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Abstract
Using magnetic resonance (MR) tagging, it is possible to track tissue motion by accurate detection
of tag line positions. In this study, we show that with a least squares estimation algorithm, it is possible
to define the position of the tag lines with a precision on the order of a tenth of a pixel. Here, we
calculate the Cramer-Rao bound for the tag position estimation error as a function of the tag thickness,
the shape of the tag profile and line spread function of the MR imaging system. The tag thickness
that minimizes tag position estimation error is between 0.8 to 1.5 pixels depending on the shape of
the tag and the line spread function. In addition, tag position estimation error is inversely proportional
to contrast-to-noise ratio (CNR) between the tag and the background tissue. The theoretical results
obtained in this study were verified by experiments performed on a whole-body 1.5T MR imager
and Monte-Carlo simulation studies.

I. INTRODUCTION
Measurement of local myocardial deformation is essential for an understanding of heart
function in both normal and ischemic hearts. Myocardial tissue tagging with MRI is a
noninvasive method for measuring the displacement of heart tissue over time [1]–[3]. The data
obtained from this method may be used to detect and quantify the effects of myocardial
ischemia, which is the leading cause of death in the United States. This data may have a
significant impact on the management of patients with coronary artery disease. Mechanical
function may also be important in assessing the viability of transplanted hearts [4].

In MR tagging, the magnetization of some tissue is saturated by spatially selective RF pulses:
these are called tagging pulses. In images acquired after the tagging pulses, the tissue with
saturated magnetization appears as a dark pattern (image void), called a “tag”. Using a CINE-
MR imaging method, it is possible to track the motion of tags, and therefore, the motion of
tissue. Depending on the MR tagging method, the tag pattern may be a set of lines, a grid,
striped lines [5], or a similar configuration. In Fig. 1, two human heart images acquired in eight
heartbeats with segmented k-space CINE-MRI [3] are shown. In these images parallel tag lines
were used.

Recently, an automatic tag line detection algorithm has been developed to determine tag
locations [6]. In this algorithm, rather than finding the position of an entire tag line in one step,
points separated by one pixel along each tag are determined and then these points are connected
to define the tag. The search for each point on the tag line is carried out using a least squares
fit to a tag profile template. The squared error between the tag template and the profile of the
MR image as observed along a line normal to the tag is calculated while shifting the position
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of the template. The point where minimum error is observed is called the estimate of the tag
center (see Fig. 2).

It has been shown that the tag line center locations can be found with subpixel accuracy [7].
Accurate tag center estimation leads to accurate measurement of heart wall motion. The main
error sources in the estimation of the tag line position are noise and artifacts in the MR images.
In this study, we investigated the error sources for tag center estimation and the optimum tag
thickness that would minimize this error.

The theory of tag position estimation error is given in the next section. In this section, the effect
of the line spread function on the appearance of the tags is discussed, the least squares tag
detection algorithm is introduced and then the Cramer-Rao lower bound for the tag position
estimation is formulated. Section III concerns the formulation of the optimum tag thickness
problem, In this section, in addition to a global expression for the optimum tag thickness,
formulation for some important special cases are also given. In Section IV, the theoretical
results are verified by Monte-Carlo simulations and phantom experiments.

II. TAG CENTER ESTIMATION ERROR
A. The Tag Generation Method

There are many methods for generating a tag pattern in an MR image. In this paper, the original
tag generation pulse sequence used by Zerhouni et. al. [1] was selected as an example (see Fig.
3). Each tagging RF pulse selects a slice perpendicular to the imaging plane. The spoiling
gradient applied after the tagging RF pulses causes the spins to lose coherence inside these
slices. The intersection between the tag planes created by the tagging RF pulses and the imaging
slice appears as dark lines in the images.

By adjusting the RF pulses, the shape and position of the tag line can be changed. The
modulation frequency of the RF pulse determines the position of the tag line. The duration and
the envelope of the pulse is related to the thickness and the profile of the tag line, respectively.

B. What Do We See in MR Images?
In the MR images, we cannot observe high frequency components of the tag profiles because
of the truncation of their Fourier space (k-space) representation. In addition, other factors, such
as filtering the MR signal and motion, may change the appearance of the tag. Ignoring the
motion artifact changes1, the tag profile in the image, s(x), can be formulated as the convolution
of the original tag profile by the line spread function along the normal direction with the tag
line:

(1)

where s(x) is the tag profile seen in the image, h(x) is the actual tag profile, and "*" is the
convolution operator. The line spread function, lsf(x), is the profile seen in the image when the
tag line is replaced by an infinitely thin line. In the MR images, samples of s(x) are formulated
as:

(2)

where si are the samples, Δx is the spacing between the samples, and ni is additive zero-mean
white Gaussian noise. The center of the tag is given by the real number µ.

1Using fast imaging techniques (very short TR, very short TE and small tip angle), the deformation of the tag line profile due to motion
can be minimized.
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In general, convolution with lsf(x) corresponds to low pass filtering. Depending on , the k-
space coverage, and the characteristics of the analog and/or digital filter that may be applied
to the MR signal before image reconstruction, the line spread function may change. In the
appendix, a sample line spread function is calculated as:

(3)

where

FOV: Field of view

N: Number of samples in phase or frequency encoding directions

α: the angle between the infinitely thin test line and one of the image axes

For this sample analysis, the effect of  on the line spread function is neglected and it is
assumed that the MR signal is acquired using an ideal antialiasing filter. No other filtering
operation is carried out while reconstructing the image and the image resolution in the phase
and frequency encoding directions is the same. The convolution with this sample line spread
function corresponds to ideal low-pass filtering.

C. Tag Center Detection Using the Least Squares Error Estimation Method
The center of a tag can be estimated with subpixel accuracy using the least squares estimation
(LSE) method. Since the tag generation method is known and the line spread function can be
formulated, the expected image of the tag profile, s(x), is obtained using the convolution given
in (1). The center of tag, µ, is estimated using LSE by fitting the samples of the tag profile in
the image to s(x) (see Fig. 4).

The LSE method is the best estimation method if the estimation problem is linear. Although
the tag center estimation is a nonlinear one, for “reasonable” noise levels the LSE method
performs well. What constitutes reasonable noise levels will be explained in Section IVA.

D. Cramer-Rao Bound for the Tag Estimation Error
A lower bound for the tag center estimation error can be derived using the Cramer-Rao bound
[8]–[10]. Because the tag center estimation problem is not a linear one, the expected error
cannot be found analytically; however, the Cramer-Rao bound for error is tight for “reasonable”
noise levels and can be used to determine optimum tag thickness. In the following paragraphs,
the bound for the tag estimation error will be derived.

Assume that  is an unbiased estimate of the tag position, and this value is calculated using
the information obtained from the pixels in the MR image. Let {si} represent the set of all
pixels that will be used to estimate the position of the tag. The Cramer-Rao lower bound is
formulated as:

(4)

where p({si}) is the probability of obtaining the data set, {si}, given the position of the tag. In
the above equations, E(·) stands for the expected value and σµup is the standard deviation of
the position estimation error.
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The probability of the data set, {si}, be can be easily found using the probability of a pixel
being at an intensity level given the position of the tag. The probabilistic behavior of the pixel
intensity, si, is due to the noise. Since the noise is additive, the probability density function
(PDF) of the pixel intensity is in the same form as the PDF of the noise:

(5)

where  is the variance of the noise. The joint probability density of all the pixels results from
the multiplication of the PDF’s of each pixel because the noise on each pixel is independent.

(6)

Using the above expression and (4) the following result is obtained:

(7)

In the above expression, the error bound for the tag position estimation error is calculated using
an infinite number of samples. This does not conflict with the limited field of view because
the samples that are out of the field of view have a negligible effect on the error bound.

The Cramer-Rao error bound can be written in terms of the line spread function and the tag
profile in the Fourier domain. Using Parseval’s theorem, the above relation can be written as:

(8)

where S(ω) is the Fourier transform of s(x). Since s(x) is a convolution of the tag profile with
the line spread function, and convolution corresponds to multiplication in Fourier domain, the
following final result can be obtained:

(9)

where H(ω) and LSF(ω) are the Fourier transforms of h(x) (the tag profile) and lsf(x) (the line
spread function), respectively.

The above lower bound for the tag center estimation error is tight for “reasonable” noise levels
(this will be explained in Section IVA). Therefore, decreasing the lower bound corresponds to
decreasing the error. To estimate the tag center precisely, one should decrease the noise level
in the image, increase the contrast and the high frequency components of the tag, and increase
the image resolution. Although the high frequency components of the tag profile are important
for decreasing tag center estimation error, very high frequency components of the tag profile
will be suppressed by the low pass filtering effect of the line spread function.

In this section, we derived the Cramer-Rao lower bound for the tag estimation error. In the
next section, the optimum tag thickness will be calculated based on this lower bound.

III. OPTIMUM TAG THICKNESS
As discussed in the previous section, the tag center estimation error can be minimized with
improved image quality by either increasing the resolution or decreasing the noise on the image.
Although a relation between the tag profile and the tag center estimation error is known (see
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(9)), it is not quite clear which properties of the tag profile are of primary importance for
minimizing the estimation error. Here we will analyze the effect of tag thickness on the
estimation error.

Let g(x) be a normalized tag profile for which the full-width half max (FWHM) thickness is
unity. For the sake of simplicity, let us assume that the normalized tag profile is inverted so
that it holds the following relations:

Thus, the tag profile, h(x), can be written using the normalized tag profile as follows:

(10)

where M0 is the steady state magnetization, Ct is the contrast of the tag, and D is the FWHM
tag thickness measured in pixels (see Fig. 5).

Using the above expression and (9), the following expression for the Cramer-Rao bound is
derived:

(11)

where G(ω) is the Fourier transform of the normalized tag profile, g(x). In the above expression,
M0 does not appear because it does not contain any information about the tag position.

It is interesting to observe that the error bound is inversely proportional to the contrast to noise
ratio (CNR). To simplify the notation a new variable, the “error factor”, is introduced. It is
basically the multiplication of the CNR by the estimation error:

(12)

In this expression, the estimation error is divided by the pixel dimension, Δx, so that the unit
of Γ is pixels. For example, if the estimation error factor, Γ, is equal to one pixel, then the
estimation error becomes 1/CNR pixels. It is important to note that choosing the tag thickness
to minimize Γ will also minimize σµ.

If (11) and (12) are combined, the following inequality for the error factor can be obtained:

(13)

Since it is based on the Cramer-Rao bound, the above lower bound is also tight.

For cases where the above inequality turns into an quality (when the noise level is low), it is
possible to obtain the optimum tag thickness. One method is to plot the curve of error factor
versus tag thickness and then find the minimum point on this curve. As an example, Fig. 6(b)
shows the curves of error factor versus tag thickness for the normalized tag profiles shown in
Fig. 6(a). In this figure, g1(x) and g4(x) correspond to Gaussian and rectangular tag profiles.
g2(x) and g3(x) are the normalized profiles of the tags that are generated using the pulse
sequence shown in Fig. 3. All the RF pulses are sinc function multiplied by Hamming window.
For generation of g2(x) only the main lobe of the sinc is used, while for g3(x) one side lobe is
added to the RF pulse. The curves shown in Fig. 6 are obtained assuming a sinc point spread
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function and vertical or horizontal line tag placement. The optimum tag thickness ranges from
1.13 for the Gaussian to 1.50 pixels for the rectangular tag profiles. Table I shows the optimum
tag thickness values and the error factor at these optimum values. The tag center estimation
errors for a CNR value of 20 are also shown. If the resolution of an image in readout and phase
encoding directions are the same, diagonal placement of tag lines will give the best result
because in the diagonal direction the width of the line spread function is narrower than all the
directions (see appendix). If the tag lines are placed diagonally, all the values in Table I will
be divided by 1.41. In this case, the optimum thickness ranges from 0.80 to 1.06 pixels.

The error factor versus tag thickness graphs have very similar characteristics. They are smooth,
have a single minimum, and as the tag thickness goes to infinity or zero, the error factor goes
to infinity. The error factor for tag thicknesses less than the optimum value can be approximated
by the tangent line for D → 0 as:

(14)

Similarly, the error factor for tag thicknesses higher than the optimum value can be
approximated by the tangent line for D → ∞ as:

(15)

The intersection point of these curves gives an approximate value for the optimum tag thickness
as (see Fig. 7):

(16)

At this optimum value, the tag center estimation error can be approximately calculated using
(14) (or (15)) and (16) as:

(17)

As seen from the above approximate expression, to decrease the tag center estimation error,
one should increase the high frequency components of the tag profile, corresponding to a more
rectangular profile. The longer RF pulses required to obtain a more rectangular tag profile,
however, may not be optimal because the decrease in the tag center estimation error is small.
As the profile approaches a rectangular, the optimum thickness increases from a value of 1.13
to 1.50 pixels and the center estimation error factor decreases from a value of 0.82 to 0.62
pixels (see Fig. 6 and Table I).

The other factor affecting tag center estimation error is the line spread function. As the high
frequency components of the line spread function increase, the error decreases. Here, the
limitation for increasing the high frequency components of the line spread function is the
imaging method itself. The truncation of the k-space data is an important factor. Truncation
causes a sinc-type point spread function. All the other possible sources that may affect the point
spread function broaden the sinc. Thus, by increasing the imaging quality, tag center estimation
error can be decreased.

The tag center estimation is proportional to the pixel separation. At first glance one might think
that decreasing the pixel separation (increasing the image resolution) would decrease the
estimation error. However, decreasing the pixel separation results in a diminished contrast to
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noise ratio that is inversely proportional to the error. Therefore, increasing the image resolution
may not decrease the tag center estimation error.

In this section, we derived a simple relation between tag thickness and the error factor, and
calculated an approximate expression for the optimum tag thickness and the tag center
estimation error at this optimum value. In the following section, the above results were verified
using Monte-Carlo simulations and experiments.

IV. SIMULATIONS AND EXPERIMENTS
A. Simulations

The Cramer-Rao bound may not be tight if the contrast to noise ratio is low. Conversely, the
optimum tag thickness is derived assuming the error factor is approximately equal to its lower
bound. So the derivation may fall below a CNR threshold. To find this threshold, the error
factor is calculated for different noise levels and tag thicknesses using Monte-Carlo
simulations, and compared to the lower bound.

The block diagram showing the method of obtaining the value of Γ for a given noise level is
depicted in Fig. 8. Here, a Gaussian tag profile and sinc line spread function is assumed. The
noise is generated using a Gaussian noise generation program [11, pp. 216–217]. For each point
on the Γ curve, 1,000 data sets are generated and the position of the tag is estimated using LSE
for each data set. The standard deviation of all the estimations is approximately equal to σµ.
The value of Γ is obtained using (12). This process is carried out for five different noise levels
and eighteen different tag thicknesses.

Fig 9. shows the results of this process as well as the theoretical lower bound for Γ. As seen
from the figure, if CNR is greater than 10, then the error factor is very close to the lower bound.
For low CNR values (less than 10), the Γ curve is above the lower bound curve. For CNR levels
of 5, the optimum tag thickness becomes higher than the calculated optimum thickness value,
and the error factor, Γ, at this point, is 15% more than the minimum value of the error factor
lower bound. For all practical purposes this increase is acceptable. However, for even lower
CNR values, the tag is barely visible, and the LSE method finds the noise-generated local
minima at arbitrary locations.

As a result, the error factor is approximately equal to its lower bound if contrast to noise ratio
is higher than 10. Conversely, for CNR < 5, the LSE algorithm fails to detect thin tag lines,
and therefore the actual optimum tag thickness doesn’t match with the calculated optimum tag
thickness.

B. Experiments
We designed a set of experiments to verify the theoretical relation between the tag center
estimation error and the tag thickness. In these experiments, tag thickness was varied while
keeping the other imaging parameters constant. Using the data in the images, experimental
values for the error factor were obtained for different tag thicknesses.

The pulse sequence used in the experiments is shown in Fig. 3. The pulse sequence was
designed to generate six parallel tag lines per MR image. The envelope of the tagging RF pulses
has only the main lobe of the sinc pulse multiplied by a Hamming function, generating tag
profiles very similar to Gaussian.

A uniform spherical phantom was placed in the region of interest. All the filters in the vendor-
supplied reconstruction program that could change the noise characteristics and affect line
spread function were turned off. A total of 13 images were acquired. The field of view and size
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of these images were 16 cm and 256 × 256, respectively. The pixel separation was therefore
Δx = 0.625 mm. The tag thickness was varied by changing the strength of the tagging gradient.
The duration of the tagging RF pulses was kept fixed at 9.6 msec for the first six images (for
tag thicknesses 0.67, 0.83, 1.00, 1.33, 2.66, and 5.32 pixels) while the duration was 6.4 msec
for the last seven images (for tag thicknesses 1.0, 1.33, 1.67, 2.00, 2.50, 5.00 and 8.00 pixels).
Four of these images and their horizontal profiles are shown in Fig. 10.

Due to the RF field inhomogeneity and different amount of T1 relaxation [12], the intensity
variation in the images was observed. At the center of each image, the CNR for the tags was
relatively constant. The 128 horizontal profiles from the center part of the image were analyzed
independently. On each profile, six tag positions were estimated using the LSE algorithm.

An estimate for σµ was obtained from the analysis of each tag line from 128 µ estimations
along the tag. Since the phantom was stationary and uniform, the tag lines were expected to
be subject to bending because of field inhomogeneity [13,14]. A second-order curve was fitted
to the set of µ estimations. The standard deviation of the estimates from the second-order curve
was equal to the standard deviation of µ within the 15% error margin predicted by the statistics
of the 128 samples.

To calculate the CNR of a tag, the noise level and amplitude of the tag was calculated. To
measure the noise level, the phantom was taken out from the MR scanner, and a blank image
was acquired while keeping all other imaging parameters constant. The noise level, σn, results
from dividing the standard deviation of the pixel intensities in the image by 0.655 (see [15],
for the relation between the background noise level and the noise level in the image). The
amplitude of each tag was calculated in two steps. First, a phantom image with no tag was
acquired. A second order function was fitted to the intensity distribution in the image. M0 values
at the position of each tag were calculated using this function. Second, the minimum signal
intensity along the tag profile was measured. To eliminate the effect of the point spread
function, thick tag lines were selected. The average of the minimum values along the tag line
gave an estimate for the minimum signal intensity on the tag profile. Subtracting this value
from the calculated M0 gives the contrast of the tag, Ct. The ratio between the contrast and the
noise level gives the CNR of the tag.

Using the estimated values of CNR and the tag center estimation error, the error factor, Γ, was
calculated using equation (12) for each tag line in each phantom image. In Fig. 11, the
experimentally evaluated error factor values are plotted on a Γ versus D curve. On the same
graph the lower bound for the error factor is also given. As seen in the graph, the experimental
values for the error factor are very close to the lower bound curve. The deviation is within the
15% experimental error boundaries determined by the 128 samples. However, there seems to
be a small systematic error between the theoretical lower bound and experimental results for
D values less than the optimum. It is known that for D < Dopt, the value of Γ depends on the
line spread function rather than the tag profile. In the theoretical calculations of the error factor,
the line spread function was assumed to be sinc. If one considers the effect of  decay, however,
the line spread function may be calculated more accurately and this may account for this small
systematic error.

V. CONCLUSION
We analyzed the precision of the magnetic resonance tag detection [6], [12] and have shown
that the tag position can be estimated with subpixel accuracy, and that the estimation error
depends on tag thickness. An approximate expression for the optimum tag thickness has been
derived. The result was verified using Monte-Carlo simulations and experiments.
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Depending on the angle and the shape of the tag line, the optimum tag thickness is in the range
of 0.8 to 1.5 pixels. If optimum tag thickness is used, the tag position can be estimated with an
error less than 0.9/CNR pixels, leading to the following conclusions:

• Tag position estimation error increases drastically as tag thickness decreases for
values less than the optimum. For tag thicknesses higher than the optimum, however,
a small increase in error is observed.

• Tag position estimation error and optimum tag thickness are both dependent on the
shape of the tag profile. As the tag profile becomes closer to a rectangular shape, the
optimum tag thickness increases and the estimation error decreases. There is little to
be gained by designing RF pulses that give the “optimum tag profile.”

• The optimum tag thickness is also dependent on the orientation of the tag line because
the line spread function is angle-dependent. For example, if the resolution in phase
and frequency encoding directions are the same, the resolution along the diagonal
directions becomes maximum. In this case, the tag thickness and the tag center
estimation error can be decreased by placing the tag line diagonally.

• The optimum tag thickness is independent of the contrast to noise level. However,
the tag position estimation error is linearly proportional to the noise level. As was
discussed in Section IVA, this statement is not valid for CNR levels lower than 10.
At low CNR values, the optimum tag thickness increases as CNR decreases.

Following are guidelines for the use of the cardiac tagging technique:
• Use a tag thickness slightly higher than the optimum thickness (for example 2 pixels

wide) to avoid the tag thickness becoming less than optimum during the later phases
of the cardiac cycle.

• Avoid long tag generation pulses because the shape of the tag line is not critical.
• Place the tag lines perpendicular to the highest resolution direction.

To obtain high accuracy strain field, tag spacing should be as close as possible. However, the
tag center estimation may be affected by the Gibbs ringing of the neighboring tag lines. In tag
center estimation, the tag separation is assumed to be high so that this effect is negligible.
Because the optimum tag thickness is on the order of one pixel, close tag spacing is possible.
The combination of lower tag spacing and high precision tag position estimation leads to
accurate measurement of strain fields. The analysis of the Gibbs ringing and the problem of
finding the optimum tag spacing is currently being studied.

In this study, the data acquisition method is assumed to be arranged so that the effect of motion
on image quality is negligible. However, it is known that motion causes blurring in MR images
and the blurring is dependent on the direction of the motion. Since blurring affects the line
spread function, the optimum tag thickness and the estimation error are also affected. To find
the optimum thickness for the images where blurring due to motion is present, both theoretical
and experimental studies are necessary.
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APPENDIX

LINE SPREAD FUNCTION
In this appendix, we will concentrate on imaging a line whose profile is an impulse and derive
an analytical expression for a sample line spread function. Several factors, such as truncation
of the k-space data,  decay, and filters used during data acquisition and image reconstruction
steps affect image quality with MRI. In the calculation of the line spread function, however,

 decay is ignored and it is assumed that the data acquisition is carried out using an ideal
antialiasing low pass filter and that no other filters are used. Thus, we assumed that the only
factor affecting image quality is the truncation.

The line spread function is the profile of a line image along the normal direction, as opposed
to the point spread function, which is the image of a point. It is known that because of the
truncation of k-space data, a point appears as a sinc function on an MR image. Assume that
the imaging resolution in the phase and frequency encoding directions are the same (N × N).
Under this condition, the point spread function can be written as:

(18)

where FOV stands for the field of view. Using the point spread function, it is possible to
calculate the image of any function. This represents the two dimensional convolution of the
function with the point spread function.

To calculate the image of the line, let us define the line as:
(19)

where δ(x) is the Dirac delta function and α is the angle of the line. The resulting line image,
I, is the convolution of the line with the point spread function, which can be calculated as:

(20)

where Δx = FOV/N max(|cos α|, |sin α|).

The line spread function represents the function of the image along the normal direction as it
relates to the imaged line. It can be written as

(21)

Using the above two equations, and redefining α as the angle between the line and either the
x or y axis, whichever is closer, one can obtain the following simple relation for the line spread
function:

(22)

Thus, even for an image with equal resolution in the phase encoding and frequency encoding
directions, the line spread function depends on the line direction. In our example, the function
is sinc and its frequency changes according to the angle of the line. The maximum frequency
is obtained when the line is diagonal, or equivalently, the maximum resolution is along the
diagonal direction.
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Fig. 1.
Two of the eight human heart images acquired in a single eight cardiac cycle breath-hold using
the segmented k-space CINE-MRI. The dark horizontal lines in these images are the tag lines.
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Fig. 2.
The tag position estimation process. The profile of the image along the normal line is obtained
and tag center is estimated using least-squares fitting of the samples along the profile of the
template.
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Fig. 3.
A sample pulse sequence for parallel tag generation. Six RF pulses were applied to generate
six parallel tag lines.
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Fig. 4.
The tag center estimation method. The template is constructed by convolving the tag profile
with the line spread function, and the template is fitted to the samples of the tag profile along
the normal line.
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Fig. 5.
Description of (a) the normalized tag profile and (b) the actual tag profile.
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Fig. 6.
Sample normalized tag profiles, g(x) and error factor, Γ, curves. For these sample plots, the
line spread function is assumed to be sinc as in (3). The tag profiles are given in (a),
corresponding error factors curves are given in (b)‥ g1(x) and g4(x) are the Gaussian and
rectangular tag profiles, respectively.
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Fig. 7.
A sample error factor curve. For this example, it is assumed that the point spread function is
sinc and the tag profile is Gaussian.
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Fig. 8.
The block diagram for Monte-Carlo simulations.
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Fig. 9.
The results of the Monte-Carlo simulations. Points are calculated using five different levels of
CNR. The lower bound for Γ is also given.
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Fig. 10.
Four of the 13 phantom images used in these experiments. There were six parallel tag lines in
each image. The tag thicknesses are: (a) 0.67, (b) 1.33, (c) 2.66, and (d) 5.33 pixels. On the
right-hand side, a sample profile of each image is shown.
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Fig. 11.
Experimental measurement results of the error factor (Γ) for different tag thicknesses. Each
circular symbol corresponds to an estimate of the error factor from 128 profiles on a single tag
line. The calculations are carried out for 13 images with six tag lines on each. The lower bound
for the error factor is shown as a solid line.
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TABLE I
The optimum tag thicknesses for the sample tag profiles in Fig. 6. The error factor, Γ, for optimum tag thickness is also given. The
tag center estimation error is calculated for a CNR value of 20.

Normalized Tag Profile Optimum Tag Thickness Dopt
(pixels)

Minimum Error Factor Γmin
(pixels)

Tag Center Estimation Error for
CNR=20 σµ (pixels)

g1(x) 1.13 0.82 0.041
g2(x) 1.35 0.73 0.037
g3(x) 1.40 0.65 0.033
g4(x) 1.50 0.62 0.031
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