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Abstract
Through recent development of MR techniques, it is now possible to assess regional myocardial wall
function in a non-invasive way. Using MR tagging, space is marked with planes which deform with
the tissue, providing markers for tracking the local motion of the myocardium. Numerous methods
to reconstruct the three-dimensional displacement field have been developed. The aim of this article
is to provide a framework to quantitatively compare the performance of four methods the authors
have developed. Five sets of experiments are described, and their results are reported. Instructions
are also provided to perform similar tests on any method using the same data.

The experiments show that some characteristic properties of the methods, such as sensitivity to noise
or spatial resolution, can be quantitatively classified. Cross-comparison of performances show what
range values for these properties can be considered acceptable.

1. Introduction
With the development of recent MRI techniques, non-invasive evaluation of regional
myocardial wall motion and function is becoming a reality (Guttman et al 1997, McVeigh
1998). One of the methods for this purpose is MRI tagging (Axel and Dougherty 1989, Fischer
et al 1994, Mosher and Smith 1990, Zerhouni et al 1988). In tagged MRI, the whole space is
tagged with a set of planes (or any spatially encoded pattern) which deform with the tissue,
providing non-invasive markers that reflect the local displacement of the myocardium. The
intersections of these tagging planes with the imaging plane appear as dark lines in the images
(McVeigh 1998, McVeigh and Atalar 1992). Using this technique, motion can be reconstructed
and local strain tensors can be derived; strain values have been proven to be a significant
indicator of function abnormality (Croisille et al 1999, Moore et al 1999).

Many methods have been proposed to reconstruct 3D motion of the LV from tagged MR images
(Declerck 1997, Declerck et al 1998a, 1999, Denney and McVeigh 1997, Huang and Amini
1999, Moulton et al 1996, O’Dell et al 1995, O’Donnell et al 1996, Öztürk and McVeigh
1999a, Park et al 1996, Radeva et al 1997, Young 1998, Young and Axel 1992), and compute
3D strains at material points in the heart wall. All these methods except Huang and Amini
(1999), Radeva et al (1997) and Young (1998) suppose that tag lines have been segmented in
a preliminary step. A number of methods have been described in the literature to fulfil this
time-consuming step, using pattern matching (Denney 1999), snakes (Guttman et al
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1994,Radeva et al 1997), or spline modelling (Amini et al 1994, Kraitchman et al 1995, Kumar
and Goldgof 1994, Young et al 1995), with a different level of automation, none being fully
automatic at this time.

As the information given by the tag pattern is essentially sparse, each method has to define an
interpolation scheme so that spatial derivatives (gradients, and therefore, strains) can be
computed. In the work of Huang and Amini (1999), Moulton et al (1996), Öztürk and McVeigh
(1999a) and Radeva et al (1997), the deformation is modelled with B-spline tensor products
in Cartesian space, with some variety in the way they are estimated from the data. In Declerck
et al (1998a, 1999) and O’Dell et al (1995), the deformation is also modelled using Legendre
polynomial or B-splines, but in a particular polar geometry (planispheric or prolate spheroidal
respectively). In those methods, the shape of the LV is not modelled as a geometric object, but
the deformation space is defined in prolate spheroidal coordinates which are roughly adapted
to the shape of the LV. On the contrary, in the work of O’Donnell et al (1996), Park et al
(1996), Young and Axel (1992) and Young (1998), the LV-shape is approximated with a model
on which finite elements bases are defined to generate a continuous deformation: volumic
superquadric with parametric offsets in O’Donnell et al; volumic deformable superquadric in
Park et al; or 16-element cubic polynomials in Young’s work. Only the work of Denney and
McVeigh (1997) gives a method other than the approximation of the displacement field by a
continuous function. In this method, the myocardial wall is decomposed into a finely spaced
mesh where displacement at each node is constrained via finite difference analysis by a
smoothness constraint. Between nodes of the mesh, the displacement field is approximated
using linear interpolation, but the noise modelling in the smoothness constraint is a very
important part of the characteristic of the deformation model.

Each of the interpolation procedures described above uses an LV deformation model.
Therefore, for a given dataset, the resulting strain computed through this modelling will be
different for each method. In order to try to quantify the differences between these methods
and comment on some of their characteristic features, we present in this paper the results of a
series of experiments in order to compare four methods. In chronological order of publication,
those methods are:

• tag strain (E) analysis (TEA) (O’Dell et al 1995)
• discrete model-free (DMF) (Denney and Prince 1995)
• four-D tag strain (E) analysis (FTEA) (Declerck et al 1998a, 1999)
• tag tissue tracker (TTT) (Öztürk and McVeigh 1999a).

All of these methods suppose pre-segmentation of the tag lines, which is provided for instance
by the FindTags package (Guttman et al 1994). The choice of these methods was motivated
by the variety of techniques they use; this variety is also representative of all the possibilities
represented in the literature—LV-specific or not, discrete or continuous in space, incorporating
a time dependency constraint or not. Though this choice is restrictive and arbitrary, the
experiments which are described in this paper design a framework for whoever desires to
compare another method with these four.

The paper is organized as follows: in section 2, we give a short description of the methods we
compare in this article. In section 3, we describe the different experiments we process for the
comparison, and we draw conclusions based on the results of the experiments in section 4.

2. Theory: description of the four reconstruction methods
We recall here the main ideas of the displacement field reconstruction methods. Further details
are available from the references. Using three perpendicular tag orientations, two perpendicular
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to the short-axis (SA) planes and one perpendicular to the long axis (LA) (McVeigh 1998,
McVeigh and Atalar 1992), all four methods compute the backward displacement field 
between a time tn and the reference tagging time tT (figure 1). The backward displacement field

 is then inverted into fn for each time frame for 3D methods (DMF, TEA), or into f with
a continuous time parametrization for 4D methods (TTT, FTEA). The displacement can
therefore be computed on material points over the sequence.

In the following, the methods which model only the backward transformation (DMF, TEA)
are presented first, then follow the descriptions of the methods which perform a computation
of the forward transformation (TTT, FTEA):

a. Backward transformations

DMF: Cartesian

TEA: polar.

b. Forward transformations

TTT: Cartesian

FTEA: polar.

2.1. 3D inverse methods
2.1.1. DMF: discrete model-free—The discrete model-free (DMF) algorithm (Denny and
Prince 1995) uses finite difference analysis to reconstruct displacement and strain from tag
lines and user-defined myocardial contours. For each imaged time frame, the DMF first
constructs a 3D segmentation of the LV wall on a regularly spaced discrete grid of points from
the user-defined endocardial and epicardial contours. The grid spacing is equal to the pixel size
in the MR image. A displacement vector is estimated for each grid point in the LV segmentation
that maps the grid point back to its end-diastolic position. Defining  to be a vector
containing all the displacement vectors at time tn to be estimated (this  compiles all the
evaluations of  at the grid points, Id designating the identity), the one-
dimensional displacement constraints obtained from the tag line data can be written as the
matrix equation , where  is a vector containing the one-dimensional tag
displacements and E is a matrix containing the undeformed tag plane normals. Since the grid
spacing is small compared with the tag line spacing, there are many more unknown
displacement vectors than tag line constraints, and a smoothness constraint is required to
reconstruct . DMF uses the smoothness constraint:

(1)

where ui and xi are the ith components of the spatial coordinate displacement field u = f-Id and
the spatial coordinate position vector x respectively. The smoothness constraint in equation (1)
minimizes the spatial variation of the displacement field, it can be modelled by setting the
differences between pairs of displacement vectors on the spatial point grid equal to zero mean
random variables. These differences can be stacked in the matrix equation , where
S is a matrix in which each row contains zeros except a 1 and a -1 in the appropriate column
(see Denney and Prince (1995) for more details). V is a vector-with zero mean random variables
with scalar covariance matrix that models the spatial change in displacement between two
neighbouring points.
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The linear minimum mean-square estimate of  from the tag line and smoothness
constraints is then obtained by solving the following linear system

(2)

where α2 is a weighting parameter that controls the smoothness of the resulting estimate. Small
values of α2 give more weight to the tag line measurements and result in a reconstructed
displacement field with higher spatial resolution but more sensitivity to noise. Large values of
α2 give more weight to the smoothness constraint and result in lower spatial resolution but less
sensitivity to noise. For all experiments in this paper, we used empirically determined values
of α2 = 1 at early systole gradually decreasing to α2 = 0.134 at end systole (0.134 being the
inverse of the corresponding time slot; see Denny and Prince (1995) for more details).

Strain is computed by first converting the reconstructed displacement field to material
coordinates using linear interpolation. The displacement gradient is then computed using a
finite difference derivative approximation averaged over a 3 × 3 × 3 point neighbourhood.
Finally the Langrangian strain tensor is computed from the displacement gradient.

2.1.2. TEA: tag strain (E) analysis—For the 3D reconstruction of , we use a series
expansion expressed in a dimensionless prolate spheroidal coordinate system [λ*,φ,θ]. λ*
represents wall depth and has values of zero at midwall, -0.5 at the endocardial surface, and
0.5 at the epicardial surface. φ, θ represent azimuthal and circumferential angles, respectively.
Using analogy to the spherical harmonic series (Press et al 1992), displacement in the radial
coordinate direction, λ, can be represented as

(3)

 are the associated Legendre polynomial functions and ar,l,m the unknown coefficients. The
number of terms included in the series expression is given by the parameters nr and nl. Similar
expressions are used to model the angular displacement in the longitudinal and circumferential
directions, δφ and δθ. The measured displacements in X, Y and Z directions are projected onto
the local prolate spheroidal coordinate unit vectors and the δλ, δφ and δθ series coefficients
are determined simultaneously.

The backward displacement field is inverted at the points where the strain is computed using
a gradient descent approach. Iterations are stopped when an arbitrary precision is reached.

The fit to the prolate spheroidal coordinate-based model is preceded by a correction for the
bulk motions of the ventricle. This is necessary because the origin and long axis of the prolate
spheroidal coordinate system are singularity points which should be kept out of the
myocardium.

This 3D kinematic model functions to interpolate the myocardial motion between samples in
space, to filter out noise in the sampled data and to facilitate the computation of the local
displacement gradients used for strain calculation. In our experiments, we choose nr = 1 and
n1 = 5.

2.2. 4D forward methods
2.2.1. TTT: tag tissue tracker—Initially, for each short axis image plane (i), time frame
(n) and short axis tag stack (s), a two-dimensional B-spline field is formulated to approximate
the one-dimensional displacement of a tag surface:
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(4)

In the above equation, dback is the one-dimensional tag displacement from tn to tT, B is the B-
spline basis function, x and y are image coordinates, u and v, the B-spline parameter directions
and Cback refers to control point values. Summation is done over all the defined control point
2D tensor products for a given image location. Cubic splines with a homogeneous know
sequence in each direction (Farin 1989) and a 10 × 10 control point density are used in this
study and are estimated by least-squares minimization.

Once we calculate displacement fields of both tag stacks at a given short-axis image plane and
time frame, we can determine two components of the past total trajectory of any tag point. The
final inverse motion field should give for each point the 3D vector pointing to its reference
material point at the undeformed state. The missing component, the SA through-plane motion,
is computed from LA images as follows: (a) a 2D B0-spline field is fit for the displacement on
each long axis imaging plane; (b) this parametric field is then evaluated at each SA image plane
intersection line; (c) through-plane displacement information coming from all LA images is
used to fit a second field in each SA plane.

If care is taken to use the same region of interest in both SA tag displacement field fitting and
the last step of long-axis analysis, we can describe a single formula for a B-spline inverse
deformation field:

(5)

This similar to equation (4), but the final displacement  is now a vector. For each time
frame (n), using equation (5) three-dimensional inverse displacement vectors  of all short-
axis tag points Tn,m are calculated. The forward deformation Un,m at the corresponding point
at tagging time should be the inverse (-Dn,m).

The forward deformation un = Id as a three-dimensional B-spline tensor product for a given
time frame (n) can be described, for a material point x, as:

(6)

In this equation, the sum for a given material point is done over the entire defined 3D tensor
product of basis functions and control points [Cn]. As for the inverse case, cubic B-splines are
used and control density is chosen as 8 × 8 × 8.

After 3D forward deformation field is constructed for each time frame, a 1D time smoothing
is performed on control points. For this time smoothing we use cubic splines and a number of
control points equal to 60% of the number of time frames. We now describe the motion of the
heart as a four-dimensional B-spline forward motion field as

(7)

u being the displacement f - Id.

In this equation, the sum for a given point in space and time is done over the 4D tensor product
of the basis functions and the control points.
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2.2.2. FTEA: four-D tag strain (E) analysis—The backward transformations 
deforms a point x onto a point for which the coordinates are defined as a tensor product of B-
spline curves (Declerck et al 1995, 1997), as for the B-solid defined in (Radeva et al 1997) or
for the forward transformation in TTT:

(8)

where we define  as the set of 3D control points, and for the x coordinate for instance,
 the ith cubic B-spline basis function of degree K and nx the number of control points (Farin

1989).

The transformation is estimated by minimizing a criterion which is the weighted sum of the
two following terms:

a. A data term, which is the sum of square distances of each deformed tag points from
its tagging plane. This term incorporates equally all tag displacement constraints at
once.

b. A smoothing term, which is the integral of the square of the second derivatives of
.

The criterion is quadratic in the control points . We are therefore guaranteed to find
the unique global minimum provided the criterion is positive definite. In our implementation,
the criterion is minimized with a conjugate gradient method, and the number of control points
is set to 8 × 8 × 8.

The transformations  are estimated sequentially, using  as the initial
transformation for the conjugate gradient (identity for n = 0). With all , we compute a 4D
planispheric transformation (Declerck et al 1998b). For a material point x, we define two angles
θ, φ and a distance r as for the prolate spheroidal system. The planispheric coordinates (X, Y,
R) are expressed as follows:

(9)

where σr is such that X, Y and Z are dimensionless numbers of the same range. These
planispheric coordinates are deformed by f with the following scheme:

(10)

where a0...5 are B-spline tensor products of time and space. The equations in X and Y are a 2D
local similarity transform (a uniform scaling, a rotation and a translation) and the equation in
R is a local affine: Declerck et al (1998b) describes how these equations (10) are related to the
local motion of the myocardium as it contracts (wall thickening, long-axis twist and
shortening).

To compute f, we use the series of pairs of matched points between time tT and each time frame
tn that all the computed  provide. For each n, each tag point Tn,m is matched to its deformed
tag point at tT, which is estimated as being . This point should be transformed by
f into Tn,m itself. We thus can write a least-squares criterion to estimate f as follows:
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(11)

where d(·; ·) is the distance and αn,m a weighting coefficient whose value is related to the

reliability of the pair  (chosen as 1 in our experiments). Minimizing ε
for f is done identically as in Declerck et al (1998b).

2.3. Summary of features for the four methods
We summarize here in table 1 the characteristic features of the four methods, including some
characteristic computational times, for a typical sequence of 12 images, on a state-of-the-art
workstation (250 MHz).

2.4. Uniformity of data processing
Before starting the experiments, we need to make sure that the method will be processed on
the same data and the strain computation will be computed on the same material points. Due
to the generation of the tag pattern, there is a delay between the detection of the peak of the R
wave and the acquisition of the first image (9.2 ms with our pulse sequence). Each image is
acquired during 35 ms (11 lines of k-space with TR = 3.1 ms). Therefore, between the first
point and the last point acquired in k-space, there is a delay of 35 ms which is enough for the
heart to move a few millimetres. So the tag points which one detects on the first time frame
are slightly deformed and are not on perfectly parallel planes. It is therefore necessary to
compute the equations of the tag planes in order to write the 1D constraints on the displacement
field (figure 1). None of the methods we cite from the literature describe how to compute these
equations, so we insert this procedure in this paper, as there may be multiple methods for doing
so. Second, as the strain is generated on material points inside the myocardium, we explain the
method we use to generate the material points mesh used by all four reconstruction methods.

2.4.1. Reconstruction of tag planes—In this study the tag plane pattern is fully defined
once we know the normal of the tag plane, the spacing between consecutive tag planes and the
position of one point in a plane (an offset position). In the protocol we used for imaging
(McVeigh 1998, McVeigh and Atalar 1992), the tag normal is reliable (it is parallel to the
readout gradient), but the tag spacing is not. As a matter of fact, we noticed a difference of
around 2% in the tag spacing obtained from the images in non-moving parts of the body (liver,
etc) and the expected tag spacing computed from the pulse sequence, due to a slight error in
the implementation of the pulse sequence on the scanner.

The planes are approximated with a least-squares fit from the points in the myocardium at time
t0 (first time slot). The normal to the tag planes is known from the image headers written by
the scanner. The motion of the heart during the 9.2 ms duration of the tag sequence generation
is neglected.

2.4.2. Heart wall mesh generation—The mesh generation is done using the method of
the TEA program. The contours generated in the segmentation program (FindTags) are
parametrized in prolate spheroidal coordinates. Each material point x has prolate spheroidal
coordinates (λ, θ, φ). The endocardial and epicardial surfaces are approximated by fitting a
spherical harmonic surface (Press et al 1992) as a function of the two angles θ and φ:∧ (θ,
φ). This approximation allows us to render a smooth but reliable surface of the LV wall. Some
points are chosen along this surface for a discrete set of θ and φ for the analysis. By
differentiating the equation of Λ(θ, φ), it is possible to generate the tangent and normal vector
to the surfaces, and therefore to define local radial, circumferential and longitudinal directions,
which set a local coordinate system we use for the strain analysis.
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3. Experimental methods
In this section we develop the protocol we used to test the different methods. Ideally, we would
proceed using a synthetic heart motion, but unfortunately, all simulators we found in the
literature (Arts et al 1992, O’Dell et al 1995, Waks et al 1996, Young 1998) use a prolate
spheroidal coordinate system to define the motion. As one of our methods (TEA) also uses the
prolate spheroidal coordinate system, it obviously has an advantage under these circumstances
and any comparison would have been biased. Therefore, the experiments were done on real
data.

First, to assess the agreement between the motion reconstructions on the same data, we
computed the strain tensor on a normal heart where particular care was taken to estimate the
tag point locations. This dataset had the minimum possible outliers or errors in the tag detection
procedure due to repeated manual tuning of the segmentation. For this reason, it will be named
the ‘golden’ dataset: it is not as ideal as a synthetic motion for which displacement and strain
are exactly known (this would be a ‘gold’ standard), but it is a very low-noise representation
of the motions each of the methods will need to model.

The next two experiments were designed to assess the sensitivity to noise and the spatial
resolution of the methods. These can show the sensitivity to high or low spatial frequency of
deformation: this way, one can deduce the sensitivity of the displacement and strain
computation with respect to the tag detection software.

A round robin of tests was also performed using the ‘golden’ dataset to cross-validate the
reconstruction methods. Each method is used to generate a displacement field which is
approximated using the other methods. These motions are as close as each method can provide
of a realistic motion of an LV. We then use these four synthetic heart motions to perform
quantitative comparison on displacement and strain distributions.

3.1. Strain maps on a normal heart
In the first experiment, we computed the strain tensor using the four methods on the ‘golden’
dataset: the dataset comprises nine short-axis slices (slice thickness of 8 mm, no gap) and six
long-axis slices. Figure 2(a) displays the geometry of the image planes in three-dimensional
space.

For this dataset, an 11 × 18 cylindrical mesh is generated in the midwall using 18 regular
subdivisions in the short-axis (circumferential) planes and 11 subdivisions along the long axis
(figure 2). For clarity, only one point out of two in circumferential (9 instead of 18) and one
point of two in longitudinal directions (6 instead of 11) will have its strain tensor displayed on
the strain maps.

The strain tensor E is the Lagrangian strain tensor rotated in local coordinates in order to fit
with the local geometry of the myocardium. The radial direction r is oriented from endocardium
to epicardium, the circumferential and longitudinal directions c and l follow the mid-wall
contour in the short-axis and long-axis directions respectively. The components of the tensor
are written Eab, where a and b are the directions r, c or l. To make the names easy to understand,
the circumferential strain design Ecc, the radial strain Err, and the longitudinal strain Ell. Unless
specified otherwise, we concentrate on Ecc which has been proven to be a significant parameter
to assess myocardial contractility and function (Croisille et al 1999, Moore et al 1999).

3.2. Noise immunity
The tag detection method defined in Guttman et al (1994) has been shown to be accurate
(Moore et al 1994): with a contrast-to-noise of 10 between the tag centre and background
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myocardium (tag CNR), a tag width of 1.5 pixel, the uncertainty in the estimation of the tag
centre point is 0.1 mm. This uncertainty has been shown to be inversely proportional to the tag
CNR (Atalar and McVeigh 1994). In order to assess the effect of tag detection uncertainty on
the different methods, we study the error of each reconstruction with Monte Carlo simulations
(Press et al 1992), as in Denney and McVeigh (1997).

We used the two extreme time frames of the golden dataset: at end-diastole and end-systole:
the tag points at end-diastole and end-systole are perturbed with 1D Gaussian noise with a
chosen standard deviation σ perpendicular to the direction of the tag plane normal. The
displacement field is then reconstructed for each method for 200 trials. The displacement vector
and strain tensors are computed for each point in the midwall mesh and subtracted to the noise-
free displacement vector and strain tensor, computed from the original tag points at end-diastole
and end-systole. The mean and standard deviation of the difference is computed over all the
points on the mesh for all trials. This experiment is processed for noise σ of 0.1, 0.2, 0.3 and
0.4 mm.

This test was run only to assess sensitivity to spatial noise in the reconstruction of the motion.
For the 4D methods FTEA and TTT, we do not take into account their capacity of interpolation
between time frames and they are run as if they were 3D methods (exact time interpolation at
end-diastole and end-systole).

3.3. Spatial resolution
To assess spatial resolution for each method, ‘cloud’ experiments were done as in Denney and
McVeigh (1997), by reconstructing a displacement field in response to a displacement cloud.
The smallest cloud that can be reconstructed with a certain accuracy (to be defined) is a measure
of the spatial resolution. This method is analogous to defining the modulation transfer function
of an imaging system.

A synthetic displacement field is generated as a local displacement of a point (the centre C of
the cloud) towards a point D. Neighbouring points to the centre are also moved in the same
direction d = CD/||CD||, the amplitude of the displacement is defined with a Gaussian roll-off
from the centre point. The cloud is 3D, so the deformation extends to adjacent slices if the
cloud is wide enough (figure 3).

We generated one cloud displacement for each point of the midwall mesh, for each of the local
radial, circumferential and longitudinal directions and for a sequence of cloud widths (from 4
to 20 mm, every mm). For each cloud deformation, we compute a displacement field and
compute the directional response of the reconstructed field f: knowing the centre of the cloud
C, the amplitude CD = ||CD|| and the direction d of the displacement, we define the directional
response as:

(12)

where 〈. | .〉 is the 3D scalar product.

Let us examine what a typical behaviour of the displacement response will be with respect to
the cloud spatial ‘frequency’ (1/width):

• For an extreme situation where the cloud frequency is zero (which means a cloud of
infinite spread and no roll-off), the displacement is a pure translation in the direction
CD. All methods can perfectly retrieve translational motion and the ratio is 100%.

• Conversely, for a very high (infinite) cloud frequency (which means a single point
displacement), only one point has a significant displacement and the other points do
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not move. The displacement of the centre of the cloud will be practically ignored when
computing the motion, the ratio tends to zero.

Using similar arguments, we can reasonably assume that the response r is a decreasing function
with the cloud ‘frequency’ (1/width). The spatial resolution can be defined as the width
corresponding to a response of 50%.

3.4. Round robin test on normal heart
In this series of experiments, we tested the methods against one another, in order to cross-
validate the techniques. For each method, the displacement field is computed on the golden
dataset and new noise-free tag point are generated from the reconstructed motion. The
displacement field which is obtained is as close the method can get to a real LV motion. It is
actually a good way to build a synthetic model, and the reconstructed motion is actually much
more sophisticated (and realistic) than the models found in the literature.

Once the artificial tag points are computed, the other three methods use those ‘simulated’ points
to compute the displacement field. The RMS error in residual distances between tag points and
deformed tag planes is computed for each method and for each set of generated points. We
also computed in the same way RMS error on Lagrangian strains E.

This produces a matrix in which the first entry is the method which generated the points files
and second entry is the method which computed the displacement field. The value is the RMS
error at end-systole, when the deformation is greatest.

The RMS error which is computed is a classical measure of the standard deviation of the tag
distance distribution. It has to be noticed that the standard deviation is not computed on a purely
Gaussian random variable: on the contrary, the distance between simulated and data tag points
is significantly correlated in space, due to the intrinsic smoothness of (a) the computed
displacement field and (b) the tag data which are detected using the FindTags package, even
after manual correction. The gradient of the residual between two neighbouring tag points will
therefore be small. Moreover, the method used to compute the displacement field forces the
displacement field to be continuous and continuously differentiable, inducing smooth variation
of the displacement field in space. Therefore, the derivatives of the displacement field (from
which strain is defined) also vary smoothly over space and the RMS error is also expected to
be small. If there was no smoothing, the computation of the strain would be highly affected by
the rapidly varying displacement field and its value would not make any physical sense.

3.5. Pathology database
These experiments are designed to evaluate the relative response of each method with respect
to a particular type of motion. We compute a displacement field with each method on a database
of LV data containing:

• five normal humans LVs;
• five infarcted human LVs (with at least 70% LAD and/or RCA occlusion as

determined by x-ray angiogram);
• four dilated cardiomyopathy human LVs;
• five normal canine LVs injected with dobutamine (10 μg kg-1 min-1;
• five right atrial paced canine LVs;
• five right ventricular paced canine LVs (the same subjects as the right atrial paced).
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For each method and each patient, we compute the displacement field and the RMS distance
error between tag points and the simulated tag points defined as for the round robin section
(deformed tag planes intersected with the image planes). Only results at end systole are
displayed, for clarity.

Six graphs are drawn showing RMS distance versus subject for each kind of motion. We assume
that the database we have collected covers a wide range of possible LV motions.

4. Results
4.1. Strain maps on a normal heart

Figure 4 shows the strain map of the golden dataset computed with the four different methods.
All strain maps are plotted on top of each other in order to show the consistency or the
differences in the strain values. Each box represents the evolution over time of the strain,
starting at end-diastole, covering systole and ending after the rapid filling of diastole. The
positions of the boxes represent a map of the myocardial mid-wall, from top to bottom, going
from base to apex and from left to right, going around the septal, anterior, lateral and then
posterior walls.

A first observation of this plot shows that the methods are globally consistent: the trends of
the strain evolution are very similar, even during the rapid filling at early diastole (covered by
only two time frames). As an example, strain values can be used to define end systole. For each
point of the mesh, the strain value Ecc is minimal at a particular time. This time defines the end
of contraction (‘local end systole’) for the piece of tissue around this point. For each point of
the mesh, the four reconstruction methods give different times of end systole. Computing the
standard deviation at each point of the mesh gives a spatial distribution of the dispersion over
the different methods of the definition of the ‘local end systole’. Over the mesh, the dispersion
of the estimation of local end systole is 32 ms ± 24 ms (mean and standard deviation of the
dispersions): these values sit just under the time resolution, showing that, locally, the four
methods find with great consistency the same feature in the evolution of the strain value.

Some more accurate observations point out some noticeable differences:
• The apical values are the least coherent, principally due to the difficulty of defining

radial, circumferential and longitudinal coordinates in this area.
• The strain curves computed from the 4D methods (TTT and FTEA) are significantly

smoother than the ones computed from DMF and TEA which do not perform time
interpolation.

• In the posterior wall, the strain values are obviously different, especially for FTEA
which significantly overestimate the magnitude of the strain, whereas the other three
show more consistency on lower magnitude values.

• The DMF strains are generally lower in magnitude than the TEA and TTT strains,
which are themselves lower in magnitude than the FTEA strains. TEA and TTT curves
are very similar. The FTEA strains are sometimes significantly larger in magnitude
than the other three methods, as in the mid column in the posterior wall.

• Figures 5 and 6 show a similar display of strain curves for Err and Ell. The variability
in Ell is even lower than in Ecc, which is expected knowing that the motion in the
longitudinal direction is less complex by far than the motion in the short-axis plane.
On the contrary, the variability in Err is huge. There is no real trend evident in these
plots, the local wall thickening is estimated with a very high variability from one
method to another. The probable reason for this is the low sampling of the myocardium
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in the radial direction. Considering a 10 mm thick myocardium and a typical tag
spacing of 8 mm, there is only one (maybe two) tag plane(s) which lies in the
myocardium. This is obviously not enough to get a reliable estimate of the strain,
which, as any derivative, is defined using at least two samples of the displacement in
the considered direction. Therefore, the Err strain values are strongly influenced (a)
by the other directions and (b) by the intrinsic properties of the model which is used
to approximate the displacement field. Conversely, this variability in Err may explain
the variability on Ecc too.

Considering all these points, it is now clear that there is a need to compare in a more quantitative
way the four methods we use. This is the purpose of the experiments described in the following
sections.

4.2. Noise immunity
Figure 7 shows the RMS error on Lagrangian strain E in local radial, circumferential,
longitudinal (RCL) coordinates at different input noise levels.

All errors were below 0.02 for a strain value around -0.3 at end systole for these data. Only
Err shows a significant important bias and a high sensitivity. This can be due to two reasons:

a. The Lagrangian strain tensor is intrinsically biased when some noise is added to the
data (Denney and McVeigh 1997).

b. The displacement in the r direction is the one for which there are fewer data, because
there is only one tag line (or two at most) which crosses the myocardium (they are
spaced every 8 mm for a wall thickness of approximately 10 mm). This low definition
naturally increases the sensitivity to noise.

In this experiment, FTEA is the least sensitive to noise of the four methods in all six strains.
DMF, TEA and TTT show similar sensitivities to noise for all strains except in Ecc and Ell, for
which they show more sensitivity. The sensitivity is within acceptable limits for all strain
components (the error value is below 10% of the average value of the strain at end systole),
except for Err.

4.3. Spatial resolution
Figure 8 shows the percent of displacement response for different cloud widths and for the
radial, circumferential and longitudinal directions. As expected, the greater the width, the
higher the response. As a threshold, the width for which the response is 50% is around 6 mm
for DMF, whereas it is 9 mm for TEA and TTT and 12 mm for FTEA. All these values are
close to the intrinsic resolution of the tagged MR images, which is defined by the tag spacing
(between 8 and 10 mm).

4.4. Round robin test on normal heart
The results of RMS error on distance and strain are represented in tables 2 and 3 respectively.
In each row is the name of the method which is used to generate artificial tag data. In each
column is the name of the method which is used to compute the motion from these data.

The RMS error on tag distance shows values which are less than 0.5 mm (one-third of a pixel).
The data here are not corrupted by any noise because the tag points have been artificially
generated from a smooth deformation field. Therefore, the location of tag points, material
points and the values of the strain are precisely known. The error here comes from mainly three
sources:
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a. The intrinsic inaccuracy of the description of a smooth continuous displacement field
with a discretely (and sparsely) sampled set of points. Moreover, the tag points
describe only partial information of the motion of the material points.

b. Round off errors and mathematical approximations during the complex processes of
matrix inversions which are performed in all methods. Due to the partial condition of
the motion written from tag point displacement, these matrices are usually badly
conditioned. For FTEA, for instance, the computation of the  directly in 3D
generates matrices of size 500 × 500, the computation of f directly in 4D generates a
matrix up to 2500 × 2500.

c. The relative differences of the motion models. Of course, a 4D B-spline (like TTT)
can only approximate a sequence of prolate spheroidal harmonic development (like
on TEA) up to a certain precision.

The off-diagonal elements are a combination of all these three reasons, whereas the diagonal
elements of the error matrix are a combination of the first two items:

• The relatively low values of these diagonal terms show the good behaviour of all these
methods and ‘auto-validate’ the concept of reconstruction process. (For further
development of this validation see Öztürk and McVeigh (1999b).)

• The low values of the off-diagonal terms show that all methods are consistent with
one another, each being able to reconstruct within a decent precision the motion
another can generate. Table 3 confirms this statement, showing the RMS error on
strain in the midwall, comparing the strain computed with one method with the target
value computed with the method used to generate the simulated tag data.

The two tables cross-validate the four methods. Figure 9 also illustrates this result showing the
strain map as drawn in figure 4 for the four simulated datasets of the round robin experiment.
The curves are much closer to one another than for the golden dataset. Strain maps plotted for
Ell and Err show a similar behaviour, even if for the latter the concordance was not as striking.
As these strain maps do not provide more significant information than the ones plotted for
Ecc, we do not include these in this paper.

Figure 9 shows the strain map computed with the four methods from the data generated from
DMF. The other maps generated with the other three datasets did not show anything different
from what we want to point out: we choose DMF as it is the method which is most sensitive
to noise and which has least spatial resolution. The strain curves in figure 4 are the most spiky
and irregular, therefore the most challenging to compute for the other three stiffer methods.

The strain maps are much more consistent on this simulated dataset than on the golden dataset.
This shows that each method is able to retrieve each other’s motion field with great precision,
but none of them actually agrees when the motion is reconstructed from real data. Therefore,
in all cases, the modelling of the motion is incorrect (or, to be less dramatic, ‘insufficient’).

As all methods pass the test successfully, the round robin experiment run with DMF, TEA,
TTT and FTEA is not discriminating enough. This is mainly because the tagging process
sparsely samples the real complex motion of the heart and all the methods use some type of
smoothing which is slightly inadequate in all cases: the simulated motion does not reveal all
the complexity of the real motion. This shows the limits of this cross-validation approach.
However, it has to be noticed that these conclusions are drawn on only one dataset.
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4.5. Pathology database
Figure 10 shows the RMS error between real and simulated tag points on the six groups of
subjects. This experiment shows a general homogeneity of the results for all methods, for all
subjects.

The amplitude of the error is higher for normal and infarcted human data than for DCM human
and canine data, because the strains in these hearts are greater. The fifth normal dataset is the
golden dataset, for which tag points have been segmented more carefully than the other normal
hearts, making the distance between simulated and real tag points significantly lower.

The mean error is generally around zero, showing that the estimation of the motion is not biased,
except for normal human hearts with the motion computed with TTT. This bias is probably
due to the a posteriori 4D approximation done on the control points, whereas DMF and TEA
do not perform time smoothing and FTEA computes directly the transformation in 4D.

FTEA gives systematically higher errors and DMF lower results than TEA and TTT, this result
follows the trend shown from the cloud experiment. Examining the strain values showed that
FTEA was in the majority of the cases overestimating the circumferential strain Ecc, as noticed
for the golden dataset. It is interesting to notice that this overestimation could not have been
discovered without the quantitative comparisons that have been performed in the round robin
test. Further investigations will be performed in order to correct this problem on FTEA.

In any case, none of the methods appear to perform better than the others for one type of motion
and worse than the other methods for another type of motion: the order of performance stays
consistent.

5. Conclusion
We have presented a series of experiments which compare different methods for reconstructing
LV motion from tagged MRI with quantitative measures of performance.

The fits to the golden dataset showed that the methods yield noticeable differences in the
displacement and strain, even if the general trends of the motion are apparently correctly
detected. The round robin tests showed that there is no obvious source for these differences in
the ability of the methods to track data: all methods were able to track output from the other
methods, and with much better consistency than from the golden dataset.

There was a consistent trend in the trade-off between spatial resolution and noise immunity.
At one end, DMF uses the least amount of smoothing and, as a result, the spatial resolution is
highest, but it is the most noise sensitive. At the other end, FTEA uses more smoothing than
the other three and is the least noise sensitive, but it has the lowest spatial resolution. TEA and
TTT fall somewhere in the middle. DMF tends to slightly underestimate the Ecc strain
compared with the strains computed from TEA or TTT, whereas FTEA significantly
overestimates it. These results prompted a closer inspection of the FTEA generated
displacements; they were found not to deform enough at the endocardial surface due to an
insufficient ability to ‘bend’. This method will be tuned such that its noise immunity will suffer,
but its ability to bend will increase.

All methods in their current state produced strain maps that were useful for characterizing
myocardial function with high precision. The choice of method will depend on the purpose of
the user: does one need smooth curves which have lower spatial resolution, or, can one tolerate
a higher noise level for better spatial resolution?
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The pathology database experiment shows that none of the methods fails for a particular type
of motion. If one of the methods had failed, then that method should be simply rejected or at
least carefully reviewed. The fact that none of the methods was found to be preferable to the
others is desirable, since for a given study, the exact pathology may not be known beforehand
or there may be multiple pathologies.

The experiments presented in this paper are fully reproducible to any researchers who would
like to perform these tests in order to compare their reconstruction method with these four.
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Figure 1.
The tag plane at tagging time ST deforms into surface Sn at time tn. The backward transformation

 deforms Sn back onto ST. A tag point Tn of a tag line Ln was a point  in ST at tagging
time tT, which gives a one-dimensional constraint on the displacement. Using three independent
tagging directions nT makes the estimation of  possible.
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Figure 2.
(a) The image planes for short- and long-axis data are shown, with the mesh generated for the
golden dataset experiment. L stands for lateral wall, I for inferior, S for septum and A for
anterior. (b) The same as (a), with some images included. One can see on the long-axis image,
the left and right ventricles, the left atrium and the aortic outflow tract. (c) An enlarged view
of (a), with anatomical description of each part of the mesh. (d) An enlarged view of (b), with
anatomical description on the long-axis image. The mesh is shown in transparency.
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Figure 3.
The tag points are displaced around the centre of the cloud given a Gaussian roll-off.
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Figure 4.
Circumferential shortening (Ecc) strain map for the golden dataset for the four methods. Each
box shows the strain Ecc as a function of time over systole and early diastole. Thick lines are
the 4D methods (FTEA and TTT), thin lines are the 3D methods (DMF and TEA). Broken
lines represent the Cartesian methods (DMF and TTT), and full lines represent the ‘polar’
methods (TEA and FTEA).
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Figure 5.
Ell strain map for the golden dataset for the four methods. The display is similar to that in figure
4.
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Figure 6.
Err strain map for the golden dataset for the four methods. The display is similar to that in
figure 4.
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Figure 7.
Noise immunity test: for different noise amplitudes, the mean and standard deviation on error
on Lagrangian strain E in a local coordinate system (radial, circumferential or longitudinal).
The centre of the bar is on the mean value and marked with a sign (○ = DMF, * = FTEA, □ =
TEA, △ = TTT), the bar extends up to one standard deviation above and below the mean (from
lighter to darker boxes, DMF, FTEA, TEA and TTT).
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Figure 8.
Spatial resolution for each displacement direction (radial, circumferential or longitudinal): top,
for different colud widths, the per cent of displacement response for each method (○ = DMF,
* = FTEA, □ = TEA, △ = TTT). Bottom, the corresponding values for response of 50%.
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Figure 9.
Ecc strain maps for the four methods on the datasets generated for the round robin set of
experiments for DMF data. The strain map representation is similar to the one of figure 4.
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Figure 10.
Pathology database: for different types of motion (human normal, infarcted or dilated
cardiomyopathy, canine dobutamine, RA or RV paced), the RMS on error on tag distances.
Each set of error bars represents one patient (numbered from 1 to 5). For each patient, four
error bars are displayed, one for each method (from lighter to darker boxes, ○ = DMF, * =
FTEA, □ = TEA, △ = TTT.
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Table 1
Summary table of the features of the four methods.

Method

Feature DMF TEA TTT FTEA

LV-specific X X
Polar coordinates X X
Cartesian coordinates X X
Discrete X
Backward fit only X X
Backward and forwards fits X X
Time constrained (4D) X X
Computational time 70 min 40 min 30 min 40 min
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Table 2
The methods in each row i are used to generate artificial tag data Ti. The method in each column j is used to compute the motion
from Ti. The figures represent the standard deviation of the RMS error on the distance between (a) the tag points data Ti , and (b)
the tag points simulated with the method Mj.

Method used to generate the
points

Method used for the fit

DMF FTEA TEA TTT

DMF 0.18 0.47 0.25 0.35
FTEA 0.21 0.15 0.14 0.27
TEA 0.23 0.47 0.13 0.37
TTT 0.22 0.42 0.22 0.16
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Table 3
As in table 2, the figures represent the RMS error in strain from the motion computed with method Mj on tag data Ti. The values
have to be compared with the maximum absolute value of strain Ecc, which is 0.3: all of these RMS errors stay below 10% of the
maximal strain value.

Method used to generate the
points

Method used for the fit

DMF FTEA TEA TTT

DMF 0.015 0.018 0.013 0.022
FTEA 0.027 0.011 0.026 0.021
TEA 0.021 0.004 0.023 0.016
TTT 0.024 0.013 0.015 0.016
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