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The human Mediator complex is generally required for

expression of protein-coding genes. Here, we show that

the GCN5L acetyltransferase stably associates with

Mediator together with the TRRAP polypeptide. Yet,

contrary to expectations, TRRAP/GCN5L does not associ-

ate with the transcriptionally active core Mediator but

rather with Mediator that contains the cdk8 subcomplex.

Consequently, this derivative ‘T/G-Mediator’ complex

does not directly activate transcription in a reconstituted

human transcription system. However, within T/G-

Mediator, cdk8 phosphorylates serine-10 on histone H3,

which in turn stimulates H3K14 acetylation by GCN5L

within the complex. Tandem phosphoacetylation of H3

correlates with transcriptional activation, and ChIP assays

demonstrate co-occupancy of T/G-Mediator components at

several activated genes in vivo. Moreover, cdk8 knock-

down causes substantial reduction of global H3 phospho-

acetylation, suggesting that T/G-Mediator is a major

regulator of this H3 mark. Cooperative H3 modification

provides a mechanistic basis for GCN5L association with

cdk8-Mediator and also identifies a biochemical means by

which cdk8 can indirectly activate gene expression.

Indeed our results suggest that T/G-Mediator directs

early events—such as modification of chromatin

templates—in transcriptional activation.
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Introduction

The human Mediator complex is a multisubunit cofactor

that regulates RNA polymerase II-dependent transcription

(Conaway et al, 2005). Although its precise biochemical

activity is poorly understood, it is clear that Mediator plays

multiple roles in regulating the pre-initiation complex (PIC),

which minimally consists of TFIIA, IIB, IID, IIE, IIF, IIH, and

RNA polymerase II (pol II) (Hahn, 2004). For example,

Mediator interacts directly with pol II and helps recruit this

complex to gene promoters (Davis et al, 2002; Näär et al,

2002); Mediator also stimulates the TFIIH-dependent phos-

phorylation of the pol II CTD, which is critical for transcrip-

tion initiation (Kim et al, 1994; Akoulitchev et al, 2000).

Furthermore, Mediator is a general target of DNA-binding

transcription factors. Thus, Mediator is believed to function

in part by communicating regulatory signals from promoter-

and enhancer-bound transcription factors directly to the PIC.

One simple way in which Mediator activity is controlled is

through subunit exchange: addition or subtraction of sub-

units to alter its biochemical function (Taatjes et al, 2004;

Malik and Roeder, 2005). For instance, a cdk8 subcomplex

(consisting of cdk8, cyclin C, Med12 and Med13) can rever-

sibly associate with the ‘core’ Mediator to inhibit its co-

activator function (Taatjes et al, 2002; Pavri et al, 2005).

Notably, core Mediator (B25 subunits and 1.2 MDa in size)

has no known enzymatic functions; however, association

with the cdk8 subcomplex bestows kinase activity (for

example, cdk8) to the complex. Whereas the core Mediator

complex strongly interacts with pol II and potentiates acti-

vated transcription, the cdk8-Mediator complex does not

interact with pol II and is transcriptionally inert (Davis

et al, 2002; Näär et al, 2002; Taatjes et al, 2002). Although

the mechanism by which cdk8-Mediator inhibits activated

transcription is not completely defined, its kinase activity

appears to play an important role. In fact, cdk8-dependent

phosphorylation of cyclin H (a subunit of TFIIH) can inhibit

TFIIH-dependent phosphorylation of the pol II CTD, which

facilitates initiation of transcription (Akoulitchev et al, 2000).

Interestingly, this cdk8-dependent modification does not

occur in yeast; rather, an alternate inhibitory mechanism

appears to function in yeast whereby cdk8 itself phospho-

rylates the pol II CTD before PIC assembly (Hengartner et al,

1998). Apart from cyclin H and the pol II CTD, however, few

cdk8 substrates have been identified in humans.

Although a vast body of literature has demonstrated that

the cdk8 subcomplex can negatively regulate transcription, a

number of observations suggest that the cdk8 subcomplex

may play some roles in activating gene expression (Liu et al,

2004; Wang et al, 2005; Donner et al, 2007). First, activators

can interact with either the core Mediator or cdk8-Mediator,

suggesting that cdk8-Mediator may play some roles in the

activation of transcription (Taatjes et al, 2002). Second,

although the majority of activators target subunits shared

between core- and cdk8-Mediator, a few are known to recruit

Mediator directly via the cdk8 subcomplex (Zhou et al, 2002;

Fryer et al, 2004; Kim et al, 2006; Wang et al, 2006). Third,

recent work in human cells suggests that cdk8-Mediator is
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recruited at an early stage in the activation of some genes. For

example, at genes regulated by the retinoic acid receptor

(RAR) or CEBPb, recruitment of cdk8-Mediator occurs before

activation of transcription; moreover, only upon loss of the

cdk8 subcomplex—leaving behind core Mediator—is pol II

recruited and transcription activated at these genes (Mo et al,

2004; Pavri et al, 2005). These results and others (Andrau

et al, 2006; Zhu et al, 2006) suggest that cdk8 recruitment is

temporally regulated and can correlate with transcription.

However, a biochemical mechanism for cdk8-dependent acti-

vation of transcription has remained elusive.

In addition to Mediator and the PIC, histone modifications

play major roles in the regulation of transcription (Lee and

Workman, 2007; Shahbazian and Grunstein, 2007). Specific

histone modifications—such as acetylation and phosphory-

lation—work to alter chromatin structure and recruit co-

activators or co-repressors to specific genomic loci. It is

becoming increasingly evident that histone marks work in

combinatorial fashion and that modification at one site can

promote or antagonize modifications at other sites. One

example is tandem S10/K14 phosphoacetylation of histone

H3, which correlates strongly with active expression of at

least a subset of human genes. Although the precise mechan-

isms by which tandem H3 phosphoacetylation affect tran-

scription are not completely defined, it is clear that both

modifications can stimulate or antagonize recruitment of co-

regulatory factors such as 14–3–3 proteins or HP1 (Mateescu

et al, 2004; Fischle et al, 2005; Hirota et al, 2005; Winter et al,

2008).

Over the years, the identities of many enzymes that post-

translationally modify histone substrates have been deter-

mined, with most isolated as components of large, macro-

molecular complexes. These distinct, multi-subunit

chromatin-modifying complexes possess many shared sub-

units. For example, GCN5 is present in multiple chromatin-

modifying complexes in yeast and humans (Lee and

Workman, 2007). Notably, human GCN5L interacts directly

with the 430 kDa TRRAP polypeptide (McMahon et al, 2000;

Park et al, 2001), which is believed to function primarily as a

scaffold protein because it has no known enzymatic function

but is found in a number of distinct multi-subunit complexes

that play varied roles in the cell (Robert et al, 2006; Lee and

Workman, 2007). Interestingly, the Nut1 subunit of the yeast

Mediator complex possesses sequence similarity to GCN5,

and yeast Mediator complexes display HAT activity in a

Nut1-dependent fashion (Lorch et al, 2000). However, the

Nut1 subunit is not conserved in higher organisms, and

human Mediator is not known to interact with histones in

any way.

In this study, we describe the isolation and biochemical

activity of a cdk8-Mediator complex that contains the TRRAP

and GCN5L polypeptides. Significantly, the cdk8 and GCN5L

subunits within this ‘T/G-Mediator’ complex work coopera-

tively to catalyze tandem phosphoacetylation of H3 S10/K14,

providing a mechanistic basis for GCN5L association with

cdk8-Mediator. Because tandem H3 phosphoacetylation is

associated with active transcription, these results identify a

biochemical role for cdk8 in transcriptional activation. As

expected, however, the cdk8-containing T/G-Mediator com-

plex was unable to directly activate transcription in a highly

purified, reconstituted human system, suggesting that

Mediator itself performs multiple roles in the regulation of

gene expression, including potential early events such as

post-translational modification of chromatin.

Results

TRRAP/GCN5L stably associate with human Mediator

This work initiated from an unexpected observation made

upon purification of Mediator from partially purified extracts.

A typical purification starts with fractionation of HeLa nucle-

ar extract over a phosphocellulose column; Mediator will

elute in the P0.5 M and the P1 M fractions. The P1 M fraction

is enriched in the core Med26-containing Mediator complex,

whereas the P0.5 M fraction is enriched in the larger cdk8-

containing Mediator complex (Figure 1A). Further purifica-

tion using a VP16 activation domain affinity resin indicated

that Mediator samples derived from the P0.5 M fraction—but

not the P1 M fraction—showed the presence of a polypeptide

unique to Mediator that co-migrated with the complex on a

glycerol gradient (Figure 1B and data not shown). This

polypeptide was of high molecular weight (4300 kDa),

enabling its easy detection by gel electrophoresis and silver

staining. Notably, we observed similar results using different

activation domains for purification from the P0.5 M fraction

(data not shown).

To identify this unknown polypeptide, glycerol gradient

fractions 15–17 (Figure 1B) were pooled, concentrated by

TCA precipitation and separated by SDS–PAGE. A tryptic

digest of the unknown band analyzed by mass spectrometry

revealed 31 peptide matches to TRRAP/PAF400, a protein

found in a number of large, multi-subunit complexes

(McMahon et al, 1998; Ogryzko et al, 1998; Wieczorek

et al, 1998; Ikura et al, 2000). Further MS analysis of

other excised bands from the P0.5M-derived Mediator

sample identified predicted Mediator subunits, with the

exception of one 95 kDa band that was identified as GCN5L

(Table I). TRRAP interacts directly with GCN5L and both

subunits are found together in other large protein complexes

such as TFTC and STAGA (Martinez et al, 1998; Wieczorek

et al, 1998). However, MS analysis did not identify any

additional subunits from TFTC/STAGA in these samples.

Thus, we suspected that TRRAP/GCN5L might associate

with Mediator.

As a first step to investigate a potential TRRAP/GCN5L

interaction with Mediator, we generated antibodies against

TRRAP and tested whether these antibodies would immuno-

precipitate the Mediator complex from HeLa nuclear extracts.

As shown in Supplementary Figure 1, Mediator subunits

co-immunoprecipitated with the anti-TRRAP antibody. In a

reciprocal experiment, TRRAP and GCN5L were observed to

co-IP on a cdk8 antibody resin (Supplementary Figure 1). To

further test this association, Mediator was affinity-purified

from the P0.5 M fraction, eluted and incubated over an anti-

TRRAP antibody resin or an anti-Med26 resin. Significantly,

the purified Mediator complex specifically bound the anti-

TRRAP antibody resin, whereas the same Mediator sample

did not bind an anti-Med26 column (compare lanes 2 and 4,

Figure 1C). Moreover, Mediator could be eluted from the anti-

TRRAP resin with its peptide antigen (Figure 1C, lane 3).

Coupled with the MS data (Table I), the results from Figure 1

suggested that TRRAP and GCN5L can stably associate with

Mediator.
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TRRAP/GCN5L interact with the cdk8-Mediator complex

Mediator exists in two major forms in human cells: a smaller

form that interacts strongly with pol II and activates trans-

cription, and a large form that does not interact strongly with

pol II and does not directly activate transcription. Notably,

the ‘small’ and ‘large’ Mediator complexes differ in their

subunit composition: the Med26 subunit preferentially as-

sociates with the small, active complex, whereas cdk8, cyclin

C, Med12 and Med13 associate with the large Mediator

complex (Taatjes et al, 2004). Thus, with the exception of

Med26, the small Mediator complex represents a core

Mediator structure that is present within the large, cdk8-

Mediator complex.

To determine whether TRRAP/GCN5L specifically associ-

ate with the Med26- or the cdk8-containing Mediator complex

(or both), we first examined how TRRAP and GCN5L tracked

with Mediator subunits over a series of ion-exchange col-

umns. Although the P0.5 M fraction is enriched in cdk8-

Mediator, a small amount of Med26 remains in this fraction

(Figure 2A). We can further segregate Med26 from cdk8 on a

HiTrap Q column. As shown in Figure 2A, TRRAP, GCN5L,

cdk8 and other Mediator subunits co-eluted in the P0.5M/

QFT fraction, whereas Med26 was no longer detectable. This

suggested that TRRAP/GCN5L associates specifically with the

cdk8-Mediator complex. Further purification from the

P0.5M/QFT fraction using affinity chromatography followed

by glycerol gradient sedimentation indicated that TRRAP

and GCN5L co-purified with cdk8-Mediator using this more

rigorous purification protocol (Figure 2B–D). As expected,

the STAGA subunits SAP130 and SPT3 were not detected in

this sample (Figure 2D). Importantly, similar results were

obtained using different affinity chromatography resins

(for example, SREBP-1a or p53 instead of VP16—see

Supplementary Figure 2). In addition, binding assays with

anti-Med26 or anti-cdk8 antibody resins indicated specific

association of TRRAP/GCN5L with cdk8-Mediator but not

core Mediator (Supplementary Figure 3).

As a final means to confirm TRRAP/GCN5L association

with the cdk8-Mediator complex, we used electron micro-

scopy (EM). Core Mediator and cdk8-Mediator can be readily

distinguished with EM by completing 2D classification of

single-particle images, as shown in Figure 3A: the larger

cdk8-Mediator complex has a size and shape distinct from

core Mediator. As expected, analysis of the purified sample

on a gradient (5–15%) polyacrylamide gel indicated the

presence of polypeptides specific for cdk8-Mediator (for ex-

ample, Med12 and Med13), whereas Med26, a subunit spe-

cific for core Mediator, was not observed (Figure 3B). This

result was substantiated upon EM analysis of the sample: the

2D classes generated from the data revealed complexes of

size and shape consistent with cdk8-Mediator, but not core

Mediator (representative classes shown in Figure 3C).

Table I MS results from P0.5 M-derived Mediator samples purified
using affinity chromatography and glycerol gradient sedimentation

Identified subunit Unique peptides

TRRAP/PAF400 31
Med13 (250) 15
Med12 (240) 13
Med1 (220) 21
Med14 (150) 18
Med23 (130) 13
Med24 (100) 2
Med16 (95) 5
GCN5L 8
Med17 (78) 7

Protein bands 70 kDa and larger were excised from a polyacryla-
mide gel, digested and examined as described in Materials and
methods. Data shown are from p53-purified T/G-Mediator; similar
results were obtained using VP16 or SREBP-1a activation domains
for purification.
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Figure 1 TRRAP/GCN5L associates with human Mediator. (A) TRRAP/GCN5L and cdk8-Mediator are enriched in the P0.5 M fraction; core
Mediator is enriched in the P1 M fraction. Each lane (PFT, P0.3, P0.5, P1 M) contained 11mg total protein. (B) Silver-stained gel (7%
acrylamide) of glycerol-gradient fractions from VP16 affinity purification. The identities of the subunits are indicated at the right; arrow
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this figure is available at The EMBO Journal Online.
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Taken together, the results summarized in Figures 1–3

indicate that TRRAP/GCN5L stably associate with the cdk8-

Mediator complex but not the core Mediator complex. For

simplicity, we will refer to this complex as T/G-Mediator.

T/G-Mediator cooperatively phosphoacetylates

S10/K14 within histone H3

Having established that TRRAP/GCN5L can stably associate

with cdk8-Mediator in human cells, we examined whether

T/G-Mediator would display HAT activity. These experiments,

which are described further in Supplementary data, demon-

strated that T/G-Mediator, but not core Mediator, specifically

acetylates lysine 14 on histone H3 (Supplementary Figure 5).

Because T/G-Mediator also contains a kinase, cdk8, we tested

whether T/G-Mediator might also phosphorylate histones;

these experiments were prompted in part by related work in

our lab that demonstrated that the cdk8 subcomplex itself

was a potent histone kinase (MTK and DJT, unpublished

data). As described further in Supplementary data, kinase

assays showed that T/G-Mediator, but not core Mediator,

specifically phosphorylates serine-10 on histone H3

(Supplementary Figure 6 and 7).

Individually, H3S10 phosphorylation and H3K14 acetyla-

tion are histone modifications linked to transcriptional acti-

vation. However, mounting evidence suggests that both

modifications are important for expression of at least a subset

of genes in yeast and mammalian cells (Clayton et al, 2000;

Lo et al, 2000; Thomson et al, 2001). Although the data

summarized in Supplementary Figures 5 and 7 indicated

T/G-Mediator specifically phosphorylates H3S10 and acety-

lates H3K14, we could not conclude that T/G-Mediator was

performing both modifications on the same H3 tail. To

demonstrate this, we incubated T/G-Mediator with recombi-

nant core histone octamers in the presence of both acetyl CoA

and ATP. Significantly, immunoblotting experiments with

antibodies specific for S10/K14 phospho-acetylated H3 con-

firmed that T/G-Mediator was catalyzing H3S10 phosphory-

lation and H3K14 acetylation on the same H3 tail (Figure 4A).

Because H3S10 phosphorylation is known to stimulate GCN5

acetylation of H3K14 (Cheung et al, 2000), we also ran

separate acetyltransferase assays with T/G-Mediator in the

presence or absence of ATP. As expected, the added ATP had

a notable affect on histone acetylation by T/G-Mediator

(Figure 4B, compare lanes 2 and 4). In particular, the low

levels of H2A, H2B and H4 acetylation by T/G-Mediator
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(B) Purification protocol used for isolation of T/G-Mediator. (C) Silver-stained gel (7% acrylamide) showing glycerol gradient fractions from
the purification outlined in (B). Subunit identities are shown at the right. (D) Western blots against various subunits from the T/G-Mediator
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Med26 is specific to core Mediator. A full-colour version of this figure is available at The EMBO Journal Online.
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decreased to nearly undetectable levels in the presence of

ATP, whereas acetylation of H3 remained high. This data is

consistent with previous studies demonstrating cooperativity

between H3S10 phosphorylation and H3K14 acetylation

(Cheung et al, 2000; Clements et al, 2003) and offers further

evidence that T/G-Mediator can perform both modifications

on the same histone H3 tail. Figure 4C also demonstrates

cooperativity between H3S10/K14 within T/G-Mediator, as

mutation of S10 within the H3 tail significantly reduced

acetylation at H3K14. Taken together, the results summarized

in Figure 4 indicate that cdk8 and GCN5L work cooperatively

within a single complex, T/G-Mediator, to perform tandem

phosphoacetylation of histone H3.

T/G-Mediator modifies H3 within chromatin templates

We also performed experiments that demonstrated that

T/G-Mediator phosphoacetylates H3 within chromatin

templates; these experiments are described further in

Supplementary data and are shown in Supplementary

Figure 8.

Co-occupancy of T/G-Mediator subunits at the CDKN1A

and egr1 genes

To investigate the association of TRRAP with a cdk8-contain-

ing Mediator complex in vivo, we tested for their recruitment

to human genes using ChIP assays. We focused on three

well-characterized human genes whose activity could be

easily manipulated in cell cultures: CDKN1A, egr1 and c-fos.

CDKN1A is a canonical p53 target gene whose transcription is

strongly stimulated by Nutlin-3, a pharmacological inhibitor

of the p53 repressor MDM2 (Vassilev et al, 2004; Donner et al,

2007). Nutlin-3 treatment of HCT116 cells (wt p53) leads to

sustained accumulation of the CDKN1A mRNA (Figure 5A).

egr1 and c-fos are genes whose transcription is stimulated

in quiescent cells via growth factor-mediated signalling.

Consistent with their classification as immediate-early

cdk8-Mediator

TRRAP
Med13

Med1

Med14
Med23

Med15, Med24
GCN5L, Med16

Med17

Med27, Med4

Med7, cyclin C
Med8, Med6

cdk8

Med12

Med25

*

1 2

3 4

T/G-Mediator

A B

C

Core Mediator
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bar: 150 Å. (B) Silver-stained gradient (5–15% acrylamide) gel
showing the T/G-Mediator sample used for EM analysis. Note
that only prominently staining bands are identified and smaller,
poorly staining polypeptides representing other consensus Mediator
subunits are not labelled (Sato et al, 2004). Asterisk: insulin (used
for TCA precipitation). (C) EM analysis indicates that T/G-Mediator
sample has a size and shape consistent with cdk8-Mediator.
Representative 2D classes are shown; each class (1–4) was obtained
by averaging B150 aligned single-particle images. Scale bar: 150 Å.
A full-colour version of this figure is available at The EMBO Journal
Online.
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version of this figure is available at The EMBO Journal Online.
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genes, egr1 and c-fos mRNAs rapidly but transiently accumu-

late upon serum replenishment of serum-starved HCT116

cells (Figure 5B and data not shown). ChIP analysis at

the CDKN1A promoter reveals that, upon induction, pol II

recruitment increases at both the transcription start site

(amplicon B) and the intragenic region (amplicon C), thus

revealing the presence of elongating pol II. Interestingly,

significant amounts of TRRAP can be detected at the

CDKN1A proximal promoter even before p53 activation,

and TRRAP association increases modestly upon induction.

Similarly, ChIP assays with cdk8 antibodies reveal that it is

recruited to the CDKN1A locus upon p53 activation.

Importantly, cdk8 is most likely recruited as part of the

Mediator complex, as indicated by concomitant association

of Med1, Med12 and cyclin C to the active CDKN1A locus

(Donner et al, 2007). These results are consistent with a cdk8-

containing Mediator complex coexisting with TRRAP at the

active CDKN1A locus, suggesting the presence of T/G-

Mediator. ChIP analysis of the egr1 or c-fos locus produced

almost identical results (Figure 5B and D and data not

shown), also consistent with T/G-Mediator occupancy at

each promoter. ChIP assays using antibodies recognizing

tandem phosphoacetylated H3 at the CDKN1A, egr1 and

c-fos loci are described in Supplementary data.

Knockdown of cdk8 dramatically reduces

phosphoacetylated H3 levels in human cells

Because of the inherent difficulty in identifying and proving

that a human gene is specifically dependent upon the chro-

matin-modifying activity of T/G-Mediator (and not some

other recruited kinase or acetyltransferase), we instead

examined how shRNA-mediated knockdown of cdk8 affects

global levels of phosphoacetylated H3. As shown in

Figure 5E, knocking down cdk8 reduced the level of phos-

phoacetylated H3 by 80%. This corroborates our in vitro data

and clearly demonstrates that cdk8 acts as a histone kinase in

human cells. Furthermore, because cdk8 knockdown impacts

the dual H3 S10P/K14Ac state, this suggests that cdk8 activity

within T/G-Mediator plays a significant role in the tandem

modification of histone H3.

T/G-Mediator does not directly activate transcription

Subunit exchange within the human Mediator complex

can dramatically impact its function as a transcriptional
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co-activator. For example, the core Mediator complex inter-

acts directly with RNA polymerase II and is a potent co-

activator of transcription. By contrast, when associated with

the 4-subunit cdk8 subcomplex (that is, cdk8, cyclin C,

Med12, Med13), Mediator co-activator function is repressed:

this distinct ‘cdk8-Mediator’ complex is unable to activate

transcription (Taatjes et al, 2002). Notably, T/G-Mediator

most closely resembles cdk8-Mediator in that it contains

the cdk8 submodule and lacks Med26; however, T/G-

Mediator also contains a known co-activator, the GCN5L

acetyltransferase.

To determine whether T/G-Mediator possesses direct co-

activator function, we tested its activity in our in vitro

transcription system. This reconstituted human transcription

system is similar to one described previously (Taatjes and

Tjian, 2004) and uses chromatin templates with highly

purified and recombinant general transcription factors

(TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, RNA pol II)

together with purified activators and Mediator. Additional

details of this reconstituted human system will be provided

elsewhere (KDM, MTK and DJT, unpublished data). As

shown in Figure 6A, core Mediator displays robust, activa-

tor-dependent co-activator function in this assay (compare

lanes 1–4), as observed previously (Taatjes and Tjian, 2004).

T/G-Mediator, by contrast, was unable to activate transcrip-

tion in this highly purified system, even when titrated to a

concentration threefold higher than core Mediator

(Figure 6A, lanes 8–11). In fact, if added together with core

Mediator, T/G-Mediator can block transcription in a dose-

dependent manner (Figure 6A, lanes 4–7). These results

suggest that T/G-Mediator is transcriptionally inert and that

repression results from competition between T/G-Mediator

and core Mediator for activator (Sp1 in this case) binding/

recruitment to the promoter. To ensure the observed activity

was not simply a characteristic of the Sp1 promoter template,

we also tested T/G-Mediator function on chromatin templates

responsive to SREBP-1a/Sp1, VDR/RXR or gal4-VP16. T/G-

Mediator displayed similar activity in these assays

(Supplementary Figure 9).

Given that T/G-Mediator contains the cdk8 subcomplex,

we did not expect it to display co-activator function (Taatjes

et al, 2002). Yet because T/G-Mediator possesses histone

kinase and acetyltransferase activity, we hypothesized that

it may possess latent co-activator function. Previous work by

the Reinberg lab indicated that, at least at promoters respon-

sive to RARb, the cdk8-Mediator complex could be ‘activated’

by PARP-1: PARP-1 was shown to bind RARb and dissociate

the cdk8 subcomplex, leaving behind core Mediator at the

promoter, which then worked to activate transcription (Pavri

et al, 2005). Although clearly distinct from cdk8-Mediator,

T/G-Mediator does contain the cdk8 submodule, and there-

fore we surmised that PARP-1 might dissociate the cdk8

subcomplex from T/G-Mediator (and perhaps TRRAP/

GCN5L) to enable transcription activation in vitro.

However, as shown in Figure 6B, PARP-1 was unable to

activate T/G-Mediator in this way, at least at the promoters

tested. (Note that similar results were obtained with LDLR-

derived promoters or a VDR/RXR promoter, as shown in

Supplementary Figure 9.) This supports the conclusions of

Pavri et al, (2005) that PARP-1 acts in a promoter-specific

manner.

Discussion

Mediator is a primary regulator of PIC function: Mediator

physically or functionally interacts with most components of

the PIC and also regulates post-recruitment events in tran-

scription initiation (Malik and Roeder, 2005; Wang et al,

2005). The results from this study suggest that human

Mediator plays an expanded role in transcriptional regulation

that involves post-translational modification of histone H3.

Given the link between H3 acetylation and activation of

transcription, it is somewhat counter-intuitive that TRRAP/

GCN5L associates not with core Mediator, which possesses

co-activator function, but rather with cdk8-Mediator, which

does not directly activate transcription. However, our histone

modification assays reveal that within T/G-Mediator, cdk8

phosphorylates H3S10, providing a biochemical rationale for
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the selective interaction of TRRAP/GCN5L with cdk8-

Mediator instead of core Mediator. Indeed, numerous studies

describe a functional cooperativity between H3S10 phospho-

rylation and H3K14 acetylation, at least at a subset of genes

(Clayton et al, 2000; Lo et al, 2000; Anest et al, 2003;

Yamamoto et al, 2003). This functional coordination, coupled

with the ability of phosphorylated H3S10 to stimulate H3K14

acetylation by GCN5, led to the hypothesis that an H3S10

kinase/H3K14 acetyltransferase might reside within the same

multi-subunit complex (Cheung et al, 2000). To our knowl-

edge, T/G-Mediator represents the first demonstration that an

H3S10 kinase (cdk8) and an H3K14 acetyltransferase

(GCN5L) can in fact function within a single stable, multi-

subunit complex.

By coordinating post-translational modifications within

histone H3, T/G-Mediator may work to direct early events

in the activation of gene expression (that is, before full PIC

assembly). Importantly, the observation that cdk8 phospho-

rylates H3S10 offers a biochemical rationale for past studies

showing a correlation between cdk8 recruitment and

transcription activation. Paradoxically, this positive role for

cdk8 remains consistent with its well-established function as

a negative regulator of transcription, provided the biochem-

ical function of cdk8 is considered at different stages of

initiation. As a histone kinase within T/G-Mediator, cdk8

may work together with other chromatin-modifying/remodel-

ling factors to establish a chromatin environment favorable

for transcription. However, by blocking stable pol II assembly

within the PIC and inhibiting TFIIH (Akoulitchev et al, 2000;

Näär et al, 2002; Elmlund et al, 2006), cdk8 would concomi-

tantly inhibit transcription initiation at this stage. Actual

transcription initiation likely occurs only upon dissociation

of the cdk8 subcomplex (and perhaps TRRAP/GCN5L) from

Mediator, which would enable pol II recruitment via its stable

association with core Mediator and other PIC components

(for example, TFIIB). This model is consistent with our

in vitro transcription data, which clearly shows that T/G-

Mediator, in contrast to core Mediator, is unable to activate

transcription. Furthermore, previous studies in human cells

demonstrate that dissociation of cdk8 subcomplex compo-

nents—but not core Mediator itself—occurs immediately

before transcriptional activation at RARb- and CEBPb-regu-

lated genes (Mo et al, 2004; Pavri et al, 2005).

Notably, dissociation of the cdk8 submodule was shown to

be dependent upon PARP-1 at RAR/RXR-regulated genes in

vitro and in vivo; however, PARP-1 was unable to similarly

‘activate’ T/G-Mediator. This suggests that PARP-1 dissocia-

tion of the cdk8 subcomplex may be promoter specific, as

proposed previously (Pavri et al, 2005). Indeed, PARP-1 was

shown to interact directly with RARb, and similar interac-

tions may not occur with the activators tested here (Sp1,

SREBP-1a, VDR/RXR). Alternately, the presence of TRRAP/

GCN5L may block PARP-1-dependent dissociation of the cdk8

subcomplex from T/G-Mediator to prevent transcription acti-

vation. In either case, it is likely that an activity distinct from

PARP-1 is required to dissociate the cdk8 submodule within

T/G-Mediator. Future work will be directed towards identifi-

cation of such factors.

The regulatory role of combined H3S10 phosphorylation

and H3K14 acetylation appears to vary in different promoter

contexts, and it is not established whether these tandem

modifications are a general phenomenon of active gene

expression. Furthermore, it is likely that tandem H3 S10/

K14 phosphoacetylation does not occur cooperatively at all

genes that require this modification (Thomson et al, 2001).

Yet it is clear that each modification can facilitate transcrip-

tion activation via recruitment of co-activators (for example,

TAF1 or GCN5L itself) and/or loss of co-repressors (for

example, HP1) (Kasten et al, 2004; Fischle et al, 2005;

Hirota et al, 2005; Hassan et al, 2007). In mammalian cells,

phosphorylation of H3S10 has been linked to activation of

specific genes in response to growth factors or inflammation

(Sassone-Corsi et al, 1999; Thomson et al, 1999; Anest et al,

2003; Yamamoto et al, 2003); moreover, H3S10 phosphoryla-

tion correlates with expression of at least a subset of RARb
and myc target genes (Lefebvre et al, 2002; Zippo et al, 2007).

In several of these cases, distinct kinases were directly or at

least indirectly responsible for H3 phosphorylation (for ex-

ample, IKKa, MSK2/1, PIM1), suggesting that each may play

gene-specific roles in transcriptional activation (Soloaga et al,

2003).

Our examination of modified H3 in human cells reveals

that knockdown of cdk8 has a major impact on global levels

of phosphoacetylated H3. Although these effects could be

indirect, our in vitro results overwhelmingly support a direct

role for cdk8 in the phosphoacetylation of H3. In fact, the

striking correlation between the levels of cdk8 and phosphoa-

cetylated H3 suggests that T/G-Mediator is a prominent

regulator of this H3 modification. Further studies involving

genome-wide approaches in human cells will be required to

assess which genes may be specifically dependent upon the

chromatin-modifying function of T/G-Mediator. Although

cdk8 and Mediator itself appear to be globally recruited to

promoter and enhancer regions in yeast (Andrau et al, 2006;

Zhu et al, 2006), we predict that tandem phosphoacetylation

by T/G-Mediator will be critical for expressing only a subset

of human genes due to redundant histone kinase and acetyl-

transferase activities; furthermore, it is not evident that

tandem H3 phosphoacetylation is generally required for

expression of all protein-coding genes. Indeed, like cdk8,

GCN5 is also globally recruited to gene promoters in yeast

(Robert et al, 2004; Pokholok et al, 2005), yet in higher

organisms, changes in histone acetylation are not uniformly

observed for all genes upon activation (Nowak and Corces,

2000; Lefebvre et al, 2002). Notably, cdk8 can also negatively

regulate transcription via phosphorylation of TFIIH

(Akoulitchev et al, 2000); thus, precise control of cdk8

substrate specificity may be critical for regulating transcrip-

tion initiation in humans.

Interestingly, TRRAP and GCN5L are also subunits of the

STAGA/TFTC complex in humans, which is biochemically

similar to yeast SAGA (Baker and Grant, 2007; Nagy and Tora,

2007). Because human TRRAP/GCN5L are shared between

STAGA/TFTC and T/G-Mediator, these subunits (particularly

TRRAP) may help orchestrate recruitment of STAGA/TFTC

and Mediator at human genes. Indeed, ChIP studies in yeast

and human cells have shown that recruitment of SAGA and

Mediator can occur simultaneously or sequentially (Bhoite

et al, 2001; Cosma et al, 2001; Bryant and Ptashne, 2003;

Govind et al, 2005), and that SAGA may aid in Mediator

recruitment, at least at some genes (Bhaumik et al, 2004; Qiu

et al, 2005; Liu et al, 2008). Genetic studies in yeast also

suggest functional interactions between SAGA and Mediator

(Roberts and Winston, 1997), specifically with Mediator

Tandem modification of H3 by T/G-Mediator
KD Meyer et al

The EMBO Journal VOL 27 | NO 10 | 2008 &2008 European Molecular Biology Organization1454



containing the cdk8 submodule (Larschan and Winston,

2005). Although a potential mechanism for this interdepen-

dent recruitment is not established, the results shown here

suggest that STAGA/TFTC and Mediator co-association or

exchange may be dependent upon the 430 kDa TRRAP poly-

peptide. Notably, this is consistent with the perceived bio-

chemical role of TRRAP as a molecular scaffold/architectural

factor within the PIC (Murr et al, 2007).

Materials and methods

Purification of T/G-Mediator
A typical purification starts with nuclei isolated from approximately
100 l of HeLa cells, as outlined in Figure 2B. For the affinity
purification step, after binding QFT, the resin was washed with 50
column volumes (CV) 0.5 M KCl HEGN (pH 7.9, 20 mM HEPES,
0.1 mM EDTA, 10% glycerol, 0.1% NP-40) and 10 CV 0.15 M KCl
HEGN (0.02% NP-40). T/G-Mediator was then eluted from the GSH
resin with 2 CV buffer containing 30 mM glutathione (pH 7.6,
20 mM Tris, 0.1 mM EDTA, 10% glycerol, 0.15 M KCl). This material
was then loaded onto a 2 ml glycerol gradient (15–40% glycerol in
0.15 M KCl HEGN) and centrifuged at 55K r.p.m. for 6 h at 41C.
Fractions were collected from the top of the gradient in 100 ml
aliquots.

LC MS/MS analysis
Mass spectrometry experiments were completed on a PE Sciex API
QSTAR Pulsar MS with capillary electrospray interface, essentially
as described (Knuesel et al, 2005). In-gel trypsin digestion of
proteins was completed following reduction (DTT) and alkylation
(iodoacetamide) using standard techniques.

Antibodies
Santa Cruz Biotechnology: Med1, GCN5L, cdk8, pol II; Bethyl Inc.:
Med23; Upstate: phospho-H3T3, -H3S10, -H3S28, phosphoacetyl-
H3S10/K14; Lab stocks: TRRAP, Med15, Med26, Med14.

Core histone purification
Purification of core histones was completed with 140 g of 12–24 h
Drosophila embryos, essentially as described (Laybourn and
Kadonaga, 1991). Expression and purification of recombinant core
histones was carried out as described (Luger et al, 1999).

QRT–PCR and ChIP assays
HCT116 were maintained in McCoys 5A media (Gibco-Invitrogen)
supplemented with 10% fetal bovine serum and antibiotic/
antimycotic mix. For CDKN1A induction, cells were treated with
10 mM Nutlin-3 (Cayman Biochemicals). For egr1 and c-fos induc-
tion, cells were serum-starved for 24 h before serum replenishment.
QRT–PCRs and ChIPs assays were performed essentially as
described (Gomes et al, 2006). Briefly, for RT–PCR, total RNA was
isolated using the RNeasy Mini Kit (Qiagen), and cDNA was
generated with the SuperScriptase II (Invitrogen). For ChIP assays,

cells were fixed with 1% formaldehyde and harvested for whole cell
lysate preparation. A quantity of 1 mg of protein lysate was used per
ChIP with antibodies against pol II, TRRAP and cdk8. ChIP-enriched
DNA was analysed by Q-PCR as described (Gomes et al, 2006). See
Supplementary Table 1 and 2 for primer sequences.

shRNA knockdown of cdk8
Control or anti-cdk8 shRNA sequences were cloned into a derivative
of the pLL3.7 vector containing a G418 resistance cassette. After
packaging of lentiviral particles in HEK293FT cells, HCT116 cells
were transduced, selected in G418 and individual stable clones were
grown and tested for cdk8 knockdown by Western blot.

Chromatin assembly
For kinase or acetyltransferase assays, chromatin was assembled
using purified Drosophila core histones and a DNA template (G5E4)
derived from the sea urchin 5S rRNA gene, essentially as described
(Ikeda et al, 1999). The quality of the assembled chromatin was
determined by micrococcal nuclease digestion. For in vitro
transcription, supercoiled template plasmids were assembled into
chromatin using Drosophila embryo cytosolic extract (S-190),
purified Drosophila core histones and an ATP-regenerating system
as described (Näär et al, 1998). Chromatin assembly was carried
out at 271C for 5 h.

In vitro transcription
Chromatin templates were incubated with activators (Sp1, SREBP-
1a or gal4-VP16: 4 nM each; or VDR/RXR: 10 nM each plus ligand)
for 30 min, followed by addition of purified and recombinant
general transcription factors (40 nM TFIIA, 10 nM TFIIB, 0.8 nM
TFIID, 10 nM TFIIE, 10 nM TFIIF, 0.5 nM TFIIH and 2 nM pol II)
with/without non-limiting amounts of Mediator and/or T/G-
Mediator (0–15 nM). Note that acetyl CoA (5mM) was also added
in some experiments and had no effect (not shown). After allowing
15 min for PIC assembly, NTPs (0.5 nM final concentration) were
added; 30 min later, transcription was terminated by adding three
volumes of stop solution (20 mM EDTA, 0.2 M NaCl, 1% SDS). RNA
was then isolated and analysed by primer extension.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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