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ABSTRACT

The Rag1 and Rag2 proteins initiate V(D)J recombi-
nation by introducing site-specific DNA double-
strand breaks. Cleavage occurs by nicking one
DNA strand, followed by a one-step transesterifica-
tion reaction that forms a DNA hairpin structure.
A similar reaction allows Rag transposition, in which
the 3’-OH groups produced by Rag cleavage are
joined to target DNA. The Rag1 active site DDE
triad clearly plays a catalytic role in both cleavage
and transposition, but no other residues in Rag1
responsible for transesterification have been identi-
fied. Furthermore, although Rag2 is essential for
both cleavage and transposition, the nature of its
involvement is unknown. Here, we identify basic
amino acids in the catalytic core of Rag1 specifically
important for transesterification. We also show that
some Rag1 mutants with severe defects in hairpin
formation nonetheless catalyze substantial levels of
transposition. Lastly, we show that a catalytically
defective Rag2 mutant is impaired in target capture
and displays a novel form of coding flank sensitivity.
These findings provide the first identification of
components of Rag1 that are specifically required
for transesterification and suggest an unexpected
role for Rag2 in DNA cleavage and transposition.

INTRODUCTION

Developing lymphocytes rearrange variable (V), diversity
(D) and joining (J) gene segments in a combinatorial

fashion to generate a diverse repertoire of immuno-
globulins and T-cell receptors. This process, called
V(D)J recombination (1,2), is initiated when the protein
products of the recombination activating genes (Rag)-1
and -2 bind to specific recognition signal sequences
(RSS) and introduce double-strand breaks (DSB) between
these and the adjacent coding segments. The resulting
postcleavage complex then directs the ends to the classical
nonhomologous end joining (NHEJ) machinery for repair
(3,4). In vitro, these ends can undergo an alternative fate:
they can capture an unrelated target DNA and undergo
Rag-mediated transposition (5,6). In vivo, however, the
Rag proteins are strongly biased towards recombination,
with only rare transposition events detected to date (7–11).
Deciphering the mechanisms by which the Rag complex
carries out these two transesterification reactions should
help provide insight into how transposition is suppressed
in developing lymphocytes.

The Rag complex generates DSB in two steps, first
introducing a nick between the RSS and the adjacent
coding segment (the coding flank) and then using the
resulting 30-hydroxyl group to attack the phosphodiester
backbone of the opposite DNA strand. This direct trans-
esterification reaction forms a covalently sealed hairpin
structure at the coding flank and a flush DSB at the signal
end (Figure 1A) (12). The Rag proteins employ this same
chemical mechanism to perform transposition. In this
case, after cleavage, the Rag complex uses direct trans-
esterification to insert a segment of DNA terminating
in blunt signal ends into a new target location (5,6)
(Figure 1B).

Hairpin formation requires local distortion of the
coding flank DNA, in order to allow the attacking
nucleophile to align precisely with the phosphodiester
bond of the opposite strand. Substrates with unpaired
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bases at the coding flank facilitate this reaction (13,14).
Similarly, transposition is facilitated by certain target
DNA structures, including unpaired DNA, triplex DNA
and some G-C rich sequences, suggesting that distortion is
also required for transposition (5,6,15). The best targets
appear to be hairpin tips (16,17), which are thought to
adopt a variety of unusual DNA structures determined by
the sequence of the terminal nucleotides (18). Indeed,
certain hairpin sequences stimulate surprisingly efficient
Rag transposition that approaches levels of cleavage (17).

Although there is as yet no structural information about
the active site of the Rag complex, Rag1 is considered
the catalytic subunit because it contains a number of
amino acids required for cleavage (19–22), including
a DDE triad responsible for coordinating catalytic
metal ions (23–25). Rag2 plays various regulatory roles
(3,26–34), but has not been firmly implicated in catalysis.
By analogy with other hairpin-forming transposases
(35,36), we and others searched for aromatic amino
acids in Rag1 that could stabilize an extrahelical,
flipped-out base. Through mutational and biochemical
analysis, we found an aromatic residue in Rag1, W893,
that may be involved in base flipping (20); others have
proposed a second candidate, W956 (21). Several other
amino acids in Rag1 are critical for hairpin formation and
likely play key roles in generating or stabilizing a distorted
DNA intermediate (20). One class of hairpin-deficient
mutants is unusual in that the defect is conditional,
depending on the coding flank sequence: some coding
flank sequences prohibit hairpinning, whereas other flanks
allow wild-type levels of hairpin formation (37–39).
Because unpaired bases in the coding flank rescue this
type of hairpinning defect, we and others have suggested
that these conditional mutants may have difficulty
generating sufficient distortion of the coding flank DNA
to allow hairpin formation (13,14,39).

Although these earlier studies provided important
clues about the DNA distortion phase of hairpin
formation, the transesterification step was not examined.
Here, we identify a mutant with a specific defect in
transesterification, implicating basic amino acids in the

catalytic core of Rag1 in this process. We also show that
some Rag1 mutants with severe defects in hairpin
formation nonetheless catalyze substantial levels of
transposition, and, in several cases, are stimulated by
hairpin targets. Lastly, we analyze a catalytically defective
Rag2 mutant (the only such mutant identified) and find
that it shows a defect in target capture and a novel form of
coding flank sensitivity, suggesting an unexpected role for
Rag2 in DNA cleavage and transposition.

MATERIALS AND METHODS

Rag proteins

Experiments were performed with recombinant glu-
tathione S-transferase (GST)-tagged mouse core Rag1
(residues 384–1008) and core Rag2 (residues 1–387).
240 mg of Rag1 and 280 mg of Rag2 in the pEBG vector
(40) were transiently co-transfected into Chinese hamster
ovary (RMP41) cells using 780 ml of Fugene-6 transfection
reagent (Roche, Indianapolis, Indiana). Proteins were co-
purified as described (39), using GST affinity resin beads
(GE, Piscataway, NJ). Multiple protein preparations were
made, and the most active preparations were used. Mutant
and wild-type Rag proteins shown in this article were
prepared at the same time to eliminate variations between
different preparations as a confounding factor in inter-
preting results, and were diluted such that equal amounts
of each preparation (�70 ng of Rag1 and 30 ng of Rag2)
were added to reactions, as shown in Supplementary
Figure 1.

HMG protein

Recombinant human HMGB1 was transformed into
BL21(DE3) Escherichia coli (41). A culture (450ml) of
transformed cells was grown to an OD600 of 0.5; isopropyl-
beta-D-thiogalactopyranoside was then added to a final
concentration of 1mM, followed by shaking at 378C for 4h.
Cells were then resuspended in 20ml of resuspension buffer
(100mM Tris pH 8.0; 1mM EDTA; 10% glycerol, w/v) and
centrifuged at 10 000 r.p.m. for 15min at 48C. Pellet was
resuspended in 3ml of resuspension buffer per gram of
pellet. 2-Mercaptoethanol was added to a final concentra-
tion of 2mM, followed by 0.2 vol of 5mg/ml lysozyme. The
mixture was kept on ice for 30min. Next, Tween-20 was
added to a final concentration of 0.1% and NaCl was added
to a final concentration of 1M. The mixture was incubated
on ice for 10min and then centrifuged at 30000 r.p.m. for
30min at 48C. An equal volume of 10mM imidazole buffer
was added to supernatant (0.5M NaCl; 20% glycerol;
20mM Tris–Cl, pH 7.9 at 48C; 10mM imidazole, pH 8.0;
2mM 2-mercaptoethanol). Chelating Sepharose (GE,
Piscataway, NJ) was prepared with nickel sulphate; slurry
was then washed with water, followed by 10mM imidazole
buffer. Slurry was added to lysate, and bound in batch
overnight at 48C. After binding, slurry was washed twice
with 10mM imidazole. HMG was then eluted in five
fractions using 60mM imidazole buffer, dialyzed in dialysis
buffer (25mM Tris, pH 8.0; 1mM EDTA; 1mM DTT;
150mM KCl; 10% glycerol). Finally, HMG was heat-
inactivated at 658C for 30min.

OH Hairpin formation

Transposition

OH

A

B

Figure 1. Schematic representation of Rag-mediated transesterification
reactions. (A) Hairpin formation is an intramolecular transesterification
reaction in which the 30-hydroxyl liberated by Rag nicking is used to
attack the opposite strand of DNA at the heptamer border, resulting in
a blunt signal end and a covalently sealed hairpin coding end. The RSS
is indicated by a triangle. (B) Transposition is an intermolecular
transesterification reaction in which the 30-hydroxyl of a signal end
is used to attack the phosphodiester backbone of the target DNA.
Hairpin DNA structures facilitate Rag transposition. Both types of
transesterification reaction require the catalytic triad (D600, D708 and
E962) as well as the divalent cation Mg2+.
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Oligonucleotide DNA substrates

Oligonucleotides used for cleavage assays were designed
according to plasmid pJH290 (20), except that the
sequence of the designated two base pairs at the coding
flank was varied. For each reaction, both the 12 and
23-RSS are either uncleaved or prenicked and share
the same coding flank sequence, whether matched or
mismatched. Oligonucleotide-encoded hairpins used for
transposition assays were described in (17) and contain the
sequence 50-CTGGGGCTGCAGGxx-xxCCTGCAGCC
CCAG, where ‘xx-xx’ represents the tip of the hairpin.
For a TG hairpin, ‘xx-xx’ represents TG-CA; for an
AC hairpin, ‘xx-xx’ represents AC-GT; for a GC hairpin,
‘xx-xx’ represents GC–GC, etc.

Plasmid DNA substrates

Plasmid targets used for transposition assays were pUC8
and F14C, a pUC8 plasmid with a 106 bp inverted repeat
cloned into the EcoRI site (42).

In vitro cleavage and transposition assays

Cleavage reactions and transposition reactions using
oligonucleotide substrates were performed as described

in (17,20), respectively, except that 70 ng of Rag1 and
30 ng of Rag2 were added to each reaction. Reaction
products were detected and quantified using
PhosphorImager and ImageQuant software.

Physical analysis of target capture

Target capture assays using radiolabeled hairpin target
were performed as described (17), except that 70 ng of
Rag1 and 30 ng of Rag2 were added to each reaction.
Reactions were performed for 2 h before separation on
a native 5% acrylamide gel at 100V, 48C.

RESULTS

Mutations distinguishing hairpin formation and transposition

We began by examining a set of Rag1 mutants (K608A,
R972A/K973A, F971A, K890A, R894A and R855A/
K856A) previously shown to have defects in hairpin
formation, as confirmed using prenicked substrates
(Figure 2A and B). It was not known whether these
defects affect an early step (generation or stabilization of a
distorted DNA intermediate) or a later phase of the
reaction (transesterification). To determine the reaction
step affected by these mutants, we first tested whether the
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Figure 2. Rag1 mutants exhibit defective hairpin formation. (A) In vitro cleavage assay using 12- and 23-RSS oligonucleotide substrates that mimic a
nick on an AC flank, as depicted in schematic representation on the left. (B) Quantitation of gel in A, showing the percentage of pre-nicks converted
to hairpins, was performed using ImageQuant software. Error bars represent SEM of three experiments. (C) In vitro cleavage assay using
oligonucleotide substrates with either an AC or TG coding flank on both 12- and 23-RSS, as depicted on the left. Only the strands drawn as black
lines were 50-radiolabeled (�), and thus detectable after denaturing gel electrophoresis. The reaction was performed for 30min, in the presence of
paired 12- and 23-RSS oligonucleotides, purified Rag1 (wild-type or mutants) and Rag2 proteins, HMG and Mg2+. Reaction products were
separated on a 12% sequencing gel and visualized by autoradiography. Reaction products are shown on the right (from top to bottom): uncleaved
substrates, hairpin and nicks. (D) Quantitation of gel in C, showing the percentage of nicks converted to hairpins, was performed using ImageQuant
software. Error bars represent SEM of three experiments.
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defect was due to coding flank sensitivity. Rag1 mutants
mapping to amino acids 606–611 can nick but are unable
to form hairpins on substrates with an AC coding flank,
although they are capable of hairpinning on a TG coding
flank (19,37,39). Only Rag1 K608A showed significant
coding flank sensitivity, as evidenced by differential
hairpin formation with substrates bearing AC or TG
coding flanks (Figure 2C and D). Notably, R855A/K856A
showed robust nicking but no detectable hairpinning
activity with either TG or AC coding flanks (Figure 2C,
lanes 7 and 14) or with substrates bearing a variety of
other coding flank sequences (data not shown). Similar
results were obtained with the single mutant, R855A (data
not shown).

We next investigated the effects of mismatched coding
flanks, which can rescue hairpin formation by certain
Rag1 mutants [presumably by facilitating DNA distortion
at the cleavage site (20,39)] (Figure 3A). In agreement
with previous work (13,14,20,39), mismatches enhanced
hairpin formation by the wild-type Rag complex and fully
rescued hairpin formation by K608A (Figure 3B).

Mismatched substrates partially rescued hairpin forma-
tion by R972A/K973A, F971A, K890A and R894A
(Figure 3B). K855A/R856A shows traces of hairpin
products, which could only be detected at long incuba-
tion times (Figure 3C), suggesting a specific defect in
transesterification.
To assess the effects of these mutations on the

transesterification step, we tested their ability to catalyze
transposition. We used a standard in vitro assay with
precleaved signal ends (to bypass hairpin formation) and
oligonucleotide hairpin targets chosen to correspond to
the substrates with AC or TG flanks shown in Figure 2
(Figure 4A). Several mutants were much more proficient
for transposition than hairpin formation (Figure 4B):
Rag1 R972A/K973A, F971A, K890A and R894A demon-
strated transposition efficiencies of 25–95% of wild-type
on an AC hairpin target and 30–40% of wild-type
on a TG target (Figure 4C). To compare directly the
ability of the mutants to perform hairpin formation and
transposition, we normalized the data shown in
Figures 2D and 4C, setting wild-type activity at 100%
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Figure 3. Rag1 mutants exhibit varying levels of hairpin formation when provided a mismatched substrate. (A) Schematic representation showing
oligonucleotide substrates containing matched (M) or mismatched (MM) base pairs at the coding flank on both 12- and 23-RSS. Only the strands
drawn as a black line were 50-radiolabeled (�), and thus detectable after denaturing gel electrophoresis. (B) Quantitation of in vitro hairpin formation
after 30min incubation time, showing the percentage of nicks converted to hairpins. Reaction products were separated on 12% sequencing gel,
visualized by autoradiography and quantified using ImageQuant software. Dashed line represents the wild-type level of hairpin formation at a
matched substrate. Error bars show SEM of three experiments. (C) In vitro hairpin formation assay. Representative results from wild-type Rag1,
K608A, R972A/K973A and K855A/R856A are shown. Reaction products were separated on a 12% sequencing gel and visualized by
autoradiography. Triangles represent increasing incubation times: 5, 10, 20, 40 and 80min. Reaction products are depicted on the right (from top to
bottom): uncleaved substrates, hairpins and nicks.
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(Figure 4D and E). In this analysis, all Rag1 mutants
except for R855A/K856A were much better at transposi-
tion than hairpin formation. R855A/K856A, however,
was consistently defective for transposition (Figure 4B
and C), and single mutant R855A also showed severely
defective transposition (data not shown). This defect
cannot be explained by its ability to capture target DNA,
which is only mildly affected (Figure 5). We conclude
that the hairpin formation defects of R972A/K973A,

F971A, K890A and R894A do not reflect fundamental
problems with the chemistry of transesterification but that
R855A/K856A (and perhaps specifically R855A) exhibits a
defect in this step.

Effects of hairpin targets on transposition by the
Rag1 mutants

Four Rag1 mutants (R972A/K973A, F971A, K890A and
R894A) were quite proficient for transposition into
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oligonucleotide targets. Given their severe defects in
hairpin formation, we wondered whether any of these
mutations might specifically affect recognition of hairpin
targets, which strongly stimulate transposition by the
wild-type Rag complex. To determine this, we used two
previously described plasmid targets: pUC8 and pUC8
containing a 106-base pair inverted repeat (F14C) that
forms a cruciform structure bearing hairpin tips
[Figure 6A; (16,42,43)]. Three mutants (K608A, F971A
and K890A), while somewhat impaired for transposition,
were consistently and strongly stimulated by F14C
(Figure 6B and C). These mutants thus retain the ability
to recognize hairpin structures. One mutant (R894A) was
modestly stimulated in some experiments. The hairpin
target did not stimulate transposition by R972A/K973A,
however (Figure 6B, lanes 7 and 8). R855A/K856A was
inactive for transposition into both targets (Figure 6B
and C, lanes 15 and 16), consistent with a defect in
transesterification.

ARag2 mutation affects both nicking and target capture

To better understand the involvement of Rag2 in hairpin
formation and transposition, we analyzed the only Rag2
mutation suspected to affect catalysis, K38A/R39A (44).
We found, surprisingly, that this mutation causes coding
flank sensitivity: it forms hairpins near wild-type levels
at an AC flank but is almost inactive with a TG flank
(Figure 7A). This is a reversal of the coding flank
preferences of Rag1 mutants, which form hairpins
efficiently at TG, but not AC, flanks. Even more
surprisingly, this conditional defect in cleavage mainly
affects the nicking reaction. Total levels of nicking activity
on a TG flank (reflected in the amounts of nicks plus

hairpins) were only 10% of levels on other substrates
(Figure 7A), and a prenicked substrate fully rescued
hairpin formation (Figure 7B). Consistent with results in
Qiu et al. (44), mismatched base pairs at the coding flank
actually inhibited nicking and hairpin formation by
K38A/R39A, again in direct contradistinction to the
behavior of the Rag1 mutants (Figure 7C); four different
pairs of mismatched sequences produced similar results
(data not shown). These data indicate that Rag2 plays a
previously unsuspected role in cleavage.
Lastly, we investigated the effects of the K38A/R39A

mutation on transposition. This mutant showed no
detectable transposition of precleaved signal ends into a
number of hairpin target sequences and was only weakly
active using the most favored targets (Figure 7D).
Transposition into plasmid targets was quite weak,
although some activity was observed with the F14C
cruciform target (Figure 7E). K38A/R39A was severely
defective for capture of two hairpin target sequences
(Figure 5).

DISCUSSION

Rag1 amino acids critical for transesterification

We previously identified residues in Rag1 involved in
hairpin formation and provided evidence that Rag1
possesses a YKEFRK motif that may be functionally
similar to the YREK motif found in IS4 family trans-
posases (20). Now, data in the present work have identified
amino acids in the Rag complex that are specifically
required for transesterification (R855/K856). Transposi-
tion by IS4 family transposases, which involves hairpin
formation, also requires basic residues: the structure of the
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Tn5/DNA complex shows that the 50 phosphate group of
thymine 2 of the transferred strand is held in place by
specific contacts with R210 and R322 (35). R322 is part of
the YREK motif (45), and mutation of this residue
diminishes hairpin opening and strand transfer activity
(46). We speculate that R855 in Rag1, which, similar to
R210 in Tn5, is located N-terminal to and apart from the
catalytic E residue, may likewise interact with the
phosphate backbone of the DNA, and that the R855A/
K856A mutant may fail to correctly position the DNA
substrate in the catalytic pocket.

Novel roles for Rag2 in DNA cleavage and transposition

Although it has long been known that Rag2 is required for
recombination and transposition, its mechanistic contri-
butions to these reactions have remained unknown. Our
analyses of the K38A/R39A Rag2 mutant revealed an
unexpected sensitivity to coding flank sequence. [R39A
was previously noted to cleave at wild-type levels, but
this study was performed using favorable coding flank
sequences (47); C.P.L. and D.B.R., unpublished data.]
Our data provide strong evidence that Rag2 plays a
critical role both in contacting DNA at the RSS-coding
flank junction and in site-specific nicking.
The phenotype of Rag2 K38A/R39A differs from that

of the coding flank sensitive Rag1 mutants in two

interesting respects. K38A/R39A shows diametrically
opposite coding flank sequence preferences, and it displays
its sequence sensitivity at the nicking step of the reaction
rather than the hairpin formation step. The nicking defect
could reflect less stable binding of the mutant complexes
to particular coding flank sequences. Another (nonexclu-
sive) possibility is that nicking, like hairpin formation,
may be promoted by formation of a distorted DNA
structure, whose stability is influenced by the coding
flank sequence. A precedent for DNA distortion prior to
nicking is provided by another hairpin-forming transpo-
sase, Tn5: mutation of W323 affects both distortion prior
to nicking and the nicking step itself (48). Our observation
that unpaired coding flank nucleotides inhibit nicking by
K38A/R39A suggests that these unpaired substrates
prevent this mutant from creating the proper distortion
for nicking. These findings, in conjunction with
the previous observation that Rag2 contacts DNA at
the coding flank (28,49,50), strongly suggest that the
N-terminus of Rag2 contacts the cleavage site and that
these contacts are critical for catalysis of nicking. Our data
also provide insight into the role of Rag2 in transposition.
The severe target binding defect of K38A/R39A indicates
Rag2 involvement at an early stage in the recognizing or
binding of DNA, and, in particular, participation of the
N-terminal region of Rag2 in making critical contacts with
target DNA.
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sequence that adopts a cruciform structure. (B) Products of in vitro transposition assay using targets in (A) were separated on a 1% agarose gel and
visualized by autoradiography. All lanes were run on the same gel, but a few lanes between WT and 608 were removed for demonstration purposes.
(C) Quantitation of percentage of signal ends transposed into either nondistorted pUC8 target or distorted F14C target in (B). Dashed line marks
wild-type level of transposition into pUC8 target. Error bars represent SEM of five experiments. Nicked, products of a single signal end insertion into
plasmid yield a nicked plasmid transposition product; linear, products of a double signal end insertion into plasmid target yield a linearized plasmid
transposition product; free SE, free (un-transposed) signal ends.
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Figure 7. Rag2 K38A/R39A forms hairpins but is deficient for transposition. (A) Quantification of in vitro cleavage reaction to measure hairpin and
nick formation was performed using oligonucleotide substrates containing either an AC or TG flank (as in Figure 2A). Reaction products were
separated on 12% sequencing gel, visualized by autoradiography and quantified using ImageQuant software. Top part of bar represents the
percentage of hairpin products converted from nicks, and bottom part represents the percentage of nicked products. Height of each bar
(top+bottom) represents total nicking activity. (B) In vitro cleavage reaction using oligonucleotide substrates containing a nick (as in Figure 2C),
with either AC or TG flanks. The reaction was visualized and quantified as in (A). The quantification shows the percentage of nicks converted to
hairpins by wild-type and Rag2 K38A/R39A. (C) Cleavage reaction by mutant K38A/R39A, using oligonucleotide substrates containing a matched
(M) or mismatched (MM) coding flank. Two different pairs of MM sequences were used as shown schematically above gels. (D) Reaction products
from in vitro transposition into multiple targets by Rag2 K38A/R39A. Reaction products were separated on a 15% sequencing gel and visualized as
in (A). (E) Quantification of in vitro transposition into nondistorted (pUC8) or distorted (F14C) plasmid targets comparing wild-type and Rag2
K38A/R39A. Reaction products were separated on a 1% native agarose gel, visualized by autoradiography and quantified using ImageQuant
software. Graph represents percentage of signal ends transposed into target; error bars show SEM over three experiments. TnP, transposition
products; free SE, free (untransposed) signal ends.
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Differences between hairpin formation and transposition

We have found that a number of Rag1 mutants with
severe defects in hairpin formation remain remarkably
competent for transposition. The K890A mutant is
particularly striking in that it combines a profound
defect in hairpin formation with near-wild-type transposi-
tion activity. This suggests that the mutations affect
generation of distorted DNA intermediates, while retain-
ing the ability to bind to hairpin targets. In addition,
mismatches in the coding flanks facilitated hairpin
formation by R894A and R972A/K973A; yet, these
mutants failed to show a corresponding increase in
transposition activity when presented with hairpin targets,
which are normally quite conducive to this reaction.
Together, these data suggest that the Rag complex may
utilize different combinations of residues to engage
unpaired or distorted DNA in the two reactions. It is
instructive in this regard to consider studies of phosphor-
othioate stereoselectivity in Tn10, which suggest that the
transesterification steps of hairpin formation and trans-
position occur with significant conformational differences
at the active site (51).
Further analyses of postcleavage and target capture

complexes should help define the molecular basis for our
observations. Moreover, our identification of mutants that
alter the balance between the two alternative transester-
ification reactions, hairpin formation and transposition,
raises the interesting possibility that some Rag mutants
could promote increased transposition, perhaps at the
expense of efficient V(D)J recombination.
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