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Responses to extracellular stress directly confer survival fitness by
means of complex regulatory networks. Despite their complexity,
the networks must be evolvable because of changing ecological
and environmental pressures. Although the regulatory networks
underlying stress responses are characterized extensively, their
mechanism of evolution remains poorly understood. Here, we
examine the evolution of three candidate stress response networks
(chemotaxis, competence for DNA uptake, and endospore forma-
tion) by analyzing their phylogenetic distribution across several
hundred diverse bacterial and archaeal lineages. We report that
genes in the chemotaxis and sporulation networks group into well
defined evolutionary modules with distinct functions, phenotypes,
and substitution rates as compared with control sets of randomly
chosen genes. The evolutionary modules vary in both number and
cohesiveness among the three pathways. Chemotaxis has five
coherent modules whose distribution among species shows a clear
pattern of interdependence and rewiring. Sporulation, by contrast,
is nearly monolithic and seems to be inherited vertically, with three
weak modules constituting early and late stages of the pathway.
Competence does not seem to exhibit well defined modules either
at or below the pathway level. Many of the detected modules are
better understood in engineering terms than in protein functional
terms, as we demonstrate using a control-based ontology that
classifies gene function according to roles such as ‘‘sensor,’’ ‘‘reg-
ulator,’’ and ‘‘actuator.’’ Moreover, we show that combinations of
the modules predict phenotype, yet surprisingly do not necessarily
correlate with phylogenetic inheritance. The architectures of these
three pathways are therefore emblematic of different modes and
constraints on evolution.

chemotaxis � competence � module � regulatory � sporulation

Cells grow, divide, differentiate, and respond to their envi-
ronment by means of an intricate regulatory program. The

genetic circuitry carrying out this program is staggeringly com-
plex; some speculate that complexity arises from the require-
ment for sensitive and robust response to the environment.
Despite the strong coupling among components of the genetic
circuitry, however, the overall system is capable of remarkable
evolutionary modification for different physiological contexts
and ecological niches, even resulting in altogether new pheno-
types. Thus, the design of biological systems entails the seemingly
incompatible objectives of complexity and evolvability. Complex
circuitry might achieve the sensitive response necessary for
survival, but its very intricacy could prevent modification for new
functions and niches. A less complex system might be easier to
modify, but the lack of intricacy could hinder its ability to
respond sensitively and robustly.

An increasing number of studies suggest that modularity is one
way to reconcile the seemingly incompatible objectives of com-
plexity and evolvability. A modular system builds complexity out
of simpler, repurposable units so that a minimum of rewiring
among the modules can create entirely new function (1, 2).
Indeed, modularity has been shown to underlie biological func-
tion at the level of transcription (3, 4), epistatic interactions (5),
protein structure (6, 7), and embryonic development (8). Recent
studies have examined the degree to which biological networks
are modular, catalogued the types and compositions of modules,

and traced how they are evolutionarily rewired and tuned by
evolution for new function. Pioneering work in this field detected
functional modules with shared evolutionary history by using
information about gene neighborhood, gene fusions, and phy-
logenetic distributions of gene families (9–11). Related work
confirmed that over half of all functional modules (in the form
of transcriptional modules, protein complexes, and metabolic
pathways) have coevolving components (12). Evidence for mod-
ule rewiring is accumulating from computational studies that
observe repeated domain rearrangements and module duplica-
tions (13–15), as well as from experimental studies of alternative
transcriptional circuits with identical logic (16). More detailed
evolutionary studies have established that modularity is hierar-
chical (17) and compared phylogenetic or dynamical modules
among a few species: for example, the sporulation-signaling
phosphorelay in five spore-formers (18) and chemotaxis regu-
latory dynamics in Escherichia coli vs. Bacillus subtilis (19).

Here, we investigate the level of modularity in the evolution
of several representative bacterial stress responses. Responses to
extracellular stress are of particular interest because they inher-
ently represent the design tradeoff between complexity and
evolvability: they directly confer survival fitness by means of
complex regulatory networks, yet must encode the ability to
adapt to changing ecological and environmental pressures. For
our analysis, we chose three well studied stress response net-
works with distinct phenotypic outcomes [chemotaxis (20), spore
formation (ref. 21, Ch. 33–37), and competence for DNA uptake
(22)] and examined their phylogenetic variability among several
hundred bacterial and archaeal lineages for which we gathered
detailed phenotypic information. In particular, we chose che-
motaxis because it is considered a canonical signal transduction
pathway; sporulation because it is a complex developmental
pathway that is closely tied to essential replication apparatus; and
DNA uptake because it has wide phyletic distribution and has
been provocatively linked to the evolutionary process of lateral
gene transfer (23). Also, the three networks are interesting in
that they do not function in isolation, but have cross-regulatory
interactions (24–26) that might give rise to rewiring either within
pathways (in related species inhabiting different niches) or
between pathways (in species exhibiting different combinations
of the three phenotypes). Because we expected to observe
fine-grained differences (if any) among variants of the pathway
in different species from the same habitat, and coarse-grained
differences among phenotypic variants in different habitats (e.g.,
spores with vs. without exosporium; twitching vs. tumbling
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motility), bacteria proved a useful choice, because each genus
has many sequenced species, strains and variants with diverse
habitats and lifestyles. Finally, all three stress responses are well
curated networks supported by high-quality genetic, biochemi-
cal, and phylogenetic data. This rich literature base allowed us
to investigate potentially detailed inheritance patterns that might
not have been discernible from large-scale, nonspecific genomic
searches.

Results
Collection of Phenotypic Data. We began by collecting detailed
information on phenotype, niche, and lifestyle for 207 species of
bacteria and archaea with fully sequenced genomes (supporting
information (SI) Table S1 and Fig. S1). These data were
gathered from literature sources that did not make use of
sequence data to elucidate phenotype [Bergey’s Manual of
Systematic Bacteriology (27) and species-discovery papers in the
International Journal of Systematic and Evolutionary Microbiol-
ogy, among others], and as such provided an independent
verification of the species and gene clustering discussed below.
Among the 207 species surveyed, 18 were annotated as spore-
formers, 85 as competent, and 101 as motile. These phenotypes
correspond to the three stress response networks we chose. We
also annotated each species as being Gram-positive (47 species)
or not, and noted the animal pathogens (117 species), plant
pathogens (17 species), strict anaerobes (97 species), and ex-
tremophiles (33 species) among the 207 species. Although the
eight phenotypes listed should in theory allow for 28 � 256
possible combinations (implying that the sample size of 207
species would not even reach saturation), there were only 48
unique combinations of phenotypes, with the five most frequent
combinations all being instances of disease-causing motile anaer-
obes, confirming the well known bias toward sequencing med-
ically relevant intracellular pathogens.

Networks Are Composed of Distinct Evolutionary Modules. Next, we
gathered lists of genes known to be expressed in each of the three
pathways (61 chemotaxis genes, 153 spore-formation genes, and
62 competence genes listed in Tables S2–S4). These genes were
chosen after an extensive literature search of each stress re-
sponse, reflecting multiple sources of experimental evidence
(genetic, biochemical, or high-throughput expression data) for
each gene. The gene lists relied heavily, but not exclusively, on
studies in model organisms: B. subtilis for endospore formation
and chemotaxis, and B. subtilis and Haemophilus influenzae for
competence (representing the two best-known cases of compe-
tence in Gram-positive and Gram-negative bacteria). A stringent
version of the COG algorithm (28) was used to generate ortholog
sets for each gene, with manual curation of alignments to remove
paralogs and spurious BLAST hits. The resulting phylogenetic
profiles were hierarchically clustered along two dimensions
(genes and species). To avoid trivial clusterings resulting from
identical or near-identical gene content between closely related
strains or species, we benchmarked the probability of shared
orthologs as a function of phylogenetic distance, and used it
before the clustering step to remove 21 phylogenetically ‘‘dupli-
cate’’ species sharing �90% of orthologs (Fig. S2). The optimal
number of gene clusters was chosen as the partition that resulted
in a maximal mean silhouette (29). Clusters with low silhouette,
low statistical significance, or low cohesion were discarded
(details in SI Methods). The remaining gene clusters were then
denoted as evolutionary modules (Fig. 1 and Figs. S3–S6).

Two of the three networks have a number of distinct and
coherent evolutionary modules. The 61 genes in chemotaxis
group into five evolutionary modules ranging in size from 4–24
genes found in 5–56 species, the 153 sporulation genes into three
modules (30, 35, and 47 genes in 17–62 species), and the 62 DNA
uptake genes group into two large clusters, one of which (cluster

2) is otherwise statistically significant (29 genes in 57–151
species) but not cohesive enough to be called an evolutionary
module. This difference reveals that even within well defined
functional networks, there are marked and discrete differences
in the conservation patterns of individual genes. Further, as a
whole, both the chemotaxis and sporulation networks have a
significantly higher degree of modularity (P � 10�5), as mea-
sured by the mean distance between phylogenetic profiles of all
genes in the network, than does a control set of genes randomly
chosen from the genome complements of the model organisms
listed above. One might expect this modularity given that the
genes were chosen because they have been associated with a
common phenotype; the bigger surprise was that the competence
network genes as a set are no more modular than random. Please
see Table S5 for module lists, member genes, and statistical
measures.

Modules Are Enriched in Specific Functions and Phenotypes. We then
tested each module for over-represented functions and pheno-
types. Functional annotations for genes were gathered from
several manually curated functional databases (30–32). Pheno-
typic annotations for species were gathered as described above.
Although a manual inspection of module gene annotations
revealed clear functional enrichments, tests for over-represented
functions did not reflect this enrichment, perhaps because
standard ontologies describe functions at a ‘‘low’’ biochemical or
molecular level. We therefore devised a previously undescribed
ontology for pathways with a simpler, higher-level vocabulary
based on engineered control systems. In this engineering ontol-
ogy, genes are classified as sensors (signal transduction, ligand-
binding, and environmental sensors), regulators (transcription
factors and phosphorelay enzymes), actuators (structural pro-
teins that actuate or realize the stress response), or cross-talk
(global and master regulators that participate in two or more
networks). Using a permutation test on the mutual information
between classification labels and clustering (33), we confirmed
that this ontology is more predictive of gene module membership
than other ontologies, at least for the chemotaxis and sporula-
tion networks. Please see Methods for z-score calculation, SI
Methods for ontology classification details, and Table S6 for
z-scores.

Applying these detailed descriptions of genes (engineering
ontology) and species (phenotypic scoring) to modules, we found
significant enrichment in functionally related genes (probability
of statistical significance as compared with hypergeometric
distribution, Pg) as well as in phenotypically related species (Ps).
In chemotaxis, for example, module A consists entirely of
flagellar genes in motile species, classified as actuators (Pg �
10�9, Ps � 10�5). Module E consists of transcriptional and
cross-regulatory genes in motile and Gram-positive species,
classified as regulators (Pg � 10�5, Ps � 10�7). Module C consists
of the ligand-binding apparatus in free-living, nonpathogenic
motile species, classified as sensors (Pg � 10�4, Ps � 10�5) (Fig.
2, Table S5). In spore-formation, module A consists of spore coat
proteins, germination genes, and late stage regulatory and
actuation genes (Pg � 10�5, Ps � 10�2). Sporulation module B,
consisting of master regulators (abrB, sinR), early regulators
(spo0B, rap phosphatases), and some germination genes, is found
in sporulating bacilli, but not in all sporulators (Pg � 10�5, Ps �
10�2). Sporulation module C consists of peptide pheromones
and early phosphorelay, classified as sensors (Pg � 10�5, Ps �
10�2). In competence, gene cluster 2 primarily consists of
membrane-associated DNA ratchets expressed late in compe-
tence in naturally transformable bacteria, classified as actuators
(Pg � 10�5, Ps � 10�2), with a surprising mix of both Gram-
positive and Gram-negative genes.
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Module Genes Have Distinct Rates of Sequence Evolution. The degree
of sequence conservation [measured as the median protein
identity (mpi)] is distinct from module to module and from
network to network. In chemotaxis, mpi measurements are
significantly different for each module (P � 10�5, Kruskal-
Wallis nonparametric analysis of variance test). Chemotaxis
module A, for example (flagellar genes in motile species) has an
mpi of 29.7% whereas module C (signal transduction genes in
free-living motile species) has an mpi of 18.6%. This difference
implies that flagellar genes are more highly conserved, whereas
signal transduction genes, not required by intracellular motile
pathogens, are evolving faster with more sequence variation
(Table S5). In the sporulation network, although modules A and
B have similar mpi values (54.6% and 58.7%), the third module
C is far less conserved in sequence (mpi � 28.5%). The three
modules have similar ratios of synonymous (Ks) to nonsynony-
mous substitutions (Ka/Ks, 0.25, 0.22, 0.31) whose variation falls

well within the standard deviation for all sporulation genes (� �
0.14). (Note that Ka/Ks ratios for sporulation genes can be
calculated with reasonably minimal filtering for saturation ef-
fects because the genes are primarily conserved among a small
group of closely related spore-forming bacteria. The same is not
true of chemotaxis or competence genes, which are far more
phylogenetically widespread and show evidence of extensive
saturation; details in SI Methods.) Finally, competence cluster 2
(DNA ratchets in naturally transformable Gram-positive and
Gram-negative species) is less conserved in sequence than the
entire complement of DNA uptake genes (mpi � 46.5%).

Module Combinatorics Are Predictive of Phenotype. Given these
findings, that is (i) the entire network is not uniformly conserved in
all species with the phenotype, (ii) two of the three networks can be
decomposed into distinct evolutionary modules, and (iii) certain
modules have accumulated more mutations than others, we were
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Fig. 1. Evolutionary modules in chemotaxis. Orthologs of 61 B. subtilis chemotaxis genes were recovered from 207 microbial species, and the resulting gene
content matrix was hierarchically clustered along both genes (rows) and species (columns). Genes were then colored according to which dynamic-control role
they occupy in the network (see legend). The clustering reveals that genes group into five statistically significant evolutionary modules (A–E), and that (i) flagellar
genes (flg, fli, flh) are conserved among motile bacteria but not among motile Archaea; (ii) the full complement of signal transducers (mcp, tlp) and regulators
(che) is absent in many intracellular pathogens; and (iii) nonmotile bacteria that have conserved ‘‘flagellar’’ apparatus are in fact pathogenic Chlamydiae with
orthologous type III secretion systems (omitted are 85 species with all-zero phylogenetic profiles and 21 phylogenetically ‘‘duplicate’’ species). For sporulation
and DNA uptake phylogenetic profiles, see Figs. S3–S6.
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led to examine the relationship between modules and phenotype.
Are certain genes in a network ‘‘diagnostic’’ for the phenotype,
whereas others might be present for pathway cross-talk or niche-
specific sensing, and still others incidental? Alternatively, do par-
ticular combinations of genes or modules predict whether the
phenotype might be found? To examine these hypotheses, we
calculated the true positive (tpr) and true negative rates (tnr) of
each gene’s phylogenetic profile against each phenotypic profile
and used linear discriminant analysis to classify tpr and tnr accord-
ing to module or phenotypic membership.

For chemotaxis modules, tpr and tnr have lower classification
error toward the motility phenotype (8%) than toward other
phenotypes (11–17% classification error, Table S7). This trend
is also the case for sporulation (0% error of sporulation genes
toward sporulation phenotype vs. 1–5% error toward other
phenotypes). Although the same trend exists per module, che-
motaxis module E classifies better with the sporulation pheno-
type (7%) than with the motility phenotype (40%) or the
competence phenotype (36%). This difference may be explained
by the fact that chemotaxis module E consists of cross-talk
regulators that participate in both sporulation and chemotaxis.
In addition, tpr and tnr are remarkably distinct for each module
(P � 10�4, Kruskal–Wallis nonparametric analysis of variance
test), indicating that certain modules are more predictive of a
phenotype, or combination of phenotypes, than other modules
(Fig. 3). Modules with both high tpr and high tnr (�0.8) in the
networks (that is, modules that correlate most closely with the
phenotype) contain ‘‘core’’ genes that are actuators in sporula-
tion (structural, coat, and cortex proteins), but in chemotaxis,
are regulators (cheA-Z). Modules with low tpr (0–0.2) but high
tnr (�0.8) in all three networks contain genes that sense
intracellular state and act as cross-talk between two or more
networks (global regulators like abrB, codY, hpr, and obg).
Modules with medium tpr and tnr (0.6–0.8) in the networks
contain genes that sense the extracellular environment and/or

transduce signals (mcp, tlp (ligand-binding receptor) genes in
chemotaxis; kin, rap, spo0 (onset) and ger (germination) genes in
sporulation.

Finally, combinations of modules are predictive of combina-
tions of phenotypes. For example, species containing flagellar
(actuation) modules, but lacking sensing, regulatory, or cross-
talk modules, are all intracellular pathogens (Chlamydiales)
whose highly conserved ‘‘f lagellar’’ genes are in fact orthologs of
the type III secretion system, used to inject virulent proteins into
host cells (34). Similarly, species containing signal transduction
and regulatory modules, but lacking flagellar modules, are all
motile Archaea, which exhibit twitching rather than swimming
motility, and therefore have motility organelles whose genes are
orthologous to type II (pili) rather than type III (f lagellar)
systems (35). In sporulation, module A contains genes whose
presence is both a necessary and a sufficient condition for
predicting endospore formation (i.e., all species that form en-
dospores have these genes, and no species that do not form
endospores have these genes). This gene set (Table S3) should
be predictive of spore formation if found in newly sequenced
species, or an inability to sporulate if not found. Similarly, the
presence of sporulation module B predicts spore formation, but
its absence does not preclude it. These genes interact with the
environment, their variability possibly due to niche adaptation,
or, alternatively, merely alternative implementations of the same
control strategy or the result of gene loss (Figs. S3, S4, and S7).

Discussion
We have gathered and analyzed detailed phenotypic, phyloge-
netic, and functional data to demonstrate that genes in some
stress response pathways cluster into statistically significant
evolutionary modules. These findings are in line with previous
work that used phenotypic and/or phylogenetic data to demon-
strate the existence of evolutionary modules (10, 11, 36, 37). Our
study makes three additional observations. First, different stress
response pathways are modular to different degrees, and at
different levels of resolution. For pathways that are modular,
each evolutionary module has a distinct, coherent conservation
pattern among species related in phenotype, not phylogeny.
Most of the variation (in both sequence and gene content) is in
environmental sensing and signal transduction genes at the onset
and completion of the response. The least variation is in struc-

DB CA E
Module Number

seiceps
eli to

m -n o
N sre

m rof -er ops
gnivil-eerf

elba
mrofsn arT

sre
mrof-erops

cinegohtap
elba

mrofsnart-no
N

snegohtapla
mlin

A
s elihpo

mertxe/seboreana
gnivil-eerF

sn egohtaptnal
P

A B

A B C D

0
1.0

2.0
3.0

4.0
5.0

6.0
7.0

8.0
9.0

1
noitcarF

E

Cross-talk

Regulation
Actuation

Sensing

Module Number

Fig. 2. Chemotaxis modules are enriched in specific functions and pheno-
types. For each evolutionary module, we measured the fraction of genes in the
module belonging to each of four functional categories (A), and present in
each of 48 phenotypic descriptions of species (B). The relative compositions of
the five modules in chemotaxis reveals significant enrichment in functionally
related genes as well as in phenotypically related species. For example, the 24
genes in module A are all involved in actuation (red); the 9 genes in module
E (cross-talk with other pathways) are distributed among 35 species, all of
which are Firmicutes and most of which are spore-formers. Sporulation mod-
ules are also enriched in specific functions and phenotypes (Table S5).

Fig. 3. Certain modules are more predictive of phenotype than others are.
Chemotaxis modules have distinct sensitivities and specificities to the motility
phenotype (A); the same is true if genes are instead grouped according to the
engineering ontology (B). Contrary to intuition, module genes from one
phenotype do not always have decreased sensitivity and specificity to the
other phenotypes (Table S7). Note that the y axis starts at 0.7.
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tural proteins that carry out the response. Second, combinations
of modules are surprisingly not maintained across phyla, but
predict phenotype. Third, for a functional classification of genes
to be coherent at the module-level of network organization, a
particular resolution is required: one that is finer than general
classifications such as ‘‘motility’’ or ‘‘cell cycle,’’ but coarser than
molecular or biochemical classifications such as ‘‘ATP binding’’
or ‘‘methyltransferase activity.’’ This requirement gives rise to a
new ontology that classifies gene function according to an
engineering view of dynamical control, with roles such as ‘‘sen-
sor,’’ ‘‘regulator,’’ and ‘‘actuator.’’

More generally, our results show that genes functioning
together to produce a certain phenotype in one species neither
are all present, nor evolve at the same rate, in other species with
the same phenotype. Assuming a simple relationship between
phenotype and genotype, one would expect to find either species
with both a phenotype and corresponding genes (true positives)
or species with neither a phenotype nor the corresponding genes
(true negatives). However, our analysis of evolutionary modules
shows that there are also species with a phenotype but without
the genes (false negatives), as well as species without a pheno-
type and with the genes (false positives). These exceptions to the
phenotype-genotype relationship suggest module rewiring—
sensors may be rewired to different signal transduction systems,
in turn rewired to different actuators, and so on.

Application of the same methods yielded differing numbers of
modules for each of the three networks. The numerous, ex-
tremely coherent modules found in chemotaxis, for example,
together with the widespread phylogenetic distribution of the
motility phenotype (Fig. S7), hints at a patchwork evolutionary
history for chemotaxis. Given that the presence/absence pattern
of individual chemotaxis modules correlates with neither the
phenotypic nor phylogenetic clustering of species, it is interesting
to speculate that the flagellar organelle may have evolved once
or more, either from or preceding the type III/IV secretion
systems. This speculation is supported by detailed studies of
archaeal motility (38). The sensing apparatus seems to have
evolved once, with extensive niche-specific gene loss, whereas
the main transcriptional regulators may have been recruited
from other pathways, with additional enzymatic regulators for
chemotactic adaptation undergoing subsequent niche-specific
tuning. This idea is supported by evidence for the rapid evolution
of transcription factors (39, 40).

The three weak modules in sporulation in contrast to the
strong modularity of the network as a whole, on the other hand,
might imply a simpler evolutionary story. Although the sensor
module (C) seems to have accumulated more substitutions than
the actuator modules (A,B), the Ka/Ks measurements of the three
modules do not differ significantly from each other (0.25–0.31)
nor from the mean Ka/Ks for all sporulation genes (0.26),
indicating that the evolution of the network has been rather
uniform. Because sporulation requires building up a program of
staged, sequential development, modularity may be reduced by
robustness mechanisms on the core process of asymmetric cell
division.

Competence presents an intriguing counterexample. First, the
network has neither fine nor coarse-grained modular structure
by our measures. Second, we do not consistently observe the
expected clustering of Gram-positive specific competence genes
with Gram-positive species, and Gram-negative specific compe-
tence genes with Gram-negative species. Although this effect
could be due to poor orthology resolution for highly conserved
recombinase and DNA-binding domains, it is more likely an
indication that the DNA uptake machinery itself was assembled
from a diverse catalog of generalized functions (41, 42). Further,
the discovery of at least one instance of large-scale loss or lateral
gene transfer in the nontransformable Clostridia (Table S8 and

Figs. S8–S11) suggests that the evolution of this phenotype is
more intricate than previously believed.

In conclusion, we found that different stress response func-
tions have distinct evolutionary architectures. Although differ-
ences in modularity may be an artifact of how species were
chosen or annotated, they more likely represent which basic
functions may be reused for other cellular purposes. Some
modules seem freer than others to drift and search for new
functional partners. To acclimate to a new environment, sensors
and actuators might drift faster or be differentially selected as
compared with regulators. We show evidence for this differential
diversification, at least in chemotaxis and sporulation. It is
tempting to speculate that sensing new environments and ac-
cordingly changing the physics of actuation requires ‘‘sinks’’ for
the disconnected input and output ends of signal transduction.
These sinks are provided by the regulatory core, which must pass
signal from input to output, and is thus constrained to maintain
complex interaction structure. Finally, to close the circle be-
tween modules and pathways, we expanded pathway gene lists by
probing candidate genomes for genes with similar phylogenetic
profiles to module genes. This expansion yields on the order of
20–50 additional, novel genes in each pathway that remain
functionally uncharacterized (Table S9); these genes are exciting
potential entry points for further experimental elucidation of the
stress response.

Methods
We proceeded in three phases: (i) data collection, (ii) module identification,
and (iii) analysis of modules for phenotypic enrichment, functional enrich-
ment, and evolutionary coherence, as follows (flowchart in Fig. S1).

Data Collection. Data collection consisted of generating pathway gene lists
and phylogenetic profiles, annotating genes with our engineering ontology,
and annotating species with phenotypes. To build phylogenetic profiles of
stress responses, we used 61 genes in chemotaxis, 153 genes in spore-
formation, and 62 genes in competence (Tables S2–S4). DNA and amino acid
sequences for all genes were retrieved from the MicrobesOnline website and
their orthologs in 207 bacterial and archeal species identified by a 3-way
bidirectional best hit algorithm as described in ref. 28, with the additional
constraint that the sequence alignment coverage had to be at least 75% of the
length of both genes. Orthologs were refined manually (details in SI Meth-
ods). Genes were annotated as ‘‘sensor,’’ ‘‘regulator,’’ ‘‘actuator,’’ or ‘‘cross-
talk,’’ and species were annotated for phenotype and lifestyle (SI Methods,
Table S1).

Identifying Evolutionary Modules. Module identification consisted of hierar-
chical clustering of the phylogenetic tables, silhouette analysis to optimize
clustering, and statistical significance testing of the clusters using control sets
of genes randomly chosen from the same genome(s). The phylogenetic profile
for each pathway was represented as a binary matrix M of size nxm, where n
(rows) is the number of genes, m (columns) is the number of species, and
M(i,j) � 1 if species j has an ortholog of gene i, and 0 otherwise. Before
clustering the matrix, we removed 21 ‘‘duplicate’’ species sharing �90% of
orthologs with another species in the dataset (Fig. S2). The reduced matrix M
was then hierarchically clustered along both dimensions (genes and species) in
Matlab (The MathWorks, Natick, MA) by using Euclidean distance and Ward’s
linkage. For each linkage, the clustering resulted in two dendrograms: G,
which grouped genes, and S, which grouped species (Fig. 1 and Figs. S4 and S6).
A first approximation of the optimal number of clusters for G was determined
by calculating the mean silhouettes (29) for cuts along each gene tree pro-
ducing 2–10 clusters, and choosing the partition with maximal mean silhou-
ette over all clusters. A gene cluster was denoted an evolutionary module if
both its mean cluster silhouette and coherence C were significantly higher and
its mean D (Euclidean distance between phylogenetic profiles) significantly
lower (P � 10�3) than for a random gene cluster of the same size (1,000
iterations) drawn from either the B. subtilis genome (for sporulation and
chemotaxis) or a proportional mixture of the B. subtilis and H. influenzae
genomes (for competence). In the case of sporulation, this first approximation
was refined by successive application of silhouette analysis (details in SI
Methods).
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Analyzing Modules for Evolutionary Coherence. To measure the evolutionary
coherence of each module, the mean and median percent protein alignment
identity for each gene was calculated by using the Bio package of Perl
(www.bioperl.org), and then averaged over all genes in each module (Tables
S2–S4). The Ka/Ks ratio for each gene was calculated by an all-pairs algorithm
(43) and also verified by using the codeml tool of PAML (44) with runmode �

�2 and NSSites � 0 (Table S5). Saturation effects were avoided by discarding
pairwise gene comparisons for which Ks � 3 (details in SI Methods).

Analyzing Modules for Functional Enrichment. Modules were checked for
over-represented functions by using various manually curated functional
ontologies (Gene Ontology molecular function and biological process ontol-
ogies (30), TIGR Role Categories (32), and COG (31)), as well as the engineering
ontology that we developed (SI Methods, Tables S2–S4). To determine which
ontology is most predictive of gene module membership, we adapted a
method that scores the mutual information between cluster membership and
known gene attributes (33), as follows. For each network, let T be the n-length
clustering vector such that T(i) gives the cluster number to which gene i
belongs. Let L be the n-length ontology vector such that L(i) is the ontology
label (e.g., ‘‘sensor,’’ ‘‘regulator,’’ ‘‘actuator,’’ or ‘‘cross-talk’’) for gene i. Then
I(T;L) is the mutual information between the clustering and the ontological
classification. For 1,000 random permutations of L (resulting in the random-
ized ontology label vector Lr), we calculated the mutual information I(T;Lr) as
well as its mean and standard deviation. We then calculated the z-score used

to assess ontology meaningfulness as z � {I(T;L) � mean[I(T;Lr)]}/std[I(T;Lr)].
Z-scores for our and several other ontologies are reported in Table S6.

Analyzing Modules for Phenotypic Enrichment. We calculated the true positive
rate, tpr, of modules in a pathway to the species phenotype of that pathway
(e.g., true positive rate of chemotaxis gene content matching the motility
phenotype) as TP/(TP � FN), where TP � number of species with both gene and
phenotype, FN � number of species with phenotype but not the gene.
Similarly the true negative rate, tnr, was calculated as TN/(FP � TN), where
TN � number species with neither phenotype nor gene, and FP � number of
species without the phenotype but with the gene. In analogous fashion, we
calculated tpr and tnr of each pathway gene to every other phenotype (e.g.,
chemotaxis gene content to spore-forming phenotype, or DNA uptake gene
content to motility phenotype). To examine the relationship between tpr and
tnr, and systematically test whether module genes are diagnostic for the
corresponding phenotypes, we performed linear and quadratic discriminant
analysis (ref. 45, Ch. 11) in Matlab and visualized the results on a uniform [0:1]
grid with � � 0.001 (Table S7 and Fig. S12 and Fig. S13). All programs and data
are available on request from the authors.
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