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Abstract
Refocused steady-state free precession (SSFP), or fast imaging with steady precession (FISP or
TrueFISP), has recently proven valuable for cardiac imaging because of its high signal-to-noise ratio
(SNR) and excellent blood-myocardium contrast. In this study, various implementations of multiecho
SSFP or EPI-SSFP for imaging in the heart are presented. EPI-SSFP has higher scan-time efficiency
than single-echo SSFP, as two or more phase-encode lines are acquired per repetition time (TR) at
the cost of a modest increase in TR. To minimize TR, a noninterleaved phase-encode order in
conjunction with a phased-array ghost elimination (PAGE) technique was employed, removing the
need for echo time shifting (ETS). The multishot implementation of EPI-SSFP was used to decrease
the breath-hold duration for cine acquisitions or to increase the temporal or spatial resolution for a
fixed breath-hold duration. The greatest gain in efficiency was obtained with the use of a three-echo
acquisition. Image quality for cardiac cine applications using multishot EPI-SSFP was comparable
to that of single-echo SSFP in terms of blood-myocardium contrast and contrast-to-noise ratio (CNR).
The PAGE method considerably reduced flow artifacts due to both the inherent ghost suppression
and the concomitant reduction in phase-encode blip size. The increased TR of multishot EPI-SSFP
led to a reduced specific absorption rate (SAR) for a fixed RF flip angle, and allowed the use of a
larger flip angle without increasing the SAR above the FDA-approved limits.
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Refocused steady-state free precession (SSFP) (1), also known as fast imaging with steady
precession (FISP or TrueFISP) (2,3), has proven valuable for in vivo cardiac MRI because of
its excellent signal-to-noise ratio (SNR) and myocardium-to-blood contrast-to-noise ratio
(CNR) (2,4). In applications such as cine (4,5) acquisitions and real-time (6,7) imaging, among
many others, shorter breath-hold times or faster frame rates are highly desirable. Conventional
refocused SSFP acquires data for only one line of k-space (i.e., a view) per repetition time (TR)
leading to a relatively low data acquisition efficiency (8), as defined by the ratio of data
sampling (readout) time (Ts) to TR. Echo-planar imaging (EPI) gains considerable efficiency
since the overhead time associated with radiofrequency (RF) excitation and slice selection
remains constant while the effective readout time is increased. The increased efficiency of the
combination of EPI and SSFP, even with a short echo train length (ETL), can shorten scan
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times or increase spatial or temporal resolution with a only a modest increase in TR compared
to SSFP acquisitions for which only one view is acquired.

The signal acquired in refocused SSFP is a coherent superposition of the free induction decay
(FID), due to the RF pulse immediately preceding the readout, with spin echoes, stimulated
echoes, and higher-order echoes from preceding RF pulses (9-14). In this work, the acquisition
of one ky line (i.e., view) is referred to as single-echo SSFP, even though the actual signal is
composed of the superposition of the FID and several different echoes. The acquisition of
several ky lines within a single TR with an echoplanar readout is referred to as a multiecho
acquisition or EPI-SSFP. This mode of acquisition should not be confused with other types of
SSFP acquisitions, such as Fourier acquired steady-state (FAST) and contrast enhanced FAST
(CE-FAST) (15), in which the FID and echo components are acquired separately; fast
acquisition double echo (FADE) or dual echo in the steady state (DESS) (14,16-18), in which
both are acquired independently but simultaneously; and acquisitions in which multiple higher-
order echoes are acquired within a single readout (19).

The success of refocused SSFP in cardiac imaging is due to advances in hardware which allow
for shorter TRs, leading to reduced effects of field inhomogeneities, chemical shifts, and motion
on the steady-state magnetization (5). In particular, short TRs maintain coherence between the
various components of the refocused SSFP signal. A consequence of using ultrashort TRs and
high flip angles in non-EPI SSFP is a large RF power deposition or specific absorption rate
(SAR) (20). The imaging flip angle needs to be limited so the SAR does not exceed FDA-
approved levels, thus limiting the achievable contrast between myocardium and blood. EPI-
SSFP has an increased TR; thus SAR is reduced for a given flip angle. The limitation in flip
angle is relaxed, which increases achievable contrast.

In SSFP, the TR must be minimized to avoid off-resonance artifacts (2). The precession angle
of magnetization in the transverse plane during one TR cannot exceed 180° (2,6) to reduce

banding or fringe artifacts. This condition implies that TR must be kept less than 
or (2 · fs)-1, where γ is the gyromagnetic ratio, ΔB0 is the field inhomogeneity, and fS is the
equivalent resonant frequency shift resulting from any local field inhomogeneity or chemical
shift. A balance must be sought between increases in TR due to extra readouts and the
appearance of banding artifacts due to off-resonance. Reeder et al. (21) report that field
inhomogeneities in the myocardium can cause a variation of up to 70 Hz at 1.5 T, placing the
upper bound on TR at 7 ms. Similarly, in a study using multiecho FISP for imaging the brain,
Heid and Deimling (20) reported that maintaining a TR of <7 ms at 1.5T is adequate to avoid
artifacts in tissues of interest.

Although multiecho FISP has been successfully applied to brain imaging (20), only recently
has it been used in the body or the heart. The use of an EPI readout can cause artifacts arising
from flow, off-resonance, or other sources of phase or amplitude variation (22-25). Echo time
shifting (ETS) (22) can be used to partially mitigate some of the artifacts at the expense of
increasing the TR. To eliminate these artifacts without the use of ETS, we used an adaptive
phased-array ghost elimination (PAGE) technique (26). This method of ghost cancellation uses
a phase-encode acquisition order for which the EPI distortion due to off-resonance and flow
has rapid, periodic k-space variation, thereby creating widely spaced ghosts, which are canceled
by appropriate phased-array combining. Advantages of this method include a reduction in TR
by eliminating echo shifting, cancellation of in-plane flow artifacts, and a reduction of through-
plane flow artifacts due to the significant decrease in phase-encode blip size (26).

This work presents the use of multishot EPI-SSFP in segmented cardiac breath-held cine
imaging. We demonstrate the benefits of increased efficiency for augmenting the spatial
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resolution or increasing the number of cardiac phases for a given breath-hold duration, and for
decreasing the breath-hold duration for a fixed resolution and number of phases. We
characterize the performance of this method in terms of achievable blood-myocardium contrast
and compare the performance of ETS and PAGE in terms of the reduction of EPI-induced
artifacts.

Methods
EPI Waveforms

To establish the steady precession condition, there should be minimal phase accrual during one
complete TR period. Furthermore, this condition must hold for both stationary and moving
spins. This is of particular importance in the heart, where both large flow and motion take
place, requiring that gradient waveforms be zeroth- (area) and first- (area · time) moment
nulled. Single-echo SSFP achieves this by creating symmetric waveforms that are intrinsically
moment nulled in both the readout (GX) and the slice-selection (GZ) directions (GX1 (Fig. 1)).
When EPI-SSFP was used, first-moment nulling in the readout direction over one TR was
achieved in several ways. In one implementation of two-echo SSFP, a matched pair of pulses
was added after a gradient-recalled echo-train readout waveform (GX2,BIPOLAR (Fig. 1)). The
final two lobes were designed to cancel both the zeroth and first moments of the readout
waveform. A second implementation used a “flyback” waveform with two positive readout
gradients (27) (GX2,FLYBACK (Fig. 1)). Finally, Fig. 1 (GX3) shows a three-echo SSFP
implementation. All time-symmetric wave-forms are inherently moment nulled. Note that the
phase-encoding gradients (GY) were only zeroth-moment nulled in all implementations of
single- and multiecho EPI-SSFP discussed here. The first moment in the phase-encode
direction was reduced with the use of PAGE by minimizing the phase-encode blip size.

EPI Artifact Suppression
The use of EPI with a short echo train generally results in artifacts primarily from flow and
chemical shifts (25). The techniques of ETS and PAGE were implemented separately to
mitigate EPI artifacts in multishot EPI-SSFP.

Conventional, multishot EPI with a short echo train uses an interleaved phase-encode
acquisition order in conjunction with ETS (22), such that off-resonance distortion is minimized.
The resultant TR is increased by almost a full readout period. An alternative method to
eliminate ETS was implemented by using a phase-encode order for which the k-space distortion
had a rapid periodic variation (26). This caused widely spaced ghosts, spaced D = FOV/ETL,
where FOV is the field of view and ETL is the echo train length. The ghosts were then
suppressed by means of PAGE, which exploited the difference between multiple coil
sensitivities in a manner similar to that used in the sensitivity encoding (SENSE) accelerated
imaging method (28).

The PAGE method required estimates of the coil sensitivity profiles (B1-maps). These profiles
were calculated adaptively using a time-varying phase-encode order in which the echo order
was varied cyclically (Fig. 2). In this manner, lower temporal resolution ghost-suppressed
images used for calculating the sensitivities were derived by means of temporal low-pass
filtering (26).

Experimental Parameters
All images were acquired with a 1.5 T GE CV/i MRI Scanner (GE, Medical Systems,
Wausheka, WI) using an enhanced gradient system with 40 mT · m-1 maximum gradient
amplitude and 150 T · m-1 · s-1 slew rate unless otherwise specified. A four-element cardiac
phased-array coil was used for all acquisitions. A segmented, gradient-recalled echo sequence
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with gating capability (29) was modified to run breath-hold multishot EPI-SSFP. To maintain
the steady-state condition while gating via the electrocardiogram (ECG), RF pulses were
continuously played out while polling for a trigger caused by an R-wave took place. Upon
detection of the trigger, data acquisition for the next segment commenced, as described in Ref.
29.

In both humans and phantoms, single-echo SSFP images were acquired for comparison with
all implementations of multishot EPI-SSFP using either ETS or PAGE. All images were
reconstructed offline. For all acquisitions the number of cardiac phases acquired, breath-hold
times, flip angles, and data acquisition efficiency were recorded.

Phantom Studies
The multishot EPI-SSFP technique was tested on stationary phantoms with T1 and T2
characteristics similar to those of myocardium and blood. The blood phantom had a T1 of 804
ms and a T2 of 283 ms, and the myocardial phantom had a T1 of 1045 ms and T2 of 68 ms.
Signal intensities (SI) and contrast (C), defined as

[1]

were compared for standard single-echo and EPI-SSFP. The following imaging parameters
were used: 32 × 24 cm FOV; 10-mm slice thickness; 12 views per cardiac phase per heartbeat
(i.e., 12 views per segment), leading to 12, six, or four RF shots for one, two, and three echoes,
respectively; 128 × 108 matrix; ±125 kHz receiver bandwidth (RBW); and a 10-segment
acquisition with the data from the initial segment discarded to avoid artifacts from the transition
into steady state. The flip angle of each acquisition was increased while maintaining the average
SAR constant.

The signal-to-noise ratio (SNR) was estimated for images acquired with ETS. Noise images
were generated by subtracting a reference image made from the average of all cardiac phases
from the original image. The SNR was calculated as the ratio of the mean signal in the region
of interest (ROI) to the standard deviation (SD) of the background noise. The PAGE method
incurs an SNR penalty that is spatially varying and depends upon a number of factors, including
the number of ghosts, number of coils and their sensitivity profiles, and the specific slice
geometry. This SNR loss has been characterized and validated previously (26).

Human Studies
This study comprised seven normal, healthy volunteers. The study was approved by the
Institutional Review Board of the National Heart, Lung, and Blood Institute. Typical imaging
parameters were the same as in the phantom studies except for FOV = 36 × 27 cm; matrix =
128 × 108 or 128 × 144; and 10-13 segment acquisitions, with data from the initial segment
discarded to avoid artifacts from the transition into steady state. The flip angle of each
acquisition was increased until the average SAR was close to but less than 2.0 W · kg-1.
Typically, three short-axis slices and one long-axis slice were acquired per volunteer. To
facilitate the comparison of the contrast available with different imaging protocols, the
increased efficiency in multishot EPI-SSFP acquisitions was used to acquire extra cardiac
phases while maintaining constant breath-hold time and spatial resolution. For each acquisition,
myocardium and blood signal intensities were recorded as well as the number of cardiac phases.
Breath-hold time reduction was also demonstrated in scans where spatial resolution and number
of cardiac phases remained approximately constant. Additionally, higher-resolution images
with 256 × 192 matrix and 36 × 27 cm FOV were acquired using 180 T · m-1 · s-1 slew rates.
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The average signal intensities of the myocardium were measured by placing ROIs in sections
of myocardium not affected by any flow artifact or ghosting. Blood intensities were measured
by placing ROIs in the center of the left ventricular (LV) cavity. The resulting signal intensities
and contrast of the last six to eight end-diastolic phases were averaged to obtain an average
value for each slice acquired. All slices measured over all seven volunteers were averaged to
yield the final results for each method. Spatial locations with predominant flow artifact were
not measured, and therefore were not averaged into the final results.

The use of a noise-only ROI to measure noise statistics free of signal (30,31) is well established
for measuring the SNR of magnitude images, since it overcomes the difficulty encountered
due to nonuniform image intensity. Since the PAGE methods results in spatially varying noise,
it was necessary to measure both the mean SI and noise variance in the ROI. In order to measure
the local background noise variance in the presence of signal that has intensity variation within
the ROI, a high-pass spatial filter technique was employed to suppress low spatial frequency
signal components (32). The high-pass spatial filter was designed using a windowed sinc
(Kaiser window) with stopband of 0.3 (normalized to the sample frequency) and a 7 × 7 pixel
for a smooth transition band in order to reduce filter ringing. The measured filtered noise
variance was scaled appropriately to compensate for the equivalent filter bandwidth, which
was measured. This method was effective in moderate-size regions such as the LV blood pool.
The ROI size for the LV blood pool after image interpolation to 256 × 256 size was on the
order of 130 pixels (approximately 32 statistically independent samples). The CNR between
the myocardium and blood was measured using the variance measured in the blood pool. For
consistency, a mid-septal myocardium ROI location was chosen for all patients. The spatially
varying G-factor, which depends on the number of echoes, coil geometry, coil positioning, and
slice position, was estimated directly from the complex coil sensitivity profiles that were used
for computing the phased-array combining coefficients (28). The G-factor varies considerably
over the heart region; therefore minimum, maximum, and mean values were measured.

Results
Efficiency of EPI Waveforms

Table 1 summarizes the increased efficiency gained with multishot EPI-SSFP. The increase in
efficiency from the multiecho implementations allowed increased temporal resolution, as
measured by the increase in the number of cardiac phases. When spatial and temporal
resolutions were held constant, decreases in breath-hold times as high as 53% were achieved.
As expected, the efficiency increased with an increasing number of echoes. Both bipolar and
flyback implementations of the two-echo SSFP gave the same increases in efficiency.
However, the flyback implementation was sometimes limited by hardware at a few oblique
slices for which gradients were unable to sustain the increased switching.

PAGE acquisitions had shorter TRs due primarily to the elimination of ETS. The use of very
small phase-encode blips with PAGE further reduced TR. When using ETS, phase-encode
blips must have large areas, as the general interleaving scheme requires steps of a half or one-
third of k-space for two- and three-echo acquisitions, respectively. These large blips can lead
to an increase in echo spacing. Note that the flyback implementation of two-echo SSFP does
not suffer this limitation, as there is always enough spacing between readout gradients to fit
any necessary blip size. Therefore, the use of PAGE leads to a larger reduction in TR for both
the bipolar implementation of two-echo SSFP and the three-echo implementation than it does
for the flyback implementation.

Three-echo images acquired with PAGE had an large increase in temporal resolution than those
acquired with ETS, as the number of cardiac phases more than doubled with respect to one-
echo SSFP in all acquisitions. However, decreases in breath-hold times were the same for both
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three-echo implementations despite the fact that the efficiencies differed. This was a result of
the integer nature of scan parameters such as the number of views acquired per cardiac phase
per heartbeat and echo train length.

Image Quality
Figures 3 and 4 display representative images acquired with PAGE and ETS, respectively.
Image quality was comparable among all acquisitions. Images acquired with ETS were more
likely to suffer signal loss due to susceptibility differences near the heart-lung interface and
the posterior vein of the LV as a result of the extended TRs (data not shown) (21,33).

The SI for the myocardial phantom remained constant for all acquisitions (Fig. 5a). Blood
phantom SI was increased for implementations of multishot EPI-SSFP but tended to increase
to a greater extent with ETS than with PAGE, as was expected from the use of larger flip angles
allowed by the longer TRs of ETS. Figure 5b shows the contrast between the blood and
myocardial phantoms. Contrast was maintained with the use of multishot EPI-SSFP. Contrast
increased more for ETS acquisitions, as expected by the larger increase in blood phantom SI
seen in Fig. 5a. SNR was calculated for the one-echo SSFP and the multishot EPI-SSFP
acquisitions using ETS. There was no significant difference in background noise between all
multiecho ETS acquisitions and the single-echo acquisition.

The contrast between blood and myocardial tissue was normalized to the appropriate single-
echo acquisition for the seven normal volunteers (Fig. 6a). Contrast was maintained with
multishot EPI-SSFP. There was no significant difference between any of the multiecho
implementations and the single-echo acquisition (paired t-test, Bonferroni corrected). ETS
images exhibited flow artifacts, particularly at mid-systolic phases. Using PAGE greatly
reduced flow artifacts. Of the 133 slices acquired over all volunteers, nine were rejected due
to persistent flow artifact from the following implementations of multiecho EPI-SSFP: four
from two-echo bipolar ETS, one from two-echo flyback ETS, one from two-echo bipolar
PAGE, and three from three-echo ETS.

The CNR between blood and myocardium was measured for four normal volunteers with
images not corrupted by flow artifacts (Fig. 6b). Only the three-echo PAGE acquisition
displayed a significant difference with the single-echo acquisition (P < 0.001, paired t-test,
Bonferroni correction), due to a larger G-factor-related noise amplification for the three-echo
case (see Discussion section). The G-factor was measured across the heart ROI for the two-
and three-echo cases. The worst-case G-factor (hotspot) was approximately 1.3 for two echoes,
and was approximately 3.0 for three echoes. The mean loss in CNR for three-echo PAGE
corresponded to a G-factor of approximately 1.4 in the LV blood pool region. CNR remained
relatively constant for all other acquisitions, although those utilizing ETS resulted in higher
CNRs, as expected from the use of higher flip angles allowed by longer TRs (2).

Figure 7 displays the end-diastolic high-resolution image of a human volunteer acquired with
a 256 × 192 matrix, 36 × 27 cm rectangular FOV, and 180 T · m-1 · s-1 slew rates using two-
echo bipolar SSFP with PAGE. Greater detail in the trabeculae and papillary muscles is evident.
Off-resonance signal loss artifacts are present due to the longer TR required to obtain the
increased number of readout points.

Figure 8b and c shows a typical through-plane artifact found in long-axis images obtained when
using two- and three-echo SSFP with ETS. A projection of the bright blood within the aorta
creates an artifact that is most prominent during mid-systole. Note that the single-echo SSFP
acquisition (Fig. 8a) does not suffer from this artifact. Figure 8d and e displays images obtained
using two- and three-echo SSFP and PAGE. Through-plane artifact is greatly reduced with
PAGE.
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Discussion
Characteristics of EPI Waveforms

Three-echo SSFP displayed the best data acquisition efficiency, since both two-echo
implementations required additional time to moment null the readout waveform. The bipolar
implementation of two-echo SSFP led to shorter TRs than the flyback implementation when
used in conjunction with PAGE; the use of smaller phase-encode blips to traverse k-space
shortened echo spacing. Blip size had no effect on echo spacing for the flyback implementation.

Flow compensation of the second echo in the bipolar implementation is achieved because both
the zeroth and first moments are nulled for even-numbered echoes in bipolar acquisitions
(27). It may be possible to shorten the TR of this implementation by using fractional-echo
acquisitions, which would further reduce artifacts associated with the use of the echo train by
decreasing the echo spacing (22). Note that this waveform is very similar to the three-echo
sequence except that the third echo is not sampled, reflecting a loss of efficiency. The second
echo in the flyback implementation was not first-moment nulled as it was in the bipolar
implementation. However, both echoes had the same zeroth- and first-moment characteristics,
which should result in a reduction in artifacts due to step modulations in the phase of the raw
data matrix (35). The longer echo spacing in the flyback implementation can exacerbate EPI
artifacts such as flow ghosting (22).

Image Quality
The longer TRs that resulted from using EPI-SSFP led to a reduction in SAR, which allowed
for the use of higher flip angles and yielded slightly increased contrast between myocardium
and blood. The increase in contrast was anticipated, as blood SI is expected to increase slightly
in the range of flip angles studied while myocardial SI is expected to decrease slightly (2).
Hence, higher contrast, as defined in Eq. [1], is expected for higher flip angles.

A limitation of multishot EPI-SSFP was that the increased TR led to greater sensitivity to off-
resonance effects. It is expected that TR may be further reduced by pulse sequence design as
well as the use of optimized gradient waveforms (34). It should be noted that whereas TRs are
extended in multishot EPI-SSFP, they are still relatively short compared to other noncoherent
steady-state imaging modalities. In fact, short TRs coupled with the large blip areas (equivalent
to half-k-space jumps) used in the interleaved view-ordering scheme with ETS contributed to
the aortic projection artifact shown in Fig. 8 and discussed next.

The use of multiple echoes involves a loss of signal due to  decay, particularly during the
latter readouts. However, in the case of multishot EPI-SSFP, the TRs are short compared to

, so little image intensity is lost. Hence, signal intensities for myocardium remain relatively
constant regardless of the number of echoes used. The large inflow and outflow effects of blood
may contribute to the increase in blood SI. For example, in Fig. 8 an artifact in which the blood
outside of the imaging plane (in the aorta) is projected back onto the image is clearly visible.
In this case, blood spins with magnetization in the transverse plane leave the imaging plane at
a high velocity, particularly during mid-systole, and traverse the length of the aorta in a short
time. Since , these spins continue to contribute signal as they traverse the length of
the aorta, outside the imaging plane. In fact, all blood spins leaving the imaging plane should
project back onto the imaging plane until  effects have completely dephased any remaining
transverse magnetization. Note that images acquired with PAGE are substantially more
resistant to this artifact (Fig. 8d and e) than those obtained with ETS as a result of the sequential
phase-encode order (26). The artifact due to out-of-plane coherency is greatly reduced in single-
echo SSFP acquisitions (Fig. 8a) that also use a sequential phase-encode order.
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EPI Ghost Suppression
The use of PAGE leads to a loss in SNR due to the variance inflation factor inherent in inverse
methods. However, PAGE benefited from a reduced TR and the resulting minimization of
SSFP banding artifacts. The PAGE method allows a reduced phase-encode blip size, which
considerably reduced flow artifacts when compared to the ETS method. In general, EPI is
sensitive to flow. The inter-leaved phase-encode acquisition order for ETS gave rise to both
in-plane ghosts and through-plane flow artifacts at particular cardiac phases. The PAGE
method inherently suppresses in-plane flow ghosts, and has greatly reduced through-plane
artifacts due to the greatly reduced phase-encode blip size required by the noninterleaved
phase-encode acquisition order scheme (Fig. 2). Furthermore, as scanners with a larger number
of coils (e.g., eight coils) become available, the acquisition of images using PAGE with four
or five echoes may become possible.

Comparison of EPI-SSFP With PAGE and SENSE Accelerated Imaging
The PAGE method is used to suppress ghosts introduced by the use of multishot EPI with a
sequential phase-encode acquisition order. Similarly, SENSE, as used in accelerated imaging,
cancels the alias ghosts that result from intentional k-space undersampling. Both PAGE and
SENSE have noise variance inflation due to the ill conditioning of the inverse solution used.
As described here, the application of PAGE to multishot EPI increases scan efficiency by
acquiring multiple lines of k-space per shot without the need for ETS, whereas in the
conventional application of SENSE imaging, the acceleration is strictly due to the
undersampling. It is worth comparing the scan-time efficiency, SNR, and image quality of
these methods to better understand and exploit their potential uses.

In the case of PAGE applied to three-echo SSFP, the scan time is TR3 · Ny/3, and for SENSE
with acceleration rate (R) = 3, the scan time is TR1 · Ny/3, where Ny is the number of phase-
encode lines in the final reconstructed image, TR1 is the TR for a single readout SSFP
acquisition, and TR3 is the TR corresponding to a three-echo EPI-SSFP acquisition (TR3 >
TR1). Therefore, the relative scan-time efficiency is the ratio of the TRs, TR3/TR1. For the
experimental parameters used in this work, for double-oblique slices, SENSE with R = 3 is
approximately 40% faster (TR3/TR1 ≈ 1.4). It is expected that further optimization of multiecho
SSFP (by methods described in Ref. 34) will reduce the TR; therefore, the R = 3 SENSE
acquisition would only be 25% faster (TR3 /TR1 ≈ 1.25). SNR for both of these methods follows
the equation SNR ∝ 1/(G · √R), where G is the noise inflation factor and R is the acceleration
rate for SENSE (28); for the PAGE method R = 1. Both methods suffer the same noise inflation
factor, G; however, the SENSE-accelerated method incurs an additional √R loss in SNR due
to undersampling. Therefore, in the R = 3 example, SENSE is approximately 25-40% faster,
yet it has a loss of 70% in SNR when compared to the PAGE method applied to a three-echo
acquisition. In short, the PAGE method as applied to a three-echo acquisition has higher SNR
efficiency, defined as SNR per root-time, than an R = 3 SENSE acquisition as long as 3 ·
TR1 > TR3. Equivalently, there is an increase in SNR efficiency with the multiecho acquisition
that is not obtained with the SENSE acquisition.

Comparing three-echo PAGE with R = 2 SENSE is slightly more complicated, as the G factors
will differ between these two cases. The R = 2 SENSE method is slower than the three-echo
PAGE method (scan times = TR1 · Ny/2 and TR3 · Ny/3, respectively) and has a 40% loss in
SNR due to undersampling, but has a considerably improved G-factor using the current four-
element cardiac array. In terms of SNR efficiency, the multiecho acquisition is more efficient
as long as (G2/G3)2 · 3 · TR1 > TR3, where G2 and G3 are the G-factors associated with R = 2
and R = 3 acceleration rates, respectively. The ratio of the G-factors becomes the dominant
factor in determining the best SNR efficiency. With the current four-coil cardiac array, a three-
echo PAGE acquisition has slightly lower SNR efficiency than R = 2 SENSE for worst-case
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locations (i.e., G-factor hotspots). Newer systems with eight coils have substantially improved
G-factors, with worst-case G3 estimated to be 1.3 in the heart.

The flow artifacts for the SENSE single-echo SSFP method, which uses a sequential phase-
encode order, should be comparable to the multiecho PAGE method, since the flow artifacts
with single-echo SSFP and three-echo SSFP using PAGE (both of which use a sequential
phase-encode order) are comparable. The SENSE method was not evaluated experimentally
in this study.

Conclusions
Several implementations of multiecho SSFP were tested and compared in a multishot EPI
sequence. All implementations maintained blood-myocardium contrast when compared to the
standard refocused SSFP acquisition with only one readout per TR. Both two- and three-echo
SSFP acquisitions increased data acquisition efficiency, but better results were obtained with
the three-echo acquisition. Further optimization of the multishot EPI-SSFP sequence, via the
use of faster gradients or optimized gradient wave-forms, will continue to increase the gain in
efficiency available with this technique.

The increases in efficiency achieved with the various implementations led to a more than
doubling of the number of cardiac phases acquired at constant breath-hold time or, equivalently,
a reduction in breath-hold time of over 50%. These gains were achieved while maintaining
image quality as well as blood-myocardium contrast, and allowed for either the decrease in
SAR or an increase in the imaging flip angle.

To correct for EPI-induced artifacts, phased array ghost elimination, PAGE, was implemented,
which resulted in shorter TRs primarily by removing the need for ETS. However, because an
inversion process similar to that of SENSE-accelerated imaging was used, noise variance
inflation and the associated decrease in SNR were observed. This was of particular importance
in the three-echo acquisitions, wherein noise variance inflation and gain in acquisition
efficiency were highest. The increase in background noise further led to a reduction in blood-
myocardium CNR, although given the excellent SNR in refocused SSFP images in general,
this is an acceptable loss for the large increase in efficiency obtained with the technique. The
implementation of multishot EPI-SSFP in systems with a larger number of coils will further
reduce SNR penalties associated with a three-echo acquisition, making multiecho SSFP in
combination with PAGE an excellent alternative for faster cardiac imaging.

This study demonstrated that the increased efficiency of multishot EPI-SSFP leads directly to
shorter scan times, higher spatial resolution (more views), and higher temporal resolution (more
cardiac phases). This is of particular importance in cardiac imaging, in which shorter breath-
hold times can lead to more comfortable scans for patients or to more spatial locations acquired
within each breath-hold. Furthermore, applications such as real-time imaging, wherein higher
efficiencies lead to higher frame rates, can readily benefit from multishot EPI-SSFP. The
combination of multishot EPI-SSFP with a phased array ghost elimination technique removed
the need for echo time shifting, decreased TR, and reduced the appearance of artifacts related
to flow.
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FIG. 1.
Pulse sequence used in the implementation of multishot EPI-SSFP including the excitation RF
pulse, the slice-selection (GZ), phase-encoding (GY), and readout (GX) gradients. The first
readout waveform (GX1) displays the standard balanced single-echo readout implemented for
one-echo SSFP. The second readout waveform corresponds to the bipolar implementation of
two-echo SSFP (GX2,BIPOLAR), while the third one corresponds to the “flyback” version of
two-echo SSFP (GX2,FLYBACK). The last readout waveform is that of three-echo SSFP (GX3).
All slice-select and readout wave-forms are zeroth- and first-moment nulled over TR. The RF
transmit and receive phases were alternated to avoid signal cancellation. The phase encoding
displayed is that of bipolar two-echo SSFP. Note that although GY is not first-moment nulled
for any of the implementations displayed here, the use of PAGE greatly reduces the amplitude
of the phase-encoding blip. The end of the readout waveforms corresponds to the actual TR of
each sequence.
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FIG. 2.
Phase-encode acquisition order for three-echo SSFP using adaptive phased array ghost
elimination (PAGE). The phase-encode acquisition order is varied in a cyclical manner to
enable the adaptive calculation of a lower temporal resolution ghost-suppressed image used
for computing B1-maps used in PAGE. In this example, 12 ky lines are acquired in four RF
shots for each cardiac phase (1, ..., n, n + 1, n + 2, ..., N) during each heartbeat. However, the
k-space matrix of each cardiac phase is acquired with a slightly varied view-ordering scheme
achieved via changes in the phase-encode blip magnitudes. Note that the overall pattern of
acquisition is noninterleaved but the ghosts in each image have different phase weighting
depending on the acquisition order.
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FIG. 3.
Representative one-echo SSFP images and multishot EPI-SSFP images acquired with PAGE.
Images acquired with all four methods had similar blood-myocardium contrast. End-diastolic
short-axis images (top row) display a susceptibility artifact at the myocardial-lung surface not
seen in end-systolic (middle row) images. Long-axis images (bottom row) show fat
cancellation resulting from PAGE, particularly in the area of the chest wall.
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FIG. 4.
Representative one-echo SSFP images and multishot EPI-SSFP images acquired with ETS.
Top row: end-diastolic short axis; middle row: end-systolic short axis; bottom row: long axis.
All multishot EPI-SSFP images acquired with ETS had similar blood-myocardium contrast.
Notice that the chemical shift from the fat signal results in blurring.
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FIG. 5.
a: Comparison of signal intensities for blood (back, solid) and myocardial phantoms (front,
hatched). All methods were able to increase blood phantom signal intensities while the
myocardial signal remained constant. b: Comparison of contrast, normalized to that of single-
echo SSFP. Contrast increased slightly for all implementations of multishot EPI-SSFP,
compared to single-echo SSFP. ETS produced slightly higher blood and myocardial SIs than
PAGE, leading to slightly better contrast values as expected from the use of higher flip angles
allowed by longer TRs.
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FIG. 6.
Average normalized (a) contrast (N = 7) and (b) CNR (N = 4) for normal human volunteers.
Error bars reflect the SD over all slices averaged. All numbers are normalized to the single-
echo SSFP contrast. All implementations of multishot EPI-SSFP slightly increased contrast
with respect to one-echo SSFP. There was no significant difference between ETS and PAGE
acquisitions with respect to contrast. There was no significant difference in contrast between
any of the EPI-SSFP implementations with respect to the single-echo SSFP acquisitions. There
was a significant difference in CNR between the three-echo PAGE acquisition and the single-
echo SSFP case, as denoted by the asterisk (P < 0.001). ETS resulted in slightly higher contrast
and CNR values associated with the higher flip angles allowed by longer TRs, although at a
lower scan efficiency. PAGE resulted in maintained contrast, as G-factor-associated losses
canceled the gains of higher flip angles.
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FIG. 7.
High-resolution (256 × 192, rectangular FOV) end-diastolic image acquired with two-echo
bipolar SSFP, PAGE, and 180 T · m-1 · s-1 slew rates. Higher resolution allows for clearer
visualization of the papillary muscle while maintaining excellent blood-myocardium contrast.
Note that the susceptibility artifact in the posterior-lateral wall is more prominent due to
extended TR.
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FIG. 8.
Aortic flow artifact visible in long-axis images of the heart. The (a) single-echo SSFP image
does not exhibit flow artifact; however, ETS images for (b) two- and (c) three-echo SSFP (left
column) are considerably more susceptible to this artifact than (d and e) PAGE-reconstructed
images (right column). Different phase-encode ordering schemes led to drastic differences in
phase-encode blip sizes between the ETS and PAGE acquisitions, and therefore to differences
in flow artifacts.
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