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ES cell cardiopoiesis<p>Gene expression analysis of embryonic stem cells undergoing guided cardiogenic differentiation reveals the molecular fingerprint for committing to cardiac cell fate.</p>

Abstract

Background: Embryonic stem cells possess a pluripotent transcriptional background with the
developmental capacity for distinct cell fates. Simultaneous expression of genetic elements for
multiple outcomes obscures cascades relevant to specific cell phenotypes. To map molecular
patterns critical to cardiogenesis, we interrogated gene expression in stem cells undergoing guided
differentiation, and defined a genomic paradigm responsible for confinement of pluripotency.

Results: Functional annotation analysis of the transcriptome of differentiating embryonic stem cells
exposed downregulated components of DNA replication, recombination and repair machinery, cell
cycling, cancer mechanisms, and RNA post-translational modifications. Concomitantly,
cardiovascular development, cell-to-cell signaling, cell development and cell movement were
upregulated. These simultaneous gene ontology rearrangements engaged a repertoire switch that
specified lineage development. Bioinformatic integration of genomic and gene ontology data further
unmasked canonical signaling cascades prioritized within discrete phases of cardiopoiesis.
Examination of gene relationships revealed a non-stochastic network anchored by integrin, WNT/
β-catenin, transforming growth factor β and vascular endothelial growth factor pathways, validated
by manipulation of selected cascades that promoted or restrained cardiogenic yield. Moreover,
candidate genes within anchor pathways acted as nodes that organized correlated expression
profiles into functional clusters, which collectively orchestrated and secured an overall cardiogenic
theme.

Conclusion: The present systems biology approach reveals a dynamically integrated and tractable
gene network fundamental to embryonic stem cell specification, and represents an initial step
towards resolution of a genomic cardiopoietic atlas.
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Background
Expression patterns characterize the production and prolifer-
ation of stem cells [1,2]. In particular, unique genetic profiles
are concealed in the rich pluripotent transcriptional back-
ground of embryonic stem cells and support their inherent
potential for multiple and diverse cell fates [3-6]. Genome-
wide profiling and system analyses, used to distinguish mark-
ers identifying stemness [7,8], and high-throughput
approaches applied to categorize large scale transcriptional
dynamics during stem cell development and specification
provide an initial insight into the global genomics evolving in
response to inductive stimuli [2,9,10]. Beyond identification
of stemness markers, however, integration of genes promot-
ing tissue-restricted differentiation becomes a priority
[11,12]. Mapping genetic relationships underlying metamor-
phosis of a pluripotent into a monopotent stem cell would
allow for directional control over developmental fate, enhanc-
ing targeted derivation of phenotype-specified cell types.

Indeed, the broad potential for regenerative therapy based on
embryonic stem cell technology is hampered by the threat of
neoplastic transformation associated with unsupervised
pluripotency, mandating unipotential commitment prior to
application [13,14]. A case in point is the need to secure con-
trolled cardiogenesis of embryonic stem cells for safe heart
repair [15-17]. Guided pro-cardiac programming has been
established as a strategy to suppress the risk for uncontrolled
tumorigenic growth outside the natural milieu of a develop-
ing embryo [18]. Cardiopoietic induction allowed activation
of the cardiac program on a monolayer of stem cells, eliminat-
ing the confounding contribution of trigerminal differentia-
tion [18,19]. Privileged access to the cardiac transcriptional
program, otherwise camouflaged within the stem cell
genomic background [20,21], provides an opportunity to
selectively examine gene interrelationships vital for pluripo-
tent streamlining into cardiopoiesis.

Here, a transcriptome profiling and tandem network analysis
of embryonic stem cells during guided cardiogenic differenti-
ation identified a molecular fingerprint, synthesized from an
ontological functional switch, that commits the cells to a car-
diac fate. Pathway prioritization of signaling axes during car-
diopoiesis resolved a non-stochastic organization of genes
underlying cardiac specification. Manipulation of high-prior-
ity nodes within this deconvoluted pro-cardiac gene network
commanded cardiomyocyte derivation from primordial stem
cells, demonstrating a responsive program amenable to
molecular calibration during directed cardiogenesis.

Results
Distinct transcriptomes define transitions in stem cell 
cardiogenic restriction
Pluripotency is a labile characteristic of embryonic stem cells
amenable to specification by distinct inductive stimuli [9,22].
Here, to initiate cardiac commitment in undifferentiated

stem cells, the recognized cardioinductive potential of the
cytokine tumor necrosis factor (TNF)α-induced, endoder-
mally derived paracrine factors was reduced to a collective
cocktail, that is, bone morphogenetic protein (BMP), trans-
forming growth factor (TGF)β, interleukin (IL)-13 (IL13),
IL3, insulin-like growth factor (IGF1), vascular endothelial
growth factor (VEGF), epidermal growth factor (EGF),
fibroblast growth factor (FGF) and IL6 [18]. Cardiogenic
cocktail-primed embryonic stem cells responded by struc-
tural metamorphosis and progressive up-regulation in
canonical cardiac markers, with distinct phenotypes resolved
by sequential field emission scanning electron microscopy
(Figure 1a, left) and immunofluorescence (Figure 1a, right).
Embryonic stem cells, initially maintained in the undifferen-
tiated proliferative state in the presence of the mitogenic
leukemia inhibitory factor [23], assumed a spheroid shape
with high nuclear-to-cytoplasmic volumes, and lacked the
cardiac sarcomeric protein α-actinin with marginally detect-
able cytosolic levels of the cardiac transcription factor myo-
cyte enhancer factor 2C (MEF2C; Figure 1a). From this
original state, mitogen removal initiated differentiation,
characterized by a progressive decrease in the nuclear-to-
cytoplasmic volume ratio and an increased expression of
MEF2C accompanied by cytosolic-to-nuclear translocation
(Figure 1a). Developmentally regulated nuclear import of car-
diac transcription factors is indicative of definitive commit-
ment to cardiac differentiation [19]. Accordingly, these
intermediate cell types have been termed cardiopoietic stem
cells [18]. Sustained nuclear import of MEF2C and formation
of sarcomeres expressing cardiac α-actinin after 12 days iden-
tified mature, functional cardiomyocyte morphology. The
degree of purity for derived progenitors and cardiomyocytes
reached 85 ± 5% and 90 ± 5%, respectively (see Materials and
methods). Interrogation of the developing transcriptome
revealed 8,656 quality-filtered genes underlying guided car-
diopoietic lineage specification, resolved into distinct groups
of increasing, decreasing or unchanging profiles (Figure 1b).
Concomitant with dynamic trends of lineage specification,
each stage of cardiac differentiation demonstrated discrete
molecular fingerprints revealed by unsupervised agglomera-
tive clustering (Figure 1c). Gene sets were highly similar
within, but significantly distinct between, stages of cardiac
differentiation. Hierarchical categorization using Euclidean
distance was used to measure differences between expression
profiles to determine dissimilarity among replicates (Figure
1c). Unbiased confidence levels for these reproducible tran-
scriptional profiles were assessed by bootstrapping, used to
determine the accuracy of statistical estimates [24]. All dis-
tance measurements possessed a 100% confidence level and
demonstrated increasing similarity towards the smaller, ter-
minal branches of the condition tree. Small distances (≤0.33)
reflected close association among replicate gene profiles,
which were virtually inseparable at each stage of differentia-
tion (Figure 1c). Larger Euclidean distances of 0.491 and
0.610 indicated greater dissimilarity between embryonic
stem cells in the presence and absence of mitogen, as well as
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between cardiopoietic precursors and derived cardiomyo-
cytes, allowing for separation of respective genomic finger-
prints (Figure 1c). The largest measurement (0.885) reflected
macroscopic differences between undifferentiated stem cells
and lineage-specified populations (Figure 1c). Thus, discrete
clustering of transcriptome dynamics during guided cardio-
genesis genetically delimits precursor phenotype underlying
cardiac confinement of stem cells.

Tailored gene ontology directing cardiopoiesis
Restrictive quality filtering of the transcriptome to genes with
dynamics exceeding a >1.5-fold change in cardiac precursors
relative to undifferentiated embryonic stem cells yielded
1,069 (12%) and 4,632 (54%) genes up- and downregulated,
respectively, with 2,955 (34%) transcripts changing by <1.5-
fold (Figure 2a). Analyses of subthreshold genes below the
1.5-fold limit revealed no predominant functional overrepre-

Phenotypic changes and transcriptome dynamism during cardiac stem cell differentiationFigure 1
Phenotypic changes and transcriptome dynamism during cardiac stem cell differentiation. (a) Electron microscopy visualized morphological changes 
occurring during guided stem cell cardiogenesis (left column) with associated expression and distribution of the selected cardiac transcription factor 
MEF2C and the cardiac contractile protein α-actinin (right column). Cell stage is given in the top left corner of each panel with associated scale bars at the 
bottom right. First column: ES-LIF(+), 2.5 μm; ES-LIF(-), 5 μm; cardiopoietic cell (CP), 25 μm; cardiomyocyte (CM), 5 μm. All scale bars in the second 
column indicate 10 μm. Nuclei were counterstained with DAPI. (b) Transcriptional profiling of samples from each stage of stem cell-derived 
cardiomyocyte formation. Changes in gene expression were plotted on a semi-log scale graph using normalized intensity values as a function of the stage 
of differentiation. The color scale indicates increased expression (red), no change (yellow) and decreased expression (blue). Associated numbers indicate 
fold change, where red and blue indicate a respective minimum five-fold up- or downregulation in expression value. (c) Hierarchical clustering of changing 
genes during differentiation. The condition tree on right illustrates similarity of replicates within each stage. Numbers above branches are the calculated 
Euclidean distances between the two samples at the left termini. Smaller numbers indicate less dissimilarity between samples while higher numbers indicate 
an increase in dissimilarity. The shaded box identifies emergence of cardiac specficity (orange, CP) with transition to stem cell derived cardiomyocyte 
(cyan, CM). The color scale indicates relative changes in gene expression as described previously.
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sentation within ontologically annotated families (data not
shown). In contrast, genes identified as up- or downregulated
beyond 1.5-fold unmasked overrepresented molecular func-
tions in each gene set (Figure 2b,c). Genetic metabolism,
identified by nucleotide binding, helicase and ligase activity,
ribosomal structure, and translation regulator activity, was
downregulated in cardiac precursors (Figure 2b). Alternative
corroboration reported functional reductions in RNA post-

translational modifications, oncogenic processes (for exam-
ple, Aurkb and Hmgb1), cell cycling, and DNA replication,
recombination and repair (Figure 2d). Decreased nucleotide
metabolic machinery was paralleled by emergence of myo-
genic structural constituents, actin and calcium binding activ-
ities, and protein modification mechanisms regulating
enzyme function (Figure 2c). Independent validation demon-
strated that upregulated transcripts functionally overrepre-

Enrichment analysis of functional groups within the stem cell-derived cardiopoietic transcriptomeFigure 2
Enrichment analysis of functional groups within the stem cell-derived cardiopoietic transcriptome. (a) Approximately half of all expression profiles in 
cardiopoietic cells are downregulated while a third do not change more than 1.5-fold compared to unstimulated embryonic stem cells. Upregulated genes 
account for >10% of all genes. (b, c) Ontological analysis of downregulated and upregulated biological processes in cardiopoietic cells. (d, e) Identification 
of overrepresented canonical functions in cardiopoietic cells (CP) using Ingenuity Pathways Analysis (IPA) in downregulated and upregulated gene lists. 
Significance as determined by IPA was plotted as log P value for downregulated genes and -log P value for those upregulated to emphasize direction of 
change. The dashed line indicates the threshold where the P value = 0.05. Embryonic stem cells in the presence of mitogenic LIF were taken as baseline and 
significant functional enrichment in cardiopoietic cells are shown in comparison with stem cells cultured without LIF. (f) Gene validation using quantitative 
PCR. Candidate genes representing pluripotent (Pou5f1), oncogenic (Mybl2, Mycn) and cardiac (Myocd, Lbh) phenotypes were assayed by Taqman. 
Transcriptional profile changes were expressed as fold change relative to ES-LIF(+). CM, cardiomyocyte.
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sented cardiovascular development, cell-to-cell signaling,
embryonic development and cellular movement (Figure 2e).
Collectively, this ontological switch indicates congruent
genetic losses and gains that define a departure from onco-
genicity associated with pluripotency towards acquisition of
tissue-specificity and cardiopoietic elaboration. Gene chip
and functional categorization analyses were verified by quan-
titative genetic amplification of markers for pluripotency
(Pou5f1/Oct4), oncogenesis (Mybl2, Mycn) and cardiogen-
esis (Myocd, Lbh). Pou5f1 transcription, prototypical of
pluripotent stem cells [25], was decreased as embryonic stem
cells underwent differentiation (Figure 2f). Transcription of
Mybl2 and Mycn, markers for neoplastic growth and tumor
susceptibility [26,27], paralleled Pou5f1 expression and
decreased as the cardiac program progressed (Figure 2f). In
contrast, developmental expression of myocardial Myocd
[28] and Lbh [29] genes increased during cardiac specifica-
tion (Figure 2f). Thus, concomitant genetic streamlining with
targeted induction of a focused transcriptome defines essen-
tial requirements for cardiopoietic lineage establishment.

Cardiopoiesis-associated signaling cascades
Analysis of genes associated with the ontological 'Cardiac
development' class in the specialized precursor transcriptome
was composed of 65 upregulated genes (Table 1). Of these, 49
integrated into a cardiopoietic network (Figure 3a), while 16
did not possess curated interactions (Table 1). Inspection of
network topology through degree and clustering coefficient
distribution analysis suggested non-arbitrary architecture
with hierarchical tendencies (Figure 3a). Bioinformatic inves-
tigation of underlying signaling pathways revealed individual
overrepresented cascades, reported using cardiopoietic and
cardiomyocyte significance estimates as respective co-ordi-
nates in a Cartesian plot (Figure 3b). Cell cycle, death recep-
tor and apoptosis cascades were examples of pathways with P
values below significance threshold for both cardiopoietic
cells and cardiomyocytes (Figure 3b, bottom left), in line with
reported downregulation of genes required for cell prolifera-
tion and apoptotic processes in fully differentiated embryonic
stem cell-derived cardiomyocytes [11]. In contrast, VEGF, IL2
and Toll-like receptor signaling were relevant at initiation of
cardiac confinement, accompanied by amyloid processing,
glycosphingolipid metabolism, glycosaminoglycan degrada-
tion, and N-glycan and ganglioside biosynthesis (Figure 3b,
lower right). Integrin, WNT/β-catenin, IL6, IGF1 and cardio-
vascular hypoxia signaling pathways, initially prominent in
cardiopoietic cells, maintained a significant presence in stem
cell-derived cardiomyocytes (Figure 3b, top right), which
began expressing genes involved in TGFβ, JAK/STAT, p38,
granulocyte-macrophage colony stimulating factor/colony
stimulating factor 2, and calcium signaling (Figure 3b, top
left), in agreement with identified enrichment of p38 signal-
ing and calcium handling [11]. A cross-section of signaling
pathways with cardiac development revealed convergence of
VEGF, integrin, WNT/β-catenin and TGFβ cascades, and
connections involving IL6, IGF1 and JAK/STAT signaling

(Figure 3c). Thus, discrete cascades anchor the molecular car-
diopoietic network.

Cardiopoietic network manipulation controls 
cardiogenic yield
Consequences of targeting designated pro-cardiogenic com-
ponents were investigated in isolated stem cells and differen-
tiating embryoid bodies (Figure 4). While stimulating
pathways absent from the identified cardiopoietic network
had no effect on outcome (not illustrated), treatment of
embryonic stem cells with VEGF, IGF1 and IL6, to prioritize
charted signaling axes, increased expression of MEF2C (Fig-
ure 4a). Together with Nkx2-5 and GATA4 (data not shown),
these pro-cardiac transcription factors were upregulated after
growth factor supplementation, verifying association with
cardiomyogenesis. To investigate effects of treatment at later
developmental stages, stem cell-derived embryoid bodies
were assessed for beating areas, which reflect emergence of
electro-mechanical coupling (Figure 4b). BMP4, adminis-
tered at day 9 of differentiation, increased the number of
beating areas compared to untreated embryoid bodies (Fig-
ure 4b, left panels). Conversely, treatment with the TGFβ sig-
naling cascade inhibitor latency-associated peptide (LAP)
[30] significantly diminished the size and number of these
areas at day 9, while alternative inhibition with the BMP4
antagonist NOG [31] abrogated the development of contrac-
tile foci (Figure 4b, right panels). On average, there was an
approximately 20% increase in contractile regions within the
embryoid body following BMP4 treatment, while addition of
LAP decreased this number to <10% of the embryoid body.
NOG treatment precluded contractile foci generation (Figure
4c). Investigation of the JAK/STAT pathway on cardiopoiesis
was performed by adding leukemia inhibitory factor (LIF),
which promoted beating area formation (Figure 4d). Thus,
focused evaluation of individual network elements translated
into changes in cardiogenic yield, validating the functional
significance of the identified pro-cardiac scaffold.

Cluster analysis reveals defined functional 
neighborhoods
Within the cardiopoietic network, integrin, Wnt/β-catenin,
VEGF and TGFβ anchor cascades all contain specific genes
used as foci for expression pattern segregation. Discrete cor-
related expression profiles within the transcriptome were
refined by Venn diagram analysis to yield shared signature
genes (Figure 5a and Additional data file 1). Bmp4 and Pitx2
are elements of the TGFβ cascade within the cardiopoietic
network that coordinated organization of 17 and 12 gene
profiles, respectively, into significantly correlated clusters
(Figure 5a). Multiple genes that comprise integrin signaling
within the network were queried separately and yielded
unique gene lists with distinct trends (Figure 5b). Tgfbr2, a
component of the Wnt pathway, distilled a core of 168
probesets (Figure 5c). Vcl integrates the VEGF cascade into
the cardiopoietic network and here extracted 235 associated
expression patterns (Figure 5d). Each cluster presented a sig-
Genome Biology 2008, 9:R6
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Cardiovascular development signaling network within cardiopoietic cellsFigure 3 (see previous page)
Cardiovascular development signaling network within cardiopoietic cells. (a) Genes identified in Table 1 integrate into a network suggesting non-
stochastic tendencies with emergent scale-free properties (top right). Examples of hubs, with number of first neighbor connections in parentheses, are 
labeled on the clustering coefficient plot (top right, inset). (b) All upregulated genes in cardiopoietic cells analyzed for enriched functions were further 
mined to identify top supporting signaling cascades. Individual signaling pathways (green circles) were distributed according to significance during stem cell-
derived cardiogenesis, indicating differences in pathway prioritization at discrete stages. The color scale at right indicates progression from embryonic 
stem cells (ES) through the cardiopoietic stage (CP) to stem cell-derived cardiomyocytes (CM), shown in counterclockwise fashion. CSF, colony 
stimulating factor; GAG, glycosaminoglycan; GSL, glycosphingolipid. (c) Cross-referencing the signaling cascades represented in (a) with all cardiopoietic 
pathways identified in (b) converge on integrin, WNT/β-catenin, VEGF, TGFβ and other (IGF, IL6) signaling cascades anchoring the procardiogenic 
network. A common node shared by these pathways, AKT, is outlined in (a).
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Table 1

Cardiopoietic cells demonstrate specific upregulation of genes involved in cardiovascular development

Gene name GenBank ID Fold change

*Actc NM_009608 1.755

*Acvr1 NM_007394 2.531

Adam19 NM_009616 1.955

Akt1 M94335 2.518

*Amot U80888 3.321

Anxa1 NM_010730 9.544

Anxa2 NM_007585 4.472

Anxa5 D63423 6.957

*Axl AA500897 16.45

Bmp4 NM_007554 1.552

Casp8 BC006737 1.994

Cav1 AB029929 10.81

Cd47 NM_010581 2.265

Cd81 NM_133655 1.599

Cd151 U89772 1.597

Cdh2 BC022107 2.861

Col4a2 BC013560 16.98

Ctsb M14222 4.591

Cyr61 NM_010516 6.394

*Ece1 AI551117 2.551

Egfr AF277898 1.641

F3 BC024886 3.146

F2r BQ173958 3.117

Fgfr1 M65053 1.807

Fn1 BC004724 2.536

Furin NM_011046 1.858

*Has2 NM_008216 2.57

Hif1a BB269715 2.586

Hmox1 NM_010442 1.728

Id3 NM_008321 1.75

Igf2 NM_010514 22.08

Igfbp4 NM_010517 10.46

ltga3 NM_013565 1.549
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ltga5 BB493533 2.908

Itgav AK003416 2.012

Itgb1 BM120341 2.642

Itgb5 NM_010580 2.542

Lamc1 BG066605 3.632

Lmna NM_019390 4.11

*Ltbr NM_010736 5.021

*Mixl1 AF154573 1.647

Mmp2 NM_008610 5.483

Mmp14 NM_008608 5.742

*Nf1 BB526552 1.542

Nr3c1 NM_008173 1.836

Pitx2 U80011 2.062

*Pou6f1 AK009674 1.647

Ppap2b NM_080555 2.42

*Ppp3r1 NM_024459 1.704

Reck NM_016678 2.305

*Sema3c AK004119 3.763

Serpinf1 NM_011340 8.628

*Smo AW55532 1.652

Sparc NM_009242 5.953

*Sptbn1 BM213516 1.628

Tgfbr2 BG793483 13.3

Tgm2 BC016492 2.979

Thbs1 AI385532 12.43

Timp1 BC008107 4.251

Timp2 BF168458 40.6

*Tnfrsf12a NM_013749 3.322

Tnfrsf1a L26349 4.763

Vcl NM_009502 3.886

Vhl NM_009507 1.523

Zfpm1 AA014267 3.272

A total of 65 genes were upregulated with transition from a pluripotent embryonic stem cell into the cardiopoietic phenotype, 49 of which 
associated as an integrated network (Figure 3a). *Genes without curated interactions.

Table 1 (Continued)

Cardiopoietic cells demonstrate specific upregulation of genes involved in cardiovascular development
Genome Biology 2008, 9:R6
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nificant ontological function upon analysis, with cardiac spec-
ification as the first, rank-ordered tissue-specific
developmental process. Myoblast differentiation, regulation
of muscle contraction, cellular localization/assembly, and
vascular development were also prioritized within each clus-
ter according to associated P values (Figure 5e). Therefore,
specific functional properties were ascribed to each network
node mapping respective contributions to the overall execu-
tion of cardiopoietic transformation of embryonic stem cells.

Discussion
Embryonic stem cells are developmentally malleable [32],
giving rise to highly specialized and discrete phenotypes cru-
cial to the formative embryo. Specification through genomic

tailoring of stem cell pluripotency involves parsing the mas-
sive transcriptional background and deploying necessary
genetic instructions that drive commitment [33]. Since line-
age segregation is governed by specific stimuli arising from a
rich transcriptional landscape, mapping pathways directing
distinct cellular fates is essential in identifying, engaging and
driving selected developmental routes [34]. The paradigm of
guided cardiogenesis used here provides a unique opportu-
nity to dissect complex developmental processes underlying
cardiopoiesis, essential for cardiomyocyte derivation from
stem cells [18,35,36]. Using this paradigm in conjunction
with in silico bioinformatics approaches, comparative
genomic analyses uncovered a novel function-directed inter-
actome connecting discrete genes that orchestrate cardiopoi-
esis. The identified multi-nodal transcriptome network

Biological validation of cardiogenic networkFigure 4
Biological validation of cardiogenic network. (a) LIF cultured stem cells were left untreated for 48 h after LIF withdrawal or were treated with VEGF, IGF1 
or IL6. Changes in expression of the cardiac transcription factor MEF2C were revealed through immunocytochemistry. Nuclei were counterstained with 
DAPI. Scale bar: 10 μm. (b) Stem cell-derived embryoid bodies were observed for the formation of beating areas (yellow circles) at day 9 (D9) in 
untreated, BMP4, LAP and NOG supplemented conditions, with treatments beginning at day zero (D0). Scale bar: 1 μm. (c) Measurement of contractile 
area activity using Metamorph software. Data reported as mean number of beating areas ± SEM, *P < 0.05, n = 40-50 embryoid bodies. (d) Visualization of 
beating areas in embryoid bodies treated at day 5 (D5) with LIF, involved in JAK/STAT signaling (left). Evaluation of beating area as a percentage of total 
area occupied by embryoid body (right). Data reported as mean number of beating areas ± SEM, *P < 0.05, n = 40-50 embryoid bodies.
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establishes the cardiogenic gestalt, revealing targets for
manipulation of cardiac fate that will expedite translational
application [37-39].

Endogenous genetic flux through non-specific pluripotency
primes stem cells for a variety of phenotypes at the cost of ele-
vated genetic noise [40,41]. Successful navigation of this
intricate genetic background is pivotal in developmental
specification, requiring non-stochastic gene activation to sup-
port emerging phenotypes [42]. Systems biology approaches
to analyze network randomness and propensity for hub for-

mation [43] suggest a robust topology framing the transcrip-
tome that underlies cardiopoiesis.

Specifically, the current work demonstrates formation of an
integrated scaffold of genes activated during stem cell-
derived cardiomyocyte procurement that sculpts a resilient
cardiogenic transcriptome profile. The non-random presence
and distribution of hubs, that is, nodes with high connectivity
[44], indicates a switch where pluripotent stem cells are
directed and constrained to a cardiac fate. While
nonsignificantly changing genes represented heterogeneous

Nodal network anchors orchestrate coordinated recruitment of specialized ontological classes to secure a developmental themeFigure 5
Nodal network anchors orchestrate coordinated recruitment of specialized ontological classes to secure a developmental theme. (a) Left: a five group K-
means algorithm, 4 × 6 SOM, and QT filter were each used to independently dissect the transcriptome of embryonic stem cell (ES) derived cardiogenesis. 
Cardiopoietic (CP) network nodes previously identified were then used to guide cluster extraction. Bmp4 and Pitx2, members of the TGFβ pathway, are 
shown as examples. *Venn diagram of K-means, SOM and QT generated lists resolved clustered genes with correlated expression profiles (R = 0.95). For 
each set, gene (node) identity used to extract associated profiles is indicated, along with number of probes per cluster given in parentheses. Right: genes 
within the Bmp4 cluster. CM, cardiomyocyte. (b) Nodes belonging to the integrin cascade select discrete clusters with distinct trends. (c, d) Gene groups 
associated with Tgfbr2 and Vcl nodes that represent WNT/β-catenin and VEGF signaling, respectively. (e) Gene clusters organized functional 
neighborhoods with ontological priorities, with level of significance indicated on right.
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ontological annotation distributions without any functional
predispositions, inspection of downregulated transcripts
demonstrated a controlled diminution of transcriptional
chatter through reduction of genes associated with genetic
metabolism. Furthermore, diminished DNA metabolism that
accompanies differentiation of embryonic stem cells into car-
diac precursors reflects the onset of specialization with loss of
genomic variability. Indeed, timing changes and restriction of
replication initiation has been reported for embryonic stem
cell differentiation [45]. Transcriptional narrowing has been
recently observed during stem cell differentiation for both
nuclear transport machinery [19] and metabolic energetic
remodeling [46]. Further streamlining, with specific upregu-
lation of overrepresented pro-cardiogenic functions [35,47],
ultimately secures execution of the cardiac program.

Gene or protein networks buttress pluripotency through inte-
gration of multiple pathways contributing to the final pheno-
type [48-51]. Here, distinct organization of signal pathways
secured the cardiopoietic network. Integrins are cytoskeletal
associated transmembrane glycoproteins that transduce
extracellular signals and prominently anchor the transcrip-
tome. Within cardiogenesis, the integrin cascade dictates for-
mation of terminal myocardial structure [52]. WNT/β-
catenin signaling transduces extracellular cues during devel-
opment [53] and is the second significant cascade identified
in the cardiopoietic network. Previous transcriptome analysis
identified upregulation of negative regulators of WNT signal-
ing [11]. Here, in guided cardiopoiesis, distinct effectors that
feed into the WNT pathway were upregulated. Participation
of this cascade in cardiogenesis is bimodal [54-56], and con-
comitant expression variations of inhibitors and potentiators
may serve as a molecular rheostat indispensable for all types
of lineage specification. In this capacity, the WNT family has
been proposed to be transcriptional noise filters during dif-
ferentiation [42]. The TGFβ cascade, connected to the cardi-
opoietic scaffold through BMP4, represents a source of potent
pro-cardiac stimuli [23,57-59]. Transgenic models deficient
in downstream signaling components of the TGFβ pathway,
such as SMAD3 insufficient mice, exhibit cardiac develop-
mental defects [60]. Furthermore, cell-tracing studies
recently reported progenitors positive for the VEGF receptor
FLK1 that gave rise to cardiovascular, endothelial and smooth
muscle cell lineages [61,62], in line with the present identifi-
cation of the VEGF signaling axis in the pro-cardiac transcrip-
tome network. Cardiomyocyte development through IGF
[55], and cardiac hypertrophy mediated by the IL6 signaling
axis [63] are represented herein by single components
belonging to their respective pathways. The inclusion of other
cascades in the cardiopoietic network, also by single compo-
nent representation, permits integration of lambent inputs
from other pathways, lessening the rigidity of the
transcriptome scaffold and allowing exogenous manipulabil-
ity of the network without changing its fundamental architec-
ture. Collectively, integration of discrete signaling pathways
secures overall network functionality and, indeed, targeting

nodes in vitro demonstrates discernible alterations in stem
cell-derived cardiomyocyte yields.

Targeted node validation by independent treatment with dif-
ferent growth factors significantly increased the number of
embryonic stem cells positive for cardiac transcription fac-
tors, indicating an engaged cardiogenic program. VEGF,
upon binding to its cognate receptor on the surface of embry-
onic stem cells [64], is transduced through focal adhesion
complexes containing vinculin [65], a significant node identi-
fied within the cardiopoietic network. This actin-binding,
cytoskeletal protein is essential to cardiac development, as
knockout models presented thin myocardial walls with com-
promised cardiac contractility along with diverse cardiac
defects [66]. Similarly, interaction of IGF1 with the IGF1
receptor expressed on the plasma membrane of embryonic
stem cells [67] increased the number of stem cells with an
engaged cardiac program. Both AKT and IGF binding protein
4, elements of the IGF1 pathway essential to the cardiopoietic
network, promote cell survival and proliferation, and affect
organismal growth [55,68,69]. AKT is critical for directing
hypertrophic myocardial responses to adaptive and maladap-
tive stimuli [70-73]. IL6 belongs to JAK/STAT/IL6 signal
transducer (IL6ST)-dependent cytokines, and here increased
cardiogenic engagement. This is supported by reports of
modulated cardiogenesis in embryoid bodies through the
JAK/STAT/IL6ST relay [74]. Conditional mutations of
IL6ST, a component of the IL6 receptor complex, manifest
cardiac defects, including ventricular thinning, right ven-
tricular dilation, and significant size reductions in subpopula-
tions of cardiomyocytes [63]. Furthermore, genetic ablation
of IL6ST demonstrates a definitive role for the IL6 signaling
axis in determination and maintenance of cardiac morphol-
ogy [75]. Functionally, formation of contractile areas is a
definitive endpoint indicating syncytial integration of devel-
oped cardiomyocytes. Treatment with BMP4, a cardiopoietic
network ligand of the TGFβ cascade [76], distinctly increased
beating areas, whereas antagonism using LAP or NOG pre-
cluded beating. Together, these observations reveal that the
TGFβ signaling axis is embedded within the cardiopoietic
network, supported by well characterized effects on cardio-
genesis [23,77]. LIF treatment increased contractile foci, and
exerts cardiogenic effects through the JAK/STAT/IL6ST sig-
naling complex. Thus, the interactive transcriptome trans-
duces pro-cardiac inputs, reflected through cardiogenic
engagement and subsequent functional cardiomyocyte
generation.

Network anchors within the emergent cardiovascular scaffold
are part of extant transcriptome gene clusters that collectively
foster distinct thematic climes [78]. As cellular identities
manifest from embryonic stem cell origins, developmental
programming is oriented through hubs that are part of an
ontological collective that defines specific transcriptome
neighborhoods and secures nascent phenotypes [79]. Fur-
thermore, here collective ontological themes classifying hub-
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organized gene clusters are complementary and non-stochas-
tic, demonstrated in this paradigm of cardiogenesis. In this
way, the transcriptomic framework serves as a 'wireframe'
that co-ordinates and unifies discrete developmental ele-
ments to ultimately realize full specification.

Conclusion
Here, a manipulable, lineage-specifying genomic atlas was
extracted from the pluripotent content of an embryonic
source. Transcriptomic profile dissection of embryonic stem
cells undergoing cardiopoietic transition isolated a dynamic
intermolecular signaling scaffold unifying genetic crosstalk
critical to cardiogenic yield. Functional interrogation of this
focused network demonstrated treatment-dependent, bimo-
dal responsiveness dictated by node and hub composition. A
demonstrable, refined control of guided cardiogenesis by in
vitro supplementation with exogenous growth factors effi-
ciently accelerated the production of functional cardiomyo-
cytes. In contrast, addition of network decelerants delayed
cardiogenesis. Thus, access and identification of nodes within
the cardiopoietic network is distinctly advantageous for pro-
curement of an exogenous supply of cardiac cells. This cir-
cumvents limitations associated with a scarce endogenous
pool, and expedites translation of ex vivo stem cell-derived
cardiac-specified progeny as a regenerative therapeutic
modality. Consolidation of node-organized functional tran-
script clusters secured developmental attunement through
coordinated ontological neighborhoods that contained candi-
dates promoting cardiac development. This paradigm of a
defined gene network architecture, supportive of the cardiac
progenitor phenotype, provides a diagnostic map to chart
susceptible nodes that conversely may promote cardiomyo-
cyte attrition with resultant cardiac dysfunctions. Critical
rate-limiting hubs within such a framework can identify
unexplored molecular etiologies that impact cardiac precur-
sor lifespan or capacity for self-renewal, defining individual
cardioprotective potential. Ultimately, this integrated
approach maps a dynamic and interactive transcriptomic grid
for definition, interrogation, and control of a discrete biolog-
ical process.

Materials and methods
Stem cell culture and differentiation
Murine CGR8 embryonic stem (ES) cells were cultured with-
out a feeder layer in 7.5% fetal bovine serum (FBS) in Glas-
gow's modified Eagle's medium (GMEM) as described [23].
Cells in the presence of LIF and after 48 h in a LIF-free envi-
ronment were designated as ES-LIF(+) and ES-LIF(-),
respectively. Subsequently, embryonic stem cells were placed
in a cocktail containing 5 ng/ml BMP, 2.5 ng/ml TGFβ, 100
ng/ml IL-13, 100 ng/ml IL3, 50 ng/ml IGF1, 10 ng/ml VEGF,
2.5 ng/ml EGF, 10 ng/ml FGF and 100 ng/ml IL6. Cardiopoi-
etic cells and cardiomyocytes derived from embryonic stem
cells stimulated in this cocktail were maintained in culture

using 3% FBS GMEM with 30 ng/ml of TNFα for 5 days and
20% FBS GMEM for 9 days, respectively [18]. Cells were sub-
jected to confocal microscopy, assessing MEF2C, NKX2-5
and GATA4 nuclear translocation in cardiopoietic cells along
with expression of α-actinin or myosin heavy chain in cardio-
myocytes both prior to and after purification of derived cells
using Percoll. The gradient was generated with dilution of a
Percoll stock (Sigma-Aldrich, St. Louis, Missouri, USA) to
densities of 1.09 and 1.07 g/ml, with 4 ml of the 1.07 density
overlaying 3 ml of the 1.09 density. The interface of these two
densities successfully yielded the cardiomyocyte population
[19]. For cardiopoietic cells, the previous densities used for
cardiomyocyte derivation were reduced by 0.02 g/ml [18].
Total RNA was harvested from ES-LIF(+), ES-LIF(-), cardi-
opoietic and cardiomyocyte samples for downstream micro-
array analysis.

Scanning electron microscopy
Embryonic stem cells, cardiopoietic cells or derived cardio-
myocytes were fixed with 1% glutaraldehyde and 4% formal-
dehyde in phosphate buffered saline (pH 7.2). Hypotonic
sarcolemmal stripping using a 1% Triton X-100 solution
exposed the nucleus prior to fixation [19]. Intact or stripped
fixed cells were rinsed in phosphate buffered saline with 1%
osmium, dehydrated with ethanol and dried in a critical point
dryer. Samples were examined on a 4700 field-emission scan-
ning microscope (Hitachi, Tokyo, Japan) after coating with
platinum.

Stem cell immunocytochemistry and embryoid body 
imaging
Embryonic stem cells, cardiopoietic cells and derived cardio-
myocytes were fixed in 3% paraformaldehyde, permeabilized
with 0.5% Triton X-100, blocked with 100% Superblock
(Pierce, Rockford, Illinois, USA) and immunostained with
primary antibodies specific for the cardiac transcription fac-
tor MEF2C (Cell Signaling Technology, Boston, Massachu-
setts, USA) and/or sarcomeric α-actinin (Sigma-Aldrich, St
Louis, Missouri, USA), and corresponding ALEXA-labelled
secondary antibodies (Molecular Probes, Carlsbad, Califor-
nia, USA) along with nuclear-staining 4'-6-diamidino-2-phe-
nylindole (DAPI; Molecular Probes) [19]. Imaging was
performed using a Zeiss laser scanning microscope 510 (Carl
Zeiss, Jena, Germany) microscope. Additionally, after 48 h
treatment of undifferentiated embryonic stem cells with 50
ng/ml IGF1, 10 ng/ml VEGF, or 100 ng/ml IL6 following LIF
withdrawal, images were obtained and stored in TIF format
with 10 distinct fields from at least 3 separate isolations for
each experimental condition. Image evaluation of fluorescent
intensity was performed using Metamorph (Sunnyvale, Cali-
fornia, USA). Differentiated embryoid bodies, using the
established hanging drop method [80], were treated at day 0
(D0) with 5 ng/ml BMP4, 25 ng/ml LAP, or 25 ng/ml NOG.
Alternatively, 1,000 U/ml LIF was added at day 5 (D5) of dif-
ferentiation. Prior to imaging at day 9 (D9), embryoid bodies
were plated on gelatin-coated six well dishes with sequential
Genome Biology 2008, 9:R6
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timelapse images obtained at 5 Hz. Image sets were reconsti-
tuted in Metamorph to visualize beating areas, delineated for
area measurement.

Microarrays
To investigate transcriptome dynamics during guided cardiac
differentiation of murine embryonic stem cells, total RNA
was isolated at discrete timepoints using the Micro-to-Midi
Total RNA Purification System (Invitrogen, Carlsbad, Califor-
nia, USA) as described [46]. Each condition was independ-
ently sampled three times for a total of twelve biological
replicates. Double stranded complementary cDNA and
labeled complementary cRNA were obtained from isolated
total RNA, with the latter hybridized against the Mouse 430
2.0 GeneChip (Affymetrix, Santa Clara, California, USA).
Arrays were scanned using an argon-ion laser, and data visu-
alized using MAS 5.0 Affymetrix software to assess quality of
hybridization. The dataset has been deposited at the Gene
Expression Omnibus [81] as an update to series GSE6689.

Expression analysis and gene/condition clustering
Gene expression data were analyzed using Genespring GX 7.3
(Agilent Technologies, Santa Clara, California, USA). All
probesets were initially quality filtered for the pluripotent
embryonic stem cell transcriptome (in the presence and
absence of LIF) according to an established flag value, with
values that are present (P), marginal (M) or absent (A)
assigned to the marker [46]. To ensure that transcriptional
changes were restricted to display gene profiles emerging
during cardiac differentiation, data were further restricted to
display genes demonstrating the present (P) and marginal
(M) flag values in all three replicates for the cardiopoietic
stage, and the present (P) flag value in all stem cell-derived
cardiomyocyte samples. Next, samples were filtered
according to background noise levels to remove genes
expressing signals below threshold. The final gene list was
delimited according to statistically relevant changes using
one-way ANOVA, P < 0.05 with the Benjamini and Hochberg
false discovery rate as multiple testing correction. Hierarchi-
cal dendrograms were used to establish the molecular finger-
prints for each stage, and were generated using the Pearson
coefficient statistic (r) applied to determine correlation
between gene pairs in each condition as follows:

Above, (A) and (B) are respective sample means for genes Ai

and Bi for sample (i) out of the total number of samples (n),
with standard deviation terms for Ai and Bi used as denomina-
tor. Condition clustering was performed to determine sample
similarity using Euclidean distance as a measure of sample
'nearness'. The formula for calculating distance (D):

The square of the difference in expression levels between gene
A (Ai) and gene B (Bi) in sample (i) are divided by the total
number of samples (n), of which the square root is taken to
obtain distance (D). The clustering derived from distance cal-
culation was further validated by bootstrapping, a conven-
tional statistical resampling technique [24].

Taqman assays
RNA (1 μg) was reverse transcribed into cDNA using a high
capacity cDNA archive kit (Applied Biosystems, Foster City,
California, USA) and assayed using Taqman gene expression
assays for Pou5f1/Oct4 (Mm00658129_gH), Mybl2
(Mm00485340_m1), Mycn (Mm00476449_m1), Myocd
(Mm00455051_m1) and Lbh (Mm00522505_m1), prototyp-
ical markers of pluripotency, oncogenesis and cardiogenesis.
Samples were loaded onto an optical 96-well plate for
polymerase chain reactions performed using an ABI 7900HT
Fast Real Time System with cycling parameters set for a 15 s,
95°C duplex denaturing step followed by primer annealing/
extending for 1 minute at 60°C per cycle for 40 cycles. Rela-
tive fold change was determined using the 2-ΔΔC

T method [82]
with pluripotent embryonic stem cells as baseline, normal-
ized to Gapdh expression.

Enrichment analysis of functional categories
To examine overrepresented functions within the final up-
and downregulated filtered gene lists, Expression Analysis
Systematic Explorer (EASE version 2.0) [83] was used. Gene
lists were submitted as text files using GenBank accession
identifiers and ontology annotations for 'Molecular function'
were analyzed by linking, through EASE, to the online Data-
base for Annotation, Visualization, and Integrated Discovery
[84]. For 'Molecular function', the population total (8,821) is
the group of annotations available for the Mouse 430 2.0
GeneChip. Population hits are defined as the genes for each
'Molecular function' sub-classification that are identifiable.
List totals indicate annotations (out of the population total)
that are available from user-submitted lists for 'Molecular
function', and list hits identify annotations belonging to spe-
cific groups within 'Molecular function' within the user-sub-
mitted list. Each category under 'Molecular function' had
specifically associated genes, and in some instances, genes
were assigned to more than one functional category. Signifi-
cance was determined by Fisher's exact test and Bonferroni
correction for multiple category comparisons (P < 0.05) and
top functions were reported as a percentage of list totals, with
remaining functions classified as 'other' for both up- and
downregulated gene lists.
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Network analysis
Using an established network analysis program, Ingenuity
Pathways Analysis [85], molecular interactions were exam-
ined in the cardiopoietic stage. One way ANOVA-delimited
gene lists used in enrichment analysis were studied using the
Ingenuity Pathways Knowledge base to identify, using a right-
tailed Fisher's exact test, overrepresented canonical functions
and signaling pathways at different timepoints during cardio-
genic stem cell differentiation. The Institute for Systems
Biology Cytoscape 2.2 software [86] was applied to provide
data regarding network topology in addition to visualizing
relationships. Gene interactions identified by Ingenuity were
deconstructed according to pairwise interactions, and refor-
matted for use in Cytoscape 2.2. Basic network analyses,
including degree distribution and clustering coefficient distri-
bution determination, were performed, providing statistical
measures of cardiopoietic network architecture.

Cluster analysis
Quality filtered genes were recursively and separately ana-
lyzed by K-means, self-organizing map (SOM) and quality
threshold (QT) clustering. Group size for K-means was set to
a maximum of 5 clusters, while a 4 × 6 array was specified for
SOM. For QT analysis, Pearson correlation was set at 0.95.
Each of the three analyses produced distinct transcript aggre-
gates, and cross-reference by Venn diagram highlighted
genes consistently segregating with selected network nodes.
Discrete expression profile groups were bioinformatically
mined to uncover organized functional neighborhoods delim-
ited by cluster oriented developmental themes. Hypergeo-
metric P values for ontological assignations were calculated
as shown:

The summation notation above yields the probability (p) of
overlap that corresponds to (k) or more genes that exist
between gene lists (m) and (n) when randomly sampled from
a universe containg (u) genes.
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