
JOURNAL OF VIROLOGY, June 2008, p. 5145–5152 Vol. 82, No. 11
0022-538X/08/$08.00�0 doi:10.1128/JVI.02433-07
Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Plasmacytoid Dendritic Cell Dynamics and Alpha Interferon
Production during Simian Immunodeficiency Virus

Infection with a Nonpathogenic Outcome�
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We addressed the role of plasmacytoid dendritic cells (PDC) in protection against AIDS in nonpathogenic
simian immunodeficiency virus (SIVagm) infection in African green monkeys (AGMs). PDC were monitored in
blood and lymph nodes (LNs) starting from day 1 postinfection. We observed significant declines in blood
during acute infection. However, PDC then returned to normal levels, and chronically infected AGMs showed
no decrease of PDC in blood. There was a significant increase of PDC in LNs during acute infection. Blood PDC
displayed only weak alpha interferon (IFN-�) responses to TLR9 agonist stimulation before infection. How-
ever, during acute infection, both blood and LN PDC showed a transiently increased propensity for IFN-�
production. Bioactive IFN-� was detected in plasma concomitant with the peak of viremia, though levels were
only low to moderate in some animals. Plasma interleukin 6 (IL-6) and IL-12 were not increased. In conclusion,
PDC were recruited to the LNs and displayed increased IFN-� production during acute infection. However,
increases in IFN-� were transient. Together with the lack of inflammatory cytokine responses, these events
might play an important role in the low level of T-cell activation which is associated with protection against
AIDS in nonpathogenic SIVagm infection.

During primary and chronic human immunodeficiency virus
type 1 (HIV-1) infection, both subsets of dendritic cells (DC),
i.e., myeloid dendritic cells (MDC) and plasmacytoid dendritic
cells (PDC), are decreased in the blood (20, 36, 46). The
capacity of PDC to produce IFN-� is impaired in acute and
chronic HIV-1 infection (13, 23, 29). Long-term nonprogres-
sors display higher numbers of PDC and a higher capacity for
their PDC to produce IFN-� than progressors (46). Early pro-
found and persistent depletions of PDC have also been ob-
served in macaques infected with the macaque strain of simian
immunodeficiency virus (SIVmac) (4, 40). Different mecha-
nisms have been proposed to explain DC declines, including
cell death and homing to lymph nodes (LNs) (4, 32, 40, 50).

Here, we investigated the dynamics and function of PDC in
blood and LNs during a nonpathogenic infection, i.e., SIVagm
infection in African green monkeys (AGMs). AGMs, like
other African nonhuman primates, such as mandrills and
mangabeys, are natural hosts for SIV and generally do not
progress to AIDS despite displaying high levels of plasma and
intestinal viral load (VL) (21). Natural hosts for SIV display

low levels of T-cell activation, in contrast to HIV-infected
humans and SIVmac-infected macaques (6). Exacerbated
chronic T-cell activation might drive CD4 T-cell depletion and
AIDS (19, 22). An immunologic activation set point is estab-
lished early after HIV-1 infection, and this set point is predic-
tive of the rate at which CD4� T cells are lost over time (11,
49). Innate immune responses acting at the early time points
are crucial for T-cell activation profiles. In the present study,
we studied whether PDC are recruited to LNs in response to
SIVagm and analyzed early cytokine profiles, including alpha
interferon (IFN-�) production by blood and LN PDC.

MATERIALS AND METHODS

Animals and infections. AGMs of the species Chlorocebus sabaeus were
housed at Institut Pasteur in Dakar (Senegal) according to institutional and
ethical guidelines. The study included 12 noninfected AGMs (00017, 00021,
02001, 02004, 02010, 02015, 02024, 02026, 03005, 03006, 03007, and Thyaliss), 8
naturally infected AGMs (89046, 92017, 93035, 00015, 00018, 01016, 02017, and
03002), and 9 AGMs experimentally infected with SIVagm.sab92018, of which
three were studied exclusively in the chronic phase (96030, 97005, and 98011)
and the other six were monitored prospectively. The latter were between 2 and
5 years old and consisted of three females (97008, 00020, and 01013) and three
males (98013, 01015, and 02003). Three of these AGMs (97008, 98013, and
00020) were sacrificed at day 120 postinfection (p.i.). The inoculum, VLs, and
CD4 cell counts of the SIVagm.sab92018-infected monkeys were published pre-
viously (26).

SIVagm.sab plasma VL. Plasma viral RNA was quantified using real-time
PCR based on amplification of long terminal repeat RNA as previously de-
scribed (26).

Preparation of cells. Whole blood was collected in EDTA-K2 and heparinized
Vacutainer (BD) tubes. Biopsies of peripheral LNs were performed by excision.
After careful removal of adhering connective and fat tissues, the LN fragments
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were mechanically disrupted on a sterile nylon mesh and the cells treated with 20
IU/ml of collagenase type VII (Sigma) and 20 IU/ml of DNase I (Sigma).
Peripheral blood mononuclear cells (PBMC) and LN mononuclear cells
(LNMC) were isolated by Ficoll-Paque (Pharmacia Biotech AB) density gradient
centrifugation.

Flow cytometry. Flow cytometric analyses were performed on freshly isolated
cells. CD4� T cells were quantitated as previously described (26). For PDC
quantification, cells were stained with the following monoclonal antibodies: flu-
orescein isothiocyanate-labeled anti-Lineage (Lin) panel: anti-CD3 (FN18; Bio-
source)/CD14 (Tük4; Miltenyi)/CD16 (3G8; BD)/CD20 (2H7, BD), peridin chlo-
rophyll protein-labeled anti-HLA-DR (L243; BD), and anti-CD123 (7G3; BD).
Cross-reactivity of the anti-human MAb had been validated on AGM monocyte-
derived dendritic cells (33, 39). For each sample, 50,000 to 200,000 events were
acquired. PDC were defined as Lin� HLA-DR� CD123� (Fig. 1) (20, 36).

Quantification of bioactive IFN-�. Plasma IFN-� titers were determined using
a functional assay based on protection of Madin-Darby bovine kidney (MDBK)
cells against the cytolytic effect of vesicular stomatitis virus (37). MDBK are
more sensitive to IFN-� than to IFN-� and are not sensitive to the IFN-�
antiviral effect. The titers were expressed in international units based on the
reference standard for human IFN-� (G-023-901-527; NIH, Bethesda, MD).
This test measures all subtypes of human IFN-� (37). The detection limit of this
assay corresponded to 4 IU/ml, which was 7.75 times lower than a multisubtype
human IFN-� enzyme-linked immunosorbent assay kit formulated for serum or
plasma (PBL Biomedical Laboratories), at least for AGM plasma IFN-� (data
not shown).

In order to assess IFN-� production by blood and LN PDC, fresh mononuclear
cells were exposed to herpes simplex virus type 1 (HSV-1) at a multiplicity of
infection of 1 (37). Stimulation with HSV-1 generally occurs through TLR9,
which is expressed by PDC. It has been shown that after stimulation of human or
macaque PBMC with HSV-1, PDC are the major producers of IFN-� (8, 28). We
verified that HSV-1 also induces IFN-� production by AGM PDC by flow
cytometric intracellular staining (data not shown). After 20 h of culture in the
presence of HSV-1, virus was UV inactivated, and IFN-� activity in the super-
natants was quantified as described above.

Quantification of IL-6 and IL-12. The cytokines IL-12 (p40�p70) and IL-6 in
the plasma were measured by using monkey enzyme-linked immunosorbent
assay kits (U-Cytech). The detection limits were 10 and 2.5 pg/ml for IL-12 and
IL-6, respectively.

Statistical analysis. Statistical analysis was done with one-way analysis of
variance or with Kruskal-Wallis analysis of variance when assumptions of nor-
mality of the distribution or homogeneity of variances were not verified using R
(http://www.R-project.org). The assumptions and the normality of the distribu-
tion and variance homogeneity were, respectively, tested with a Shapiro and a
Bartlett test. Data were considered significant when P values were �0.05. For
each data set, the procedure analysis was as follows. (i) Determine if the values
before infection could be pooled by an analysis of homogeneity of the mean. If
the means of different time points were not significantly different, all preinfection
values could be pooled and constituted the baseline, the latter corresponding to
the mean of all preinfection values. (ii) Determine if the values after infection
display a significant variance by the methods described above. If the postinfection
phase is not homogeneous (at least two time points have different means),
determine for each day after infection if the mean is significantly different than
the baseline (for each day after infection, H0: �before � �day; H1: �before 	 �day)
by a nonparametric Wilcoxon-Mann-Whitney test (or a Student t test when the
data are normally distributed and when the variances were homogenous).

The Spearman rank test was used to assess the correlation between two
continuous variables. Multiple regression was used to evaluate the effect of more
than two independent continuous variables on one dependent continuous vari-
able.

RESULTS

Blood PDC levels in uninfected AGMs. Our goal was to
study the dynamics and function of PDC in blood and LNs
early after infection in a model of nonpathogenic SIV infec-
tion. PDC were quantified by the method used for human cells
(20, 36). PDC numbers were first determined in the blood of 18
uninfected AGMs (Table 1). The mean number of blood PDC
was 8,703/ml (median, 7,672), and the mean percentage among
PBMC was 0.26% (median, 0.25). The levels were generally in

FIG. 1. Flow cytometric analysis of AGM PDC. PBMC or LNMC
were selected in the R1 gate, excluding debris and polynuclear cells.
Lin� cells (CD3� CD20� CD16� CD14�) were selected in the R2
gate. CD123� HLA-DR� events were quantified in R3 from R1 
 R2
gated events. (A) Blood; (B) LN.
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the same range as those reported for naı̈ve macaques (4, 9, 25,
40, 47) and healthy humans (7, 13, 14, 20, 46).

Early but transient declines of blood PDC during primary
SIVagm infection. Six of the 18 AGMs described above were
then randomly selected for a prospective study. They were
infected with wild-type SIVagm.sab92018. As described in pre-
vious studies, plasma VLs peaked around day 8 p.i. (Fig. 2A)
(26).

Blood CD4� T cells significantly declined between days 8
and 28 p.i. (P � 0.007), as previously reported (26). After-
wards, they recovered and reached their preinfection baseline
levels at day 120 p.i. (Fig. 2B).

The mean percentage of PDC before infection in these six
AGMs was 0.26% and is thus representative of the uninfected
animals described above. In order to get a robust baseline, we
carried out four to seven measurements for each animal before
infection (Fig. 3A). In addition, in order to ensure that the
sampling kinetics used did not affect homeostasis, for four of
the six animals (00020, 01013, 02003, and 98013) we used
exactly the same time intervals for blood collection before
infection as between days 1 and 13 p.i.

We then evaluated the absolute numbers of PDC in blood.
Before infection, we observed large fluctuations in the PDC
counts; however, the variance was not significant (P � 0.74).
PDC counts significantly declined at days 6, 8, and 10 p.i. (P �
0.0002 at day 10 p.i.) and at weeks 4 and 5 p.i. (P � 0.02 and
0.0004, respectively) (Fig. 3A). The levels of PDC then pro-
gressively increased again to reach baseline levels starting from
day 42 p.i. (P � 1). Similar results were observed with percent-
ages of circulating PDC (data not shown).

We then evaluated PDC counts in the chronic phase of
infection. Three of the six AGMs (01013, 01015, and 02003)
were studied at 1 year p.i. (the other three AGMs were sacri-
ficed at day 120 p.i.; see below), and we extended the analysis
to 11 additional long-term SIVagm-infected AGMs. The latter
consisted of three experimentally and eight naturally infected
AGMs (1 to 14 years of infection; median, 4 years; mean, 6.1
years). We detected no significant difference in the frequency
or the absolute numbers of PDC in a cross-sectional compar-
ison of the 14 chronically SIVagm-infected AGMs to all non-
infected AGMs (Table 1). There was no significant difference
between the six experimentally and the eight naturally infected
animals regarding the frequency and the absolute numbers of
PDC in blood (data not shown).

There was no correlation between the absolute numbers of
PDC with CD4� T cells during the early phase of infection
(days 1 to 42 p.i.). During the chronic phase of infection (days
63 to 430 p.i.), however, PDC were positively correlated with
CD4�-T-cell counts (rho � 0.60, P � 0.003). By multiple
regression analysis, PDC counts were predictive for CD4 T cell
counts (P � 0.01).

There was no correlation between PDC counts and VL
throughout the follow-up. Nevertheless, when only the first
week p.i. was considered, PDC counts were negatively corre-
lated with VL (rho � �0.55, P � 0.009).

Altogether, we observed early declines of PDC in blood.
These were transient, and no depletion was detected in the
chronic phase of SIVagm infection. PDC counts were nega-
tively correlated with VL during the first week p.i. and posi-
tively correlated with CD4� counts during the chronic phase of
SIVagm infection.

Increased frequencies of PDC in LN during primary
SIVagm infection. We wondered whether the transient de-
clines of circulating PDC during the early stages of SIVagm
infection could be linked with migration to secondary lym-
phoid organs. We therefore longitudinally monitored PDC dy-
namics in the LNs. For each of the six AGMs, one LN biopsy
was performed before infection. For four of the six animals
(98013, 00020, 01013, and 02003), we performed a second
biopsy in order to get the most robust possible preinfection
intraindividual baseline (Fig. 3B). Before infection, the mean
percentages of PDC among mononucleated cells in LNs of the
six AGMs were 0.08% (range, 0.01 to 0.11%) (Fig. 3B). Such
levels are consistent with some reports on rhesus macaques
(30). The variance among the values before infection was not
significant. We then determined LN PDC levels after SIVagm

FIG. 2. VL and T CD4� cell dynamics. (A) Plasma VL in SIVagm-
infected AGMs. (B) Blood CD4� T cell counts before and after
SIVagm infection.

TABLE 1. PDC levels in blood of AGMs

AGMs (n)
Median PDC level (range)

% Cells/ml

Noninfected (18) 0.25 (0.07–0.9) 7672 (2405–22464)
Chronically infected (14) 0.18 (0.06–0.32) 7704 (2232–15294)
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infection starting from day 1 p.i. The PDC showed a significant
increase at day 28 p.i. (P � 0.001) (Fig. 3B). The increases at
days 6 and 16 were not significant (P � 0.088); however, we
sampled only three animals for these time points. These in-
creased proportions were found to have a temporal association
with decreases in blood counts. There was indeed a trend
toward a significant negative correlation between LN and
blood PDC (rho � �0.28, P � 0.09).

During the chronic phase of infection (days 42 to 120 p.i.),
no significant increase of PDC was observed in LNs.

Because of the suggested potential important role of the gut
in AIDS pathogenesis, we also evaluated DC frequencies in
mesenteric LN for three animals (97008, 98013, and 00020)
that were sacrificed at day 120 p.i. The mean percentages of
PDC in mesenteric LN corresponded to 0.08% and were thus
similar to those in peripheral LNs (data not shown).

Altogether, our longitudinal study revealed a significant in-
crease of PDC in LN during primary SIVagm infection.

Increased IFN-� production during primary SIVagm infec-
tion. Since PDC were increased in LNs at early stages of
SIVagm infection, we addressed the question of the function-
ality of these cells. One major function of PDC in the setting of
a viral infection is the production of large amounts of IFN-�

(44). We quantified the levels of bioactive IFN-� in the plasma
of the six AGMs. The quantification method was the same as
that previously used for humans and in the SIVmac251/rhesus
macaque model (23, 24). Plasma IFN-� increased as early as
day 1 p.i. in two of six AGMs (02003 and 01015) and was
increased in all animals at days 8 and 10 p.i. (Fig. 4A). Plasma
IFN-� reached levels of 2,500 IU/ml at day 8 p.i. The peak of
IFN-� was coincident with the peak of VL. IFN-� titers then
decreased, and from day 35 p.i. on, they remained below de-
tection level in all animals. We analyzed whether plasma
IFN-� levels correlate with VL during primary infection (day 1
to day 35 p.i.). There was a significant positive correlation
(rho � 0.61, P � 0.0001).

In order to address the question of whether PDC might
contribute to the heightened IFN-� levels in plasma, we ana-
lyzed the capacity of AGM blood and LN PDC to produce
IFN-�. We quantified IFN-� production after stimulation with
a TLR9 agonist. In order to have a robust baseline, we mea-
sured eight time points before infection (Fig. 4B). Without
stimulation, IFN-� levels were �6 IU/ml (data not shown).
After stimulation, the median values ranged from 34 to 350
IU/ml. Two AGMs (00020 and 01015) displayed strong intra-
individual variation and occasionally produced high levels (be-

FIG. 3. PDC dynamics in blood and LNs of AGMs before and after SIVagm infection. (A) Absolute numbers of PDC in blood; (B) PDC
percentages in LN. In order to study narrow intervals, LN were collected from three AGMs (97008, 98013, and 00020) at days 1, 3, 8, 13, 28, 42,
63, 91, and 120 p.i. and from three other AGMs (01013, 01015, and 02003) at days 1, 6, 10, 16, 28, and 42 p.i.
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tween 800 and 1,400 IU/ml) at two preinfection time points
(Fig. 4B). Overall, stimulation with the TLR9 agonist resulted
in significantly increased IFN-� production. However, the lev-
els produced were four times lower than those of human con-
trols (23).

After infection, median values of IFN-� produced by blood
AGM PDC ranged from 200 to 1,750 IU/ml. Compared to
preinfection levels, IFN-� production was significantly in-
creased during primary SIVagm infection between days 3 and
21 p.i. (P � 0.017 for each time point) (Fig. 4B). When days
�55 and �48 were omitted from the baseline values, days 1
and 28 p.i. also showed significant increases (P � 0.001). The
highest levels of production (peak values up to 4,000 IU/ml)

were observed around 1 week after the peak of plasma viremia
and of plasma IFN-�. There was no correlation between PDC
numbers and their IFN-� production capacity, but there was a
significant positive correlation between VL and IFN-� produc-
tion by PDC (rho � 0.57, P � 0.0001).

We then quantified the ability of LN PDC to produce IFN-�.
The median values of IFN-production were 62.5 IU/ml before
infection and 525 IU/ml after infection (data not shown).
Again, cells collected during primary infection were more
prone to produce IFN-� than those obtained before infection
(P � 0.01). To investigate whether the increases in IFN-�
production by LN PDC are due to their increases in percent-
ages, we plotted the ratio of IFN-� production per PDC per-
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centages in LN (Fig. 4C). The difference in the ratios between
cells from before and during primary infection was again sig-
nificant (P � 0.0065). There was no correlation between levels
of PDC and IFN-� production (P � 0.6).

In summary, SIVagm-infected AGMs showed increased lev-
els of IFN-� in plasma during primary infection. Moreover,
both blood and LN PDC were capable of producing IFN-� in
response to a TLR9 agonist in vitro, and the propensity for
IFN-� production was significantly increased during primary
SIVagm infection.

No detectable increase of IL-6 and IL-12 in plasma. Like
IFN-�, many other cytokines are secreted by antigen-present-
ing cells and involved in the early orientation of T-cell re-
sponses. We previously measured tumor necrosis factor alpha
(TNF-�) and IL-10 in the plasma of these monkeys (26). Here,
we also measured IL-12 and IL-6 because of their respective
roles in Th1 induction and Treg inhibition (10, 41). Although
there was a trend toward a significant change in plasma IL-12
at 16 p.i. (P � 0.052), overall the levels of plasma IL-12 did not
increase during acute SIVagm infection (Fig. 5A). IL-6 in
plasma from AGMs did not increase at any time point in
response to SIVagm infection (Fig. 5B).

DISCUSSION

We show here that AGMs display a decline of PDC in blood
during primary SIVagm infection. We detected two nadirs.
The possibility that such oscillations also occur in HIV-1 and
SIVmac infections and might have been previously undetected
because previous studies were not performed with such early
and narrow intervals as this one can not been excluded. The
blood PDC levels showed a trend toward a negative correlation
with PDC levels in LNs. The PDC depletion in blood might
thus be explained, at least in part, by recruitment to lymphoid

organs. It is likely that PDC migrate to LN also during early
HIV-1 infection, since the density of CD123� cells in T-cell
zones increases in LN from asymptomatic HIV-1-infected pa-
tients (16).

During chronic SIVagm infection, we did not observe any
sign of PDC depletion. The restoration of PDC to normal
levels after the acute phase of SIVagm infection is in sharp
contrast with pathogenic HIV/SIVmac infections, where the
levels are only partially restored after primary infection (7, 23,
40). During the chronic phase of SIVagm infection, PDC
counts were positively correlated with CD4� T cell counts.
Thus, our study supports previous observations in humans sug-
gesting that the degree of recovery of PDC after the primary
infection has good prognostic value regarding disease outcome
(7, 36, 46).

AGMs may maintain a better ability to generate DC precur-
sors. In line with this, it was reported that SIV-infected sooty
mangabeys exhibited preserved functions of bone marrow, at
least regarding their T-lymphocyte-regenerative capacity,
whereas macaques did not (45, 48). Another possibility is bet-
ter survival. PDC are susceptible to HIV-1 and SIVmac infec-
tion in vivo (15, 40). Interestingly, though, viral replication in
PDC occurs only following maturation as induced with CD40L
or TNF-�, and cell death of HIV-infected human PDC occurs
only when the PDC have contact with activated CD4� cells
(15, 43). Chronically infected AGMs display lower levels of
activated lymphocytes and TNF-� than SIVmac-infected ma-
caques (26), and DC might thus be less susceptible to death in
AGMs. Finally, the depletions in HIV-1 infections may also
be explained by continuous recruitment into lymphoid organs
(2, 31).

The proinflammatory cytokines IL-6 and IL-12 were not
increased in plasma. These data are in line with our previous
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results in AGMs, showing no or only weak increases of proin-
flammatory cytokine (TNF-�, IFN-�, and MIP-1�) and Th1
transcription factor (t-bet) expressions (26, 38). In contrast,
macaques generally show increases in proinflammatory cyto-
kines such as IL-6 and TNF-� (1, 3, 17, 35). Plasma IFN-�
levels were significantly increased during primary SIVagm in-
fection and strongly correlated with VL, as is also the case in
SIVmac infection (18, 24). However, the increases were very
transient, and high levels (above 1,000 IU/ml) were detected at
only one time point, which corresponded to the peak of vire-
mia (day 8 p.i.). Moreover, in a recent study that we performed
using the same quantification method, the peak IFN-� levels
were generally higher in SIVmac-infected macaques than in
AGMs (C. Butor, unpublished data). In line with this, PDC
from noninfected AGMs produced lower levels of IFN-� after
TLR9 stimulation than cells from humans (23).

During primary SIVagm infection, PDC were prone to pro-
duce IFN-�. The levels were significantly increased, the highest
levels being observed after the peak of plasma IFN-�, which is
most likely related to a positive feedback loop of IFN-� (28).
The capacity of AGM PDC to produce IFN-� was not corre-
lated with the PDC counts, similar to what has been reported
for HIV-1, where a correlation was detected in chronic but not
primary infection (36). In both cases, this might be explained
either by the presence of other cellular sources of IFN-� or by
variable IFN-� production among PDC cells. We do not know
whether AGM PDC would also show increased IFN-� produc-
tion after stimulation with SIV or TLR-7 agonists in vitro.
However, plasma IFN-� levels are increased, and the strong
correlation with the VL suggests a role for the virus in IFN-�
induction in vivo.

TLR9 stimulated PDC are able to induce CD4� and CD8�

Treg (34). Human MDC treated with IFN-� and IL-10 have
been shown to become tolerogenic and able to induce regula-
tory CD4� T cells in vitro (5, 27, 42). On the other hand, IL-6,
which is increased in macaques but not in AGMs, can prevent
CD4� CD25� Treg regulatory functions (12). It is thus possi-
ble that, due to the particular cytokine environments during
early SIVagm infection, MDC do not migrate massively to LNs
and/or that the DC are conditioned to preferentially induce reg-
ulatory T cells. In fact, our previous data suggested the presence
of CD4� and CD8� regulatory T cells during SIVagm infection
(26).

In summary, our study reveals declines in levels of PDC in
blood during primary SIVagm infection. The declines are only
transient, as normal levels are maintained afterwards. Con-
versely to blood, PDC frequencies were increased in AGM
LNs during primary SIVagm infection. Blood and LN PDC
showed a heightened propensity to produce IFN-� during pri-
mary infection. Plasma IFN-� levels were increased during
primary infection, but the peak levels were often low and
always transient. The preservation of functional PDC in the
absence of strong proinflammatory responses might be at the
origin of control of generalized T-cell activation and AIDS.
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