S }scaled such that Rs

0Z4.5

b1,r
b2,r

transmission rate between Ir and S
transmission rate between Is,r and S }scaled such that Rr

0Z0.45

K2,1 relative infectivity of Is and Is,r (compared to I
and Ir respectively)

10

p1 relative infectivity of Itr (compared to I ) 0.67
p2 relative infectivity of Is,tr (compared to Is) 0.67
p3 relative susceptibility of Spr to infection with I

(compared to S )
0.5

p4 relative susceptibility of Spr to infection with Is
(compared to S )

0.5

p5 relative susceptibility of Spr to infection with Itr
(compared to S )

0.5!0.67

p6 relative susceptibility of Spr to infection with Is,tr
(compared to S )

0.5!0.67

d1 rate of development of symptoms by I 0.5 dK1

d2 rate of development of symptoms by Ir 0.5 dK1

d3 rate of development of symptoms by Itr 0.1 dK1

d4 rate of development of symptoms by Ir,tr 0.5 dK1

q1 rate of chemoprophylaxis of S 0 dK1

q2 rate of chemoprophylaxis of I and Ir 0 dK1

q3 rate of treatment of Is and Is,r 0.7 dK1

g1 recovery rate from asymptomatic infection 0.5 dK1

g2 recovery rate from symptomatic infection 0.25 dK1

r1 relative recovery of Itr compared to I 2
r2 relative recovery of Is,tr compared to Is 1.5
q1k rate of acquired drug resistance in Itr 0.036 dK1

q2k rate of acquired drug resistance in Is,tr 0.036 dK1
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A.2. Dynamics with intervention

When treatment or prophylaxis is performed, the
equations describing the course of the disease are
the following:

ci2 1;.;nf g;
_SiZKðb1;iIiCb2;iIs;iCb1;r;iIr;iCb2;r;iIs;r;iCp1b1;iItr;i

Cp2b2;iIs;tr;iCb1;r;iIr;tr;iCb2;r;iIs;r;tr;iÞSi

Kq1SiCMðSiÞ
_Spr;iZKðp3b1;iIiCp4b2;iIs;iCb1;r;iIr;iCb2;r;iIs;r;i

Cp5b1;iItr;iCp6b2;iIs;tr;iCb1;r;iIr;tr;iCb2;r;iIs;r;tr;iÞ
!Spr;iCq1SiCMðSpr;iÞ

_I iZðb1;iIiCb2;iIs;iCp1b1;iItr;iCp2b2;iIs;tr;iÞSi

Kðg1Cd1Cq2ÞIiCMðIiÞ
_I s;iZd1IiKðg2Cq3ÞIs;iCMðIs;iÞ
_I r;iZðb1;r;iIr;iCb2;r;iIs;r;iCb1;r;iIr;tr;iCb2;r;iIs;r;tr;iÞSi

Kðg1Cd2Cq2ÞIr;iCMðIr;iÞ
_I s;r;iZd2Ir;iKðg2Cq3ÞIs;r;iCMðIs;r;iÞ
_I tr;iZðp3b1;iIiCp4b2;iIs;iCp5b1;iItr;iCp6b2;iIs;tr;iÞSpr;i

Kðr1g1Cd3Cq1kÞItr;iCq2IiCMðItr;iÞ
_I s;tr;iZd3Itr;iKðr2g2Cq2kÞIs;tr;iCq3Is;iCMðIs;tr;iÞ
_I r;tr;iZðb1;r;iIr;iCb2;r;iIs;r;iCb1;r;iIr;tr;iCb2;r;iIs;r;tr;iÞSpr;i

Kðg1Cd4ÞIr;tr;iCq1kItr;iCq2Ir;iCMðIr;tr;iÞ
_I s;r;tr;iZd4Ir;tr;iKg2Is;r;tr;iCq2kIs;tr;iCq3Is;r;iCMðIs;r;tr;iÞ:

ðA3)
A.3. Total numbers of infected and resistant
cases

We calculate the total number of infected cases
generated during the epidemic

I ZS0K
Xn
iZ1

SiðtendÞCSpr;iðtendÞ
� �

; ðA 4)

where S0Z
Pn

iZ1 Sið0ÞCSpr;ið0Þ.
We also determine the total number of individuals

having shed resistant viruses during the epidemic (i.e.
total number of resistant cases)

RZRtransmitted CRde novo; ðA 5)

where

Rtransmitted Z

ðtend
0

Xn
iZ1

½ðb1;r;iIr;i Cb2;r;iIs;r;i Cb1;r;iIr;tr;i

Cb2;r;iIs;r;tr;iÞðSi CSpr;iÞ�dt; ðA 6)

Rde novo Z

ðtend
0

Xn
iZ1

½q1kItr;i Cq2kIs;tr;i�dt: ðA 7)

The proportion of resistance is R=I , and the
proportion of de novo resistance is Rde novo=R.
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APPENDIX B. CALCULATION OF THE BASIC
REPRODUCTIVE NUMBERS

To calculate the basic reproductive numbers of the
sensitive and resistant strains in our deterministic
models of influenza epidemics we used the so-called
next-generation method described by Heffernan et al.
(2005). Since the basic reproductive numbers depend
on the intervention, we deal with the three interven-
tions separately.
B.1. R0 without intervention

The I and IS classes are infected classes. The disease-
free equilibrium corresponds to X0Z{S0, 0, 0}. Given
the equations of the model (A 1),

F Z
b1S0 b2S0

0 0

 !
and V Z

d1 Cg1 0

Kd1 g2

 !
:

V is invertible, because it is triangular, and

FVK1 Z

b1S0

d1 Cg1

C
b2d1S0

g2ðd1 Cg1Þ
b2S0

g2

0 0

0
B@

1
CA:

The characteristic equation associated to FVK1 is

PðlÞZ l$ lK S0$
b1 C

b2d1
g2

d1 Cg1

 !" #
;

and hence the basic reproductive number R0 has
the form

R0 ZS0$ b1 C
b2d1

g2

� �
$

1

d1 Cg1

: ðB 1)

Note that this formula can be obtained in a more
straightforward way: the stable state approximation at
the disease-free equilibrium can be used to simplify the
system. With X�ZfS�; I �; I �s gZfS0; 0; 0g,

_I s Z 00I �s Z
d1

g2

$I �:

Then,

_IO05S0$ b1 C
b2d1

g2

� �
$

1

d1 Cg1

O0;

which leads to the same formula for R0 as previously.
B.1.1. Consequence: R0 and the bs. In the metapopula-
tion model, we scale the bs in order to keep the same R0

in all the subpopulations, irrespective of their size.
With K2,1Zb2/b1, according to (A 8),

b1 Z
R0ðd1 Cg1Þ

S0ð1CK2;1d1=g2Þ
f

R0

S0

: ðB 2)

Scaling the bs amounts to writing the ODEs in the
form dI/dtZKbSI/N. (frequency-dependant versus
density-dependant previously).
B.2. R0 in a treated population

In the full model (A 3), two different strains, the drug-
sensitive one and the drug-resistant one, have to be
considered. Castillo-Chavez et al. (2002) show how to
extend the next generation method to a model with
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Figure 12. Impact of population fragmentation on the emergence of resistance, when prophylaxis is performed and whenRr
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different strains. The same results are obtained when
the method is applied to the full model, or when it is
only applied to relevant equations. For the sake of
brevity, only this second method is shown here.

The relevant classes here are S,I,Is,Ir,Is,r,Is,tr,Is,r,tr,
because treatment is only given to symptomatically
infected people. The disease-free equilibrium is
X0Z{S0, 0, 0, 0, 0}.

Applying the next generation method to the
infected compartment, the following matrices are
obtained:

F Z

b1S0 b2S0 0 0 p2b2S0 0

0 0 0 0 0 0

0 0 b1rS0 b2rS0 0 b2rS0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

VZ

g1Cd1Cq2 0 0 0 0 0

Kd1 g2Cq3 0 0 0 0

0 0 g1Cd2Cq2 0 0 0

0 0 Kd2 g2Cq3 0 0

0 Kq3 0 0 r2g2Cq2k 0

0 0 0 Kq3 Kq2k g2

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:
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After having determined the non-null eigenvalues of
FVK1, we obtain, with q1Zq2Z0,

Rr
0 ZS0$ b1r C

b2rd2

g2

0
@

1
A$

1

d2 Cg1

and

Rs
0ZS0$ b1C

b2d1

g2Cq3
C

p2b2d1q3
ðg2Cq3Þðq2kCr2g2Þ

0
@

1
A$

1

d1Cg1

:

ðB3)

With our range of parameters, Rsensitive
0 !R0. Treat-

ment indeed lowers the infectivity.
B.3. R0 in a prophylaxed population

The relevant classes here are Spr,Itr,Is,tr,Ir,tr,Is,r,tr,
because everybody in the population gets either
treatment (if symptomatically infected) or prophylaxis
(otherwise). The disease-free equilibrium is X0Z{S0, 0,
0, 0, 0}.

The following matrices are obtained:

F Z

p5b1S0 p6b2S0 0 0

0 0 0 0

0 0 b1rS0 b2rS0

0 0 0 0

0
BBBB@

1
CCCCA;
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V Z

r1g1 Cd3 Cq1k 0 0 0

Kd3 r2g2 Cq2k 0 0

Kq1k 0 g1 Cd4 0

0 Kq2k Kd4 g2

0
BBBB@

1
CCCCA:

After having determined the non-null eigenvalues of
FVK1, we obtain, with q1Zq2Z0,

Rr
0 ZS0$ b1r C

b2rd4

g2

0
@

1
A$

1

d4 Cg1

and
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0
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Figure 13. Same figure as figure 10, but with a total
population size NZ5000. Impact of the timing of prophylaxis
compared to treatment (a) on the proportion of resistance and
(b) on the total number of infected and resistant cases. The
dots represent the mean value of simulations having
B.4. R0 in the metapopulation

The next generation method yields the same results in
a metapopulation as in a single population (provided
that the bs are scaled, equation (A 9)). Calculations
are done with an island-shape metapopulation, where
all subpopulations have the same size. Moreover, an
epidemic generates the same number of infections in a
metapopulation as in a single population of the same
total size (figure 4 in the main text), which confirms
our result.
generated at least one secondary case, among 100 simulations.
Error bars represent standard errors. There are four
subpopulations, the total size of the population is NZ5000
and migrationZ10K3. Grey, treatment; black, prophylaxis.
Solid line, infected cases; dashed line, resistant cases; dot-
dashed line, proportion of resistant cases among the infected;
meanGs.e.
APPENDIX C. RELAXING SOME PARAMETERS

C.1. Deterministic simulations with a higher Rr
0

In the main text of our article, we assumed a high fitness
cost of the resistant strain and set Rr

0Z0:45ZRs
0=10.

This value may be too low to describe resistant strain
during a pandemic because compensatory mutations
could restore the fitness of the resistant virus.

To assess the robustness of our results with regard to
our choice of Rr

0 we conducted a simulation with higher
values of Rr

0. Figure 12 shows simulations performed
with Rr

0Z1:5. The simulations in this figure are done
with exactly the same parameters as figure 11, except
that Rr

0Z1:5.
For Rr

0Z1:5, we obtain similar prevalences and
levels of resistance as for Rr

0Z0:45 (compare figure
12b–d with figure 11a–c). The values are higher in
figure 12 because Rr

0 is higher and above 1 (the resistant
strain can sustain an epidemic by itself now).

The results for the total number of infections
(figure 12a) differ. The prevalence increases when the
population is highly fragmented. This is due to the fact
that the resistant strain with Rr

0Z1:5 cannot be
controlled by prophylaxis anymore, and in fragmented
populations prophylaxis hits the epidemic during an
earlier stage. In a fragmented population, therefore,
more susceptible hosts remain to be infected by the
resistant strain.
J. R. Soc. Interface (2007)
C.2. Stochastic simulations with a greater
population size

We also investigated the impact of larger population
sizes on our stochastic simulations. In figure 13 we used
the same parameters as in figure 10, except that we set
the total population size NZ5000 instead of NZ500 as
in the main text. ForNZ5000, we obtain similar results
to those with NZ500: as expected, the total number of
infected (I ) and resistant (R) hosts is higher, but the
prevalences (I/R and R/N ) are the same. The
proportion of resistance and the impact of proph.start
are also similar.
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