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Abstract
The early visual cortices represent information of several stimulus attributes, such as orientation and
color. To understand the coding mechanisms of these attributes in the brain, and the functional
organization of the early visual cortices, it is necessary to determine whether different attributes are
represented by different compartments within each cortex. Previous studies addressing this question
have focused on the information encoded by the response amplitude of individual neurons or cortical
columns, and have reached conflicting conclusions. Given the correlated variability in response
amplitude across neighboring columns, it is likely that the spatial pattern of responses across these
columns encodes the attribute information more reliably than the response amplitude does. Here we
present a new method of mapping the spatial distribution of information that is encoded by both the
response amplitude and spatial pattern. This new method is based on a statistical learning approach,
the Support Vector Machine (SVM). Application of this new method to our optical imaging data
suggests that information about stimulus orientation and color are distributed differently in the striate
cortex, and this observation is consistent with the hypothesis of segregated representations of
orientation and color in this area. We also demonstrate that SVM can be used to extract ‘single-
condition’ activation maps from noisy images of intrinsic optical signals.
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Introduction
The early visual cortices, including the striate cortex (V1), represent information of several
stimulus attributes, such as orientation and color (Hubel and Wiesel, 1968; Gouras, 1970). To
understand the coding mechanism of these attributes in the brain, and the functional
organization of these cortices, it is necessary to establish whether different attributes are
represented by separate anatomical compartments in each cortex. In other words, is each cortex
one general-purpose network that represents various attributes, or does it consist of several
specialized networks, each representing a single specific attributes?
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In the past two decades, this important question has been studied by several groups, but it is
still controversial. An influential study by Livingstone and Hubel (1984) reported that the
cytochrome oxidase (CO) rich blobs in V1 and the regions between them (interblobs) contain
distinct and segregated populations of neurons that differ in their selectivity for color or
orientation. This study suggested that blobs and interblobs in V1 are specialized compartments
for processing color and orientation information, respectively. This hypothesis of color/
orientation segregation in V1 was supported by some subsequent studies (e.g., Ts’o and Gilbert,
1988; Yoshioka and Dow, 1996), but challenged by others (e.g., Lennie et al., 1990; Leventhal
et al., 1995).

Because these previous studies investigated the amplitude of the responses of cortical neurons
to various stimuli, their conclusions were based on the distribution of information that is
encoded by the response amplitude. Given the variability of neuronal response to any given
stimulus (Schiller et al., 1976; Dean, 1981; Snowden et al., 1992; Kara et al., 2000; Gur and
Snodderly, 2006), a coding scheme based on response amplitude of individual neurons is likely
unreliable. Moreover, the variability of neuronal activities is correlated over a cortical distance
that is as large as 1 mm cross (Arieli et al., 1996). Because of this correlation, a coding scheme
that is based on the averaged response amplitude of individual columns is also unreliable. In
contrast, spatial patterns of the response across a small region might be less affected by the
correlated variability, and thus encode stimulus information more reliably than do response
amplitudes alone. This hypothesis is supported by our recent findings that stimulus color and
luminance are encoded by the peak locations of response patches in areas V1 and V2 (Xiao et
al., 2003; Wang et al., 2007; Xiao et al., 2007a).

However, although the spatial patterns of cortical activities can be mapped by modern imaging
techniques, there has been no method to map the distribution of information that is encoded
by these spatial patterns. Here we introduce such a method, which is based on a recently
developed learning machine called the Support Vector Machine (SVM) (Vapnik, 1998). This
method can be used to determine whether information about different stimulus attributes such
as color and orientation is represented in different compartments of visual cortices. A brief
summary of the advantages of the SVM method over previous methods is given in the
METHODS section. The description of an application of this method has been published
previously (Xiao et al., 2007b). The current paper provides a more detailed description of the
method itself, along with its other applications.

Methods
Experiments were carried out on two anesthetized and paralyzed monkeys (Macaca
fascicularis). Details of the methods have been described in previous publications (Xiao et al.,
2007a; Xiao et al., 2007b). Here we describe only the methods that are essential for
understanding the current paper.

Optical imaging
We recorded intrinsic optical signal with a CCD camera with 652 × 492 pixels. The camera
took 10 frames/second at a resolution of 6.1 μm/pixel in color experiments, or 12.2 μm/pixel
in orientation experiments. The cortex was illuminated by 610 (±8) nm light from LEDs driven
by a stabilized power supply.

During each imaging trial, 11 frames were taken before, 30 or 18 during, and 2 after the 3 or
1.8 second presentation of a stimulus, followed by a rest period of 11–13 seconds, during which
the display was uniformly gray (Fig. 1). An imaging block consisted of one imaging trial for
each stimulus, including a control trial without stimulation, presented in a pseudorandom order.
Each functional map was derived from an experiment consisting of 50–51 imaging blocks.
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For each imaging trial, we calculated the average of 11 pre-stimulation frames and the average
of the last 7 frames (5 during-stimulation frames and 2 after-stimulation ones). Subtracting the
former from the latter produced an activation map for the given trial, in which darker pixels
indicate higher neural activity. Each activation map was then filtered by a band-pass filter
(Difference of Gaussian (DOG) with σ1 = 12.2 μm for color-related data, or 24.4 μm for
orientation-related data; σ2 = 331.8 μm for all data), to remove both high frequency noise and
very low frequency gradients. This filter also reduced the global intrinsic signal that is not
specific to the stimulus [8]. The filtered single-trial activation maps were used in the subsequent
analyses.

The SVM classifier
Advantages of the SVM method over previous methods of image analysis

1. Does not rely on response amplitude alone, which is notoriously variable and
unreliable

2. Takes advantage of correlations between responses in several pixels, and thus exploits
the spatial pattern of activity across the image

3. Automatically rejects outliers, which are often due to artifacts from blood vessels or
uneven illumination

4. Can be used to map the distribution of information about a specific stimulus attribute
such as color or orientation across the imaged area.

5. Unlike linear discriminant analysis, SVM makes no assumptions about the
distribution of the signal or the noise.

Calculation procedure—For the purpose of illustration, we discuss vectors of 2 elements
in this section. In our real application, each vector represents an image, and each vector element
represents an image pixel. Fig. 2 shows two groups of vectors. Each axis represents the value
of one element. We use a variable ci to denote the group to which the vector Xi belongs. Each
ci has a value of either 1 or −1. A linear SVM classifier derives a dividing hyperplane (the solid
line in Fig. 2) in the form of W·X−b = 0. Each of the dashed lines that are parallel to the
hyperplane passes at least one element from one group, and there are no elements between
these two dashed lines. The SVM classification algorithm searches for a specific hyperplane
with associated parallel hyperplanes (the dashed lines) that are maximally separated.

The weight vector W is orthogonal to the hyperplane, as represented by the arrow in Fig. 2,
and has a length of 2/d, where d is the distance between the two dashed lines. Therefore W is
derived by the following optimization:

min(||W||2/2) subject to the condition that

ci(W·Xi − b) >=1 and 1 <= i <= n, where n is the total number of vectors.

This algorithm applies to cases where the two groups can be completely separated by a
hyperplane. Such cases are called linearly separable.

If the two groups are not linearly separable, the weight vector W is derived by the following
optimization:

 subject to the condition that

Xiao et al. Page 3

Neural Netw. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Our SVM classification was implemented with a Matlab program provided by C-C. Chang and
C-J. Lin (LIBSVM: a library for support vector machines, 2001; Available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The above algorithm classifies two classes of vectors, and is called a two-class classifier. To
classify N classes of vectors, a total of N(N−1)/2 two-class classifiers are built, each for one
of the possible pairs of classes. With these two-class classifiers, we can determine to which
class a test vector belongs by the following procedure. First, the test vector will be classified
by one of the two-class classifiers. This classifier will determine which of the two classes is
likely to contain the test vector, and give that class a vote. Second, the above step is repeated
for each of the N(N−1)/2 two-class classifiers. The class that gets the most votes during the
entire procedure is taken as the one that the test vector belongs.

Vector summation for orientation maps
In the experiment on orientation representation, all single-trial activation maps (after
multiplying their angles by two) were added vectorially on a pixel-by-pixel basis (Bonhoeffer
and Grinvald, 1991). The resulting vector angles (divided by two) formed an orientation
preference map, and the map of vector lengths formed an orientation selectivity map.

Results
SVM-derived relative information map

In one experiment, we imaged the responses of cortical areas V1 and V2 to achromatic gratings
of 6 different orientations that were evenly distributed between 0 and 180 degrees. Each
orientation was presented 50 times and was thus associated with 50 single-trial activation maps.
The averaged activation maps for 0° and 90° stimuli are shown in Figs. 2A and 2B, respectively.
Before determining the distribution of orientation information across the imaged cortical
region, we need to determine whether the response patterns across this region carried
information about stimulus orientation. For this purpose, we tested whether the stimulus
orientation can be deduced from its associated single-trial activation map. This was done by
combining the SVM classification algorithm with a procedure of cross validation in the
following sequence. First, we trained a linear SVM classifier with the single-trial activation
maps derived from 49 imaging blocks. Then, we used the classifier to determine the stimulus
orientation from each single-trial activation map that was derived from the remaining (50th)
block. Finally, we repeated the above procedure 50 times, each time using a different block in
the step of orientation deduction. We found that the stimulus orientations were deduced
correctly from 99.7% single-trial activation maps, which is much higher than the chance
accuracy (16.7%) that would have been obtained if the single-trial activation maps carried no
orientation information. This high accuracy suggests that each single-trial activation map
contained enough information for discriminating the 6 stimulus orientations used in this
experiment. It also suggests that the orientation information in our response images can be
reliably extracted by the linear SVM algorithm.

To determine how the orientation information was distributed across the imaged region, we
assessed the relative contribution that each pixel made to the successful SVM classification.
The weights vector associated with an SVM classifier can be used to map these relative
contributions, as suggested by an examination of the weight vector and its relation to each
element’s contribution to the classification shown in Fig. 2.
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In Fig. 2, the direction of the weight vector W is represented by the arrow. It is clear that the
two groups of vectors are more easily discriminated when only element 1 is used, compared
to when only element 2 is used. Correspondingly, the projection of W on the axis representing
element 1 is greater than the projection on the axis representing element 2. Therefore, the
projection of W on the two axes can be used to assess the relative contributions of these two
elements to the classification. In our application, each vector represents an image, and each
element represents a pixel.

When N groups of images need to be classified, a total of N(N−1)/2 two-class SVM classifiers
are built, one for each possible pair of groups. Each two-class classifier is associated with a
weight vector (Wj, j = 1, …, N(N−1)/2 ). The contribution of the ith pixel to the entire process

of classification is measured by , where Wji denotes the projection of Wj on the
ith pixel. We call the image consisting of Ki the relative information map, because a pixel with
a greater Ki makes a greater contribution to the classification, and thus carries more information
about the identity of the stimulus that gave rise to each image. Since each two-class classifier
plays an equal role in the process of classification, it should contribute equally to the calculation
of the information map. To ensure this, each weight vector (Wj) is normalized to have a length
of 1 before being used in the above calculation.

Fig. 3C shows the relative information map about orientation for the experiment described
above. It was derived from the SVM classification over the entire data set of 50 imaging blocks.
This figure shows that the information about stimulus orientation is not distributed uniformly
across the V1 and V2 areas, as already suggested by some previous electrophysiological and
imaging studies (Livingstone and Hubel, 1984;Ts’o et al., 1990;Bonhoeffer and Grinvald,
1991).

To compare our results with those of previous imaging studies, we constructed an orientation
preference map (Fig. 3D) and an orientation selectivity map (Fig. 3E) using the conventional
method of vector summation (see METHODS). This conventional method analyzes the
response amplitude at each pixel independently. The preference map represents the preferred
stimulus orientation at each pixel, while the selectivity map represents the degree of modulation
of the response amplitude by stimulus orientation. Fig. 3D shows the typical “pinwheel”
organization of V1 columns that preferred various orientations (Bonhoeffer and Grinvald,
1991). Fig. 3E shows that the pixels at the pinwheel centers had lower selectivity for orientation
than other pixels did. Note that the imaging signal integrates activity of many neurons, each
of which might be highly selective for orientation, but in the pinwheel center each is tuned to
a different orientation (Maldonado et al., 1997). The selectivity map also has a spatial pattern
that is similar to the pattern of the relative information map (Fig. 3C). The correlation between
these two maps were significant (r = 0.81, P < 10−10, t test on r). However, the artifacts
associated with blood vessels are greatly suppressed in the relative information map, compared
to the selectivity map (arrows in Fig. 3E). In addition, the SVM-derived information map takes
into account the information encoded by the spatial patterns of responses across many pixels,
whereas the selectivity map only measures the information encoded by the response
amplitude at each pixel (see the next section). These results suggest that the spatial pattern of
activity provides a better estimate of the relative distribution of information about a specific
stimulus attributes than the response amplitude.

We obtained a relative information map about stimulus color from another animal in an
experiment that used 9 uniformly colored stimuli (Fig. 4A). The image resolution here was 6.1
um/pixel, twice the resolution used in the orientation experiment that produced Fig. 3. To
compare the distribution of information about color with that about orientation on an equal
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footing, we cropped a part of each single-trial image obtained from the orientation experiment,
and enlarged it 2 folds. This new data set, after being filtered with the same DOG filter that
was used in the color experiments, was then used to derive a new information map about
orientation (Fig. 4B).

Fig. 4 shows that the information about stimulus color was concentrated in small regions in
striate cortex, while the information about orientation was more evenly distributed. This
qualitative observation is supported by two quantitative analyses, which have been described
previously in more details (Xiao et al., 2007b). First, the distributions of pixel intensity values
in Figs. 3A and 3B were skewed differently. The distribution in Fig. 4A had a long right tail
(skewness = 0.65), indicating the existence of a small number of pixels that carried much more
color information than did most pixels. In contrast, the distribution in Fig. 4B had a long left-
tail (skewness = −0.14), indicating the existence of a small number of pixels that carried much
less orientation information than did most pixels. Second, the top 5% of pixels in Fig. 4A
formed a small number of clusters, compared to those in Fig. 4B (205 vs. 371). This particular
relationship held when different percentages of the most informative pixels were tested.

Information encoded by spatial patterns across different pixels
As a multivariate analysis, SVM analyzes the distribution of all samples in the high-
dimensional space defined by each image pixel. Therefore, SVM is able to capture the
information encoded by spatial patterns across different pixels among the samples. In contrast,
a univariate analysis, such as the conventional t-map, analyzes each pixel independently, and
is therefore unable to capture the pattern-based information. This difference between these two
analyses is illustrated in the following simulation.

We generated 2 groups of artificial images of 8 pixels each. Each group has 100 images. A few
examples of these images are shown in Fig. 5A. For each group, the value of each pixel was
randomly chosen from a normal distribution that has a mean value of μ, except for the pixel at
the first column and the second row, or P(1,2), which follows the distribution of the sum or
difference of two normal functions. For each pixel in the first row, μgroup1 is slightly greater
than μ group2. More specifically, μgroup1 = 104 and μ group2 = 104−4 for each pixel in the first
row. Conversely, for each pixel in the second row, except for pixel (1,2), μ group1 = 104−4,
μ group2 = 104. The standard deviation of these normal distributions is 30. To simulate a spatial
pattern across a pair of pixels, we made P(1,2) in each image depend on P (1,1). For each image
in group 1, P(1,2) = P(1,1) − d, where d is a random number from another normal distribution
whose mean and standard deviation are 4 and 3, respectively. For each image in group 2, P
(1,2) = P(1,1) + d (Fig. 5B). In other words, P(1,2) < P(1,1) for group 1, and P(1,2) > P(1,1)
for group 2. Therefore, the spatial patterns are specific to the groups. As a comparison, we
made the values of all other pixels independent of each other (e.g., Fig. 5C) so that there is no
pattern across other pixels.

Due to our design, the two groups can be reliably discriminated based on the relationship
between P(1,1) and P(1,2) in each image (Fig. 5B). Any discrimination based on other pixels
is much less reliable, because of the lack of group-specific relationship among them. In other
words, pixels (1,1) and (1,2) carry more information about the identity of each image than other
pixels do. This distribution of information was successfully extracted by the SVM-derived
relative information map when the SVM classification was applied to the artificial images (Fig.
5D). In contrast, this distribution of information was not reflected in the map of |t| (Fig. 5E),
where t is the Student’s t value and was calculated at each pixel independently.

We ran 200 iterations of this simulation, and plotted the averaged relative information and |t|
value for each pixel in Fig 4F and 4G, respectively. These two panels demonstrate that the
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SVM-derived relative information map, but not the |t| map, reflects the distribution of
information that is encoded by the group-specific pattern across different pixels.

SVM for functional images
In a recent study on humans, SVM was used to classify two groups of fMRI images, each
associated with a different brain state (Mourao-Miranda et al., 2005). The weight vector of the
derived SVM classifier was interpreted as the activation map that best discriminates the two
groups of images. When one group of images was associated with a specific stimulus, and the
other group associated with no stimulus, the weight vector represented the single-condition
activation map in response to the given stimulus.

We applied this technique to the images formed by intrinsic optical signals from the primate
cortex in order to derive the single-condition map of V1 and V2 elicited by stimulation of either
eye (Fig. 6A&B). Each panel is a scaled weight vector of the SVM classifier that discriminates
the images acquired during the stimulation of the given eye from those acquired before the
stimulation. The scale factor was calculated in the following way so that each panel also reflects
the amplitude of the response to stimulation of the given eye. We first normalized the weight
vector so that it had a length of 1. Second, we calculated the inner product between each image
and the weight vector. Third, we averaged these inner products across each group. Finally, the
scale factor was calculated by subtracting the average inner product associated with pre-
stimulation from that associated with stimulation.

In Fig. 6A&B, the ocular dominance columns activated by either eye are clearly visible. As a
comparison, we calculated conventional single-condition maps by subtracting the images taken
before stimulation from those taken during stimulation (Fig. 6D&E). In these conventional
single-condition maps, the ocular columns are obscured by significant artifacts associated with
blood vessels. These results suggest that the SVM classification can successfully remove
artifacts associated with blood vessels, because the spatial patterns of these artifacts are not
specific to stimulus condition. SVM-derived single-condition maps thus have a high signal-
to-noise (S/N) ratio compared to conventional maps. Fig. 6C&F show the SVM-derived and
conventional differential maps, respectively, which were calculated by subtracting the single-
condition ocular dominance maps of right eye from the maps of left eye. The ocular dominance
columns are visible in the conventional differential maps because the artifacts that were not
specific to stimulus conditions were removed by the subtraction.

Discussion
We have developed an SVM-based method to map the relative distribution of information that
is encoded by the response pattern and amplitude. We have shown that the SVM-derived
relative information map for orientation was significantly correlated with the orientation
selectivity map derived from the conventional vector calculation (Fig. 3), suggesting that the
former was a valid measurement of the information distribution. Compared with the selectivity
map, the information map derived from our new method has two advantages. First, the
information map attenuates the artifacts associated with blood vessels. Second, an SVM-
derived information map reflects both the information encoded by the spatially distributed
response pattern and that encoded by the response amplitude, as demonstrated in the simulated
dataset (Fig. 5), whereas a selectivity map only reflects the information encoded by the response
amplitude at each pixel. Because the variability in neuronal responses is correlated across a
large area of cortex, the information encoded by the spatial pattern of responses is likely to be
more reliable than that encoded by the response amplitude, and could therefore be the
information used by animals for guiding their behavior (see Introduction).
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Our new method is valid when the SVM classifier can successfully deduce the stimulus
attribute from response images. For the data illustrated in Fig. 3, the accuracy of the deduction
was 99.7%, significantly higher than the accuracy predicted by chance (16.7%, P < 10−100,
chi-square test). For another set of data where stimulus color was deduced from the response
images (Fig. 4A), the accuracy was also significantly higher than chance (52.3% Vs. 11.1%,
P < 10−100). For these datasets, the information maps derived from the SVM classifiers are
believed to represent the relative distribution of information across the imaged region.
However, in cases where the accuracy of the SVM prediction is comparable to chance, the
corresponding information map will not be reliable. In those cases, it is possible to improve
the SVM accuracy by pre-processing the data with principle component analysis (PCA) to
reduce the dimension of the vectors (Mourao-Miranda et al., 2005).

The SVM-derived information maps of orientation and color show distinct patterns in V1. The
information about color is concentrated in small regions compared to the information about
orientation. This result is consistent with the hypothesis that CO blobs and interblobs process
color and orientation, respectively, because blobs are smaller than interblobs (Livingstone and
Hubel, 1984). However, the orientation and color information maps described here were based
on data that were acquired from different animals and were associated with different stimuli,
which, in principle, might have contributed to the difference in spatial pattern of the color and
orientation information maps. To address this concern, future studies need to use colored
gratings as stimuli and derive the color and orientation information maps from the same set of
data.

Although this paper describes the application of our new method to the images of intrinsic
optical signals, the same method can also be applied to images acquired with other techniques,
such as fMRI. Previous fMRI studies that mapped distribution of information have used the
“search light” approach (Haynes et al., 2007). In this approach, SVM classification is applied
to small regions at different locations, and the distribution of the SVM accuracy represents the
distribution of information. We applied this approach to the data that produced Fig. 3, and
obtained a map of accuracy using a square “search light” of 9 by 9 pixels (Fig. 3F). This map
is also significantly correlated with the relative information map (r = 0.61, P < 10−4). But it
lacks fine details about the information distribution compared to the map derived from our new
method, because the “search light” functions like the kernel of a low-pass filter. The difference
between these two maps becomes greater when the size of “search light” increases. Since the
accuracy map can be used to assess the absolute amount of information at various locations of
the “search light” (Haynes et al., 2007), which is not represented in our weight-based
information map, it is desirable to compute both maps in order to determine the distribution of
information in a given region.

We also showed that the weight vector of an SVM classifier can be used to map the response
to a given stimulus, and the maps have a high S/N ratio compared to the conventional maps
derived from subtraction (Fig. 6). The reason of this higher S/N ratio is that SVM, as a
multivariate analysis, can detect the spatial patterns that are specific to stimulus condition.

Several previously proposed methods aiming at enhancing S/N ratio of activation maps are
also based on multivariate analyses (Yokoo et al., 2001). These methods assume a normal
distribution of noise, which may not be true in some cases. Since the SVM method does not
require or assume any particular distribution of noise, it should have a wider application than
the other multivariate analyses.
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Figure 1.
A schematic depiction of the experimental protocol, showing the temporal sequence of stimulus
presentation and data acquisition. Each tick mark indicates the time at which a cortical image
was acquired. In some experiments, each stimulus was presented for 1.8 seconds instead of 3
seconds, and 18 images instead of 30 ones were taken during the stimulus presentation.
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Figure 2.
SVM classification of two-dimensional vectors. Two groups of vectors are represented by label
“X” and circle, respectively. The solid line represents the hyperplane of the SVM classifier.
The arrow represents the direction of the weight vector associated with the hyperplane.
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Figure 3.
Spatial distributions of in information in areas V1 and V2. A-B: Averaged activation maps in
response to horizontal and vertical gratings, respectively. The dark patches represent activated
regions. C: The SVM-derived relative information map about stimulus orientation. The
brightness of a pixel is proportional to the relative contribution of that pixel to the SVM
classification. D: The orientation preference map in which the preferred orientation of each
pixel is represented by pseudo-color. E: The orientation selectivity map. The brightness of a
pixel is proportional to the selectivity of the pixel’s response for orientation. F: The accuracy
map derived from the “search light” approach. The brightness of a pixel is proportional to the
accuracy associated with the SVM classification that was applied to the 9x9 pixels centered at
the given pixel.
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Figure 4.
Comparison between the SVM-derived information maps about color (A) and orientation (B).
Panel A was derived from an experiment that used uniform stimuli of 9 different colors,
whereas panel B was from another experiment that used achromatic grating stimuli of 6
different orientations. These two maps show distinct spatial patterns.

Xiao et al. Page 13

Neural Netw. Author manuscript; available in PMC 2009 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
A simulation demonstrating the ability of the SVM-derived information map to reflect the
information encoded by the spatial pattern of activity. A: Two groups of simulated images of
8 pixels each. Across group 1, a pixel in the first row has a slightly greater mean value than
one in the second row. The opposite is true for group 2. B: The two pixels in the first column
of each image are correlated, and the correlation is group specific. C: Pixels in the second
column are independent of each other. This is also true for the third and forth column. D:
Absolute values of different elements of the weight vector that is associated with the SVM
classifier. The first column has the greatest value because only this column has group-specific
patterns. E: Map of |t| that was calculated at each pixel independently. The values at the first
column are comparable to those at other columns. F-G: Averaged |Weight| and |t| values across
200 iterations of simulation. It is clear that the |Weight| map, but not |t| map, reflects the
distribution of information that is encoded in group-specific spatial patterns.
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Figure 6.
Ocular columns derived with SVM algorithm and subtraction. A-B: SVM-derived activation
maps elicited by left and right eye stimulations, respectively. The images cortical region was
the same as that shown in Fig. 3. C: Differential map between A and B. D-E: Subtraction-
derived activation maps elicited by left and right eye stimulations, respectively. F: Differential
map between D and E.
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