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ABSTRACT The deposition of fibrillar structures (amyloids) is characteristic of pathological conditions including Alzheimer’s
and Parkinson’s diseases. The detection of protein deposits and the evaluation of their kinetics of aggregation are generally
based on fluorescent probes such as thioflavin T and Congo red. In a search for improved fluorescence tools for studying
amyloid formation, we explored the ability of N-arylaminonaphthalene sulfonate (NAS) derivatives to act as noncovalent probes
of a-synuclein (AS) fibrillation, a process linked to Parkinson’s disease and other neurodegenerative disorders. The compounds
bound to fibrillar AS with micromolar Kds, and exhibited fluorescence enhancement, hyperchromism, and high anisotropy. We
conclude that the probes experience a hydrophobic environment and/or restricted motion in a polar region. Time- and spectrally
resolved emission intensity and anisotropy provided further information regarding structural features of the protein and the
dynamics of solvent relaxation. The steady-state and time-resolved parameters changed during the course of aggregation.
Compared with thioflavin T, NAS derivatives constitute more sensitive and versatile probes for AS aggregation, and in the case
of bis-NAS detect oligomeric as well as fibrillar species. They can function in convenient, continuous assays, thereby providing
useful tools for studying the mechanisms of amyloid formation and for high-throughput screening of factors inhibiting and/or
reversing protein aggregation in neurodegenerative diseases.

INTRODUCTION

The aggregation of proteins and peptides is a fundamental

feature of several disorders collectively designated as con-

formational or misfolding in origin. These conditions are

often neurodegenerative, such as in Alzheimer’s and Par-

kinson’s diseases and spongiform encephalopathies, as well

as nonneuropathic, as in type II diabetes and different forms

of cancer. A ubiquitous cytopathological finding is the pres-

ence of intracellular or extracellular highly organized fibrillar

aggregates (1). Although the polypeptide chains involved in

these diseases lack sequence homology or strong similarities

in amino acid composition and size, the resultant amyloid

fibrils are remarkably uniform with respect to both external

morphology and internal structure. The mature fibrils are

rodlike structures with a diameter of 7–13 nm and formed

from interwound protofilaments. In the core structure of

stacked b-sheets, the strands are perpendicular to the longi-

tudinal axis. This canonical cross-b-structure is also adopted

by nondisease-associated proteins upon induction of aggre-

gation in vitro (1). The kinetics of amyloid formation is

consistent with a nucleation-propagation mechanism origi-

nating from as yet poorly defined nucleation centers, and

progressing via oligomerization to an elongation phase

leading to the formation of the characteristic fibrils (2).

The detection of amyloid deposits in affected brain tissue,

as well as the evaluation of fibrillation kinetics in vitro, is

generally based on the use of fluorescent probes such as

thioflavin T (ThioT) and Congo red (3). These compounds

interact with the cross-b-amyloid fibrils, exhibiting signifi-

cant changes in fluorescent and absorption signals. The exact

mechanism of binding is not fully understood (4–7). Other

compounds, some structurally related to Congo red and

ThioT, have been evaluated and employed as histochemical

stains for amyloid (8–12). However, the in vitro assays based

on these probes demonstrate significant drawbacks. For ex-

ample, the ThioT signal can be suppressed in densely packed

aggregates that exclude the dye, whereas false positives can

arise from interaction with amorphous aggregates or bacteria

(3). Uncharged high-affinity ThioT derivatives, although

optimal for amyloid detection in positron emission tomog-

raphy, do not possess useful fluorescent properties (11,12).

The ThioT assay is poorly reproducible, more qualitative

than quantitative, and does not always report the presence of

amyloid fibrils (5). Furthermore, it requires periodic sam-

pling and is thus not amenable to continuous and/or highly

parallelized determinations. Congo red is less specific, binding

to proteins with different types of secondary structure (13).

Finally, the structural features of prefibrillar structures arising

during the early oligomerization steps of aggregation are

generally not revealed by these indicators, although it has

been shown recently that certain analogs of Congo red and

ThioT are able to detect soluble oligomers of the amyloid

b-peptide (Ab) in vitro and in vivo (12). This last feature is of

central importance because of the cytotoxicity attributed to

such oligomeric intermediates (1).
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The deficiencies outlined above have led to major efforts

directed at the design of new dyes and spectroscopic tech-

niques for detecting amyloid structures as well as for elucidating

the dynamics of protein association in general. Fluorescence

spectroscopy is particularly useful in such studies due to its

inherent sensitivity and versatility. Numerous approaches

based on steady-state and time-resolved fluorescence deter-

minations of extrinsic probes (14–16), residue-specific fluo-

rescence (17), resonance energy transfer (18), correlation

spectroscopy (19), the dual-color SIFT assay (20), and an-

isotropy measurements (21–25) have been employed to

characterize the conformational ensemble of amyloid pro-

teins.

Some of the studies mentioned above have involved pro-

tein engineering for introduction of site-specific residues or

peptide segments for labeling with specific reagents. In par-

allel studies, we employed pyrene (see (60)), and other or-

ganic dyes (C. W. Bertoncini, E. A. Jares-Erijman, and T. M.

Jovin, unpublished) for recording structural features of

monomeric, oligomeric, and fibrillar species of a-synuclein

in vitro and in cells. However, extrinsic probes are more

generally applicable in that they do not require costly protein

design and validation and are particularly suitable for

screening assays. Furthermore, they potentially permit a

ready comparison of wild-type proteins and disease-related

familial or other mutants, including samples in situ or directly

isolated from biological specimens.

N-arylaminonaphthalene sulfonate (NAS) derivatives are

widely used as fluorescent probes providing information

about the molecular microenvironment and conformation of

proteins, mainly due to their interaction with partially folded

intermediates and hydrophobic patches. They exhibit a very

low quantum yield in water, but become highly fluorescent in

nonpolar media or when placed in a milieu that limits the

mobility of the surrounding solvent dipoles. These properties

make them sensitive indicators of processes that modify

the exposure of the probes to water, including protein self-

assembly (26,27). Several naphthalene sulfonate derivatives

have been employed in studies of protein oligomerization

(26,28,29), the mechanism(s) and kinetics of amyloid for-

mation (14,24,30–37), and the modulation of oligomeriza-

tion pathways (38,39).

In this work, we explored the ability of some NAS deriv-

atives to act as noncovalent markers for aggregated forms of

the presynaptic protein a-synuclein (AS). AS has been linked

with the pathogenesis of a number of neurodegenerative

disorders, including Parkinson’s disease, dementia with

Lewy bodies, multiple system atrophy, and amyotrophic

lateral disease. AS is the major component of neuronal and

glial cytoplasmatic inclusions found in patients suffering

from these diseases (40). Three domains can be distinguished

in the AS sequence: 1), the amphipathic N-terminus (residues

1–60), with five imperfect repeats of a KTKEGV consensus

motif; 2), the central hydrophobic amyloidogenic region

(residues 61–95), also known as the non-Ab component

(NAC); and 3), the highly acidic and praline-rich C-terminus

(residues 96–140). Structurally, AS can be classified as a

natively disordered protein (41), although it has recently been

shown to possess a long-range interaction between the

C-terminal domain and the NAC region leading to an aggre-

gation autoinhibited state (42). A significant rearrangement

of protein structure, involving the population of partially

folded intermediates and oligomeric species (18,32), occurs

during AS fibrillation. We anticipated that NAS probes

would be responsive to these conformational changes due to

the polarity sensitivity of their fluorescence properties. We

performed a systematic study of selected members of this

family, namely 2-anilinonaphthalene-6-sulfonate (2,6-ANS),

2-(p-toluidinio)-naphthalene-6-sulfonate (2,6-TNS), 4,49-

dianilino-1,19-binaphthyl-5,59-disulfonate (bis-ANS), and bis(8-

p-toluidino-1-naphthalenesulfonate) (bis-TNS) exposed to

monomeric and purified fibrillar forms of AS. The interac-

tions of these dyes (and ThioT) were characterized by steady-

state and time-resolved fluorescence spectroscopy. Binding

affinities for the fibrils were also determined and additional

measurements during the process of aggregation were carried

out. The results are discussed in terms of available structural

and spectroscopic data.

MATERIALS AND METHODS

Chemicals

2,6-ANS and bis-ANS were obtained from Molecular Probes (Eugene, OR),

and 2,6-TNS was from Acros Organics (Geel, Belgium). ThioT was pur-

chased from Sigma Chemical (St. Louis, MO). bis-TNS was the kind gift of

Dr. Gregorio Weber (deceased).

NAS stock solutions were prepared in ethanol (TNS derivatives were first

dissolved in a small volume of DMF). The concentrations were determined

by UV absorption from a dilution prepared in methanol, except in the case of

bis-TNS, which was diluted into water, using the following extinction co-

efficients: e319 ¼ 27,000 M�1 cm�1 (2,6-ANS), e318 ¼ 26,000 M�1 cm�1

(2,6-TNS), e395 ¼ 23,000 M�1 cm�1 (bis-ANS) and e390 ¼ 16,540 M�1

cm�1 (bis-TNS). The later value was from (43) and the others from (44).

ThioT solutions were in water.

Buffer solutions were of analytical grade and filtered through a 0.22-mm

size membrane.

Preparation of monomeric and fibrillar AS

The bacterial expression and purification of recombinant human AS were as

described previously (33). Protein purity was assessed by sodium dodecyl

sulfate polyacrylamide gel electrophoresis.

Monomeric AS stock solutions were prepared in 25 mM Tris-HCl, pH

7.5, 100 mM NaCl, and centrifuged 30 min at 105 3 g before use to remove

aggregated material. Protein concentrations were determined by absorbance

using an e275 of 5600 M�1 cm�1 (41).

Fibril suspensions were obtained by incubating 300 mM AS at 70�C with

constant shaking at 800 rpm in an Eppendorf Thermomixer comfort (Ham-

burg, Germany). At this elevated temperature, the pH of the Tris-HCl buffer

drops from 7.5 (at 25�C) to 6.2. Fibrils were centrifuged at 14,000 rpm during

30 min in an Eppendorf MiniSpin Plus bench-top centrifuge. After removal

of the supernatant, the pellet was resuspended in 25 mM Tris-HCl, pH 7.5,

100 mM NaCl. This cycle was repeated three times. The protein concen-

tration in monomeric units was determined by absorbance from an aliquot
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incubated in 6 M Gdm-HCl at 25�C for 24 h, a procedure leading to complete

disaggregation of the fibrils.

Protein aggregation assay

The aggregation of AS (100 mM) was carried out in 25 mM Tris-HCl, pH 7.2

(at 37�C), 100 mM NaCl, 0.01% Na-azide (Sigma) according to standard

procedures (33). The centrifuged (13,000 3 g, 30 min) and filtered protein

sample (350 mL) was incubated in glass vials (Zinsser Analytik, Frankfurt,

Germany) at 37�C under continuous stirring (350 rpm) in a Kendro incubator

using Teflon magnetic microbars. Samples were withdrawn at different time

points and mixed with the fluorescent dyes to final concentrations of ;97

mM protein and 10 mM probe. Fibril formation was monitored by both

steady-state and time-resolved fluorescence spectroscopy. Samples were run

in duplicate and analyzed independently.

The analysis of the aggregation traces measured by steady-state fluores-

cence spectroscopy was performed as described in Fernández et al. (45),

assuming a nucleation polymerization model according to an equation for the

fractional normalized amyloid conversion, gðtÞ:

gðtÞ ¼ 1� e
�kapp t

1 1 e
�kappðt�t1=2Þ

; (1)

where kapp is an apparent rate constant for the incorporation of monomers at

growth points located in aggregates and t1=2 corresponds to the time point of

50% apparent conversion, i.e., gðtÞ ¼ 0:5: In practice, gðtÞ refers to the

fractional ThioT signal without independent determinations of monomer

conversion.

Fluorescence spectroscopy

Steady-state measurements

Corrected emission spectra were acquired with a Cary Eclipse spectrofluo-

rimeter (Varian, Australia) equipped with a thermally controlled cuvette

holder. Spectral slits were set at a 10-nm bandwidth for both excitation and

emission. Emission spectra during aggregation were recorded in a Perkin

Elmer LS50B spectrofluorimeter with a bandwidth of 2.5 nm and a 3-mm

dual light path. Spectra were acquired at 25�C. 2,6-ANS and 2,6-TNS were

selectively excited at 320 nm, bis-ANS and bis-TNS at 395 nm, and ThioT at

446 nm.

Steady-state anisotropy values, Æræ; were determined from the parallel

(VV) and perpendicular (VH) polarization signals (V, vertical; H, horizontal,

the symbol order indicating excitation and emission) according to the stan-

dard expression

Æræ ¼ IVV � G IVH

IVV 1 2G IVH

; (2)

where G is a correction constant (IHV=IHH) taking into account the differ-

ential polarization sensitivity of the detection system.

In titration experiments, increasing volumes of 500 mM dye were added to

a solution containing 2–8 mM AS or to buffer alone (blank) under continuous

stirring. A 5-mm path cuvette was used. The spectra were recorded after

equilibration for 5 min. Titration curves were analyzed assuming a single-site

model according to

F ¼ fLL 1 fPLPL; (3)

where F is the fluorescence intensity corrected for inner filter effects, and fL
and fPL are the apparent specific fluorescence signals for the free ligand L and

the complex PL, respectively. By solving the mass balance and conservation

equations assuming one accessible binding site per monomer in the aggre-

gated state, we obtain

F ¼ fLLtot 1
1

2
ð fPL � fLÞ

3 Ltot 1 Ptot 1 Kd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLtot 1 Ptot 1 KdÞ2 � 4LtotPtot

q� �
;

(4)

where Ltot and Ptot are the total dye and protein concentrations, after

corrections for dilution, and Kd is the equilibrium dissociation constant.

(Note that unitary stoichiometric factors were assumed for both the protein

and probe, corresponding to common practice. With fibrillar targets, it is

difficult to implement more sophisticated kinetic and thermodynamic tech-

niques for evaluating the number, nature, and distribution of binding sites.

Stoichiometric factors other than unity would enter into Eq. 4 as multipli-

cative coefficients of Ptot, with the effect of displacing the fractional binding

of the ligand to higher values.) The titration curves were fit by nonlinear

regression with Eq. 4, after correction for inner filter effects by multiplication

with a factor of 10Aexc=2; thereby compensating for the strong absorption of

the dyes at the fluorescence excitation wavelengths. Absorption spectra at a

number of dye concentrations were recorded in a 5-mm light path. Calibra-

tion curves at the appropriate wavelengths were constructed. No deviations

from the Lambert-Beer equation were observed in the range of concentra-

tions used. The UV-visible spectra were not substantially modified by the

presence of fibrillar AS at concentrations ,10 mM. The slopes obtained after

linear regression were used to calculate the absorbance at the corresponding

concentration of dye in the titration experiments.

Time-resolved fluorescence measurements

Fluorescence intensity and time-resolved anisotropy decays were acquired

with an IBH 5000U fluorescence lifetime spectrometer (Glasgow, UK)

equipped with a TBX-04-A picosecond photon detection module. Mea-

surements were performed in a time-correlated single-photon counting

(TCSPC) mode using the Data Station, v 2.1, with DAS6 software. The

excitation source was a 337-nm (2,6-ANS and 2,6-TNS), 373-nm (bis-ANS

and bis-TNS),or 457-nm (ThioT) wavelength pulsed NanoLEDs with a

repetition rate of 1 MHz. Bandpass filters used in the emission channel to

minimize light scattering were Corion ss420 and ss430 for 2,6-ANS and 2,6-

TNS, respectively, and Balzers B20 for bis-ANS, bis-TNS, and ThioT in the

presence of purified fibrils. In the latter case, an additional Corion ss420

bandpass filter was placed in the excitation channel. For 2,6-ANS and 2,6-

TNS, during protein aggregation, the emission filter was a Balzers K40

bandpass. The impulse response function (IRF) was obtained at the corre-

sponding excitation wavelength using a Ludox scattering suspension.

The emission decays were obtained under magic-angle conditions (po-

larizers: excitation 0�, emission 54.7�) to eliminate polarization effects. The

data were analyzed using the IBH DAS6 software. Reconvolution analysis

was performed assuming a multiexponential decay function for the time-

resolved fluorescence intensity, FðtÞ; according to

FðtÞ ¼ +
i

aiexpð�t=tiÞ; (5)

where ai and ti are the ith preexponential factor (amplitude) and the

corresponding fluorescence lifetime, respectively, with +
i
ai ¼ 1: The

fractional (steady-state) intensity is given by fi ¼ aiti=+
i
aiti: The data

were best fit with a model of two components (i ¼ 1, 2), in some cases

including an additional scattered-light contribution with an arbitrary short-

lifetime (0.055 ns) contribution. In general, f ð3Þ was ,0.1. The remaining

fractional intensities were renormalized. The goodness of the fits was

assessed from the x2 values, which were close to 1 for all samples, and the

weighted residuals fluctuated about zero.

Time-resolved emission spectra (TRES) were derived from wavelength-

dependent decays, acquired through an emission monochromator with a slit

width of 8 nm. Fluorescence intensity decay curves were collected across the

emission spectrum of the dyes in increments of 10 nm. At each wavelength,
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the decay fitted functions were rescaled by the corresponding steady-state

corrected emission fluorescence intensity, Il; according to

FlðtÞ ¼
Il

+
i

ai;lti;l

0
B@

1
CA+

i

ai;lexpð�t=ti;lÞ: (6)

Equation 6 was used to obtain the TRES profile at given time points after the

excitation. The mean fluorescence decay, tmean, is defined as tmean ¼
+

i
ait

2
i =+

i
aiti and the center of mass, lcm; of the fluorescence spectra

was calculated according to lcm ¼ 107 +
i
yiFi=+

i
Fi

� ��1
where yi is the

wavenumber (1=l) in cm�1 and Fi is the fluorescence intensity at that yi�.
The time-resolved anisotropy decays were determined from the parallel

and crossed polarized decays according to

rðtÞ ¼ IVVðtÞ � G IVHðtÞ
IVVðtÞ1 2G IVHðtÞ

; (7)

where the denominator represents the total emission intensity ItotðtÞ: The

limiting value of the anisotropy decay, rmean
N , was calculated by averaging

over a window selected at a time longer than the fluorescence lifetime (25–

40 ns for NAS derivatives and 8–16 ns for ThioT) according to rmean
N ¼

+tn
t¼ti

rðtiÞ=ni=+tn
t¼ti

1=ni; where the variance in anisotropy, ni; takes into

account the uncertainty in the measured parameter due to photon statistics

(46).

For cases in which perceptible time-dependent anisotropies were ob-

served, the parallel and perpendicular polarized decays [IVVðtÞ and IVHðtÞ;
respectively] were analyzed by a procedure designed to obtain apparent ro-

tational correlation times, fi: These were on the order of the width of the IRF,

making it difficult to employ certain analysis routines incorporated into the

DAS6 software. The following alternative strategy was developed and im-

plemented with Mathematica (Wolfram Research, Champaign, IL). The IRF

was fit to an analytical seven-parameter expression consisting of the sum of a

Gaussian distribution function and a normal cumulative distribution function

multiplied by an exponential function:

IRF½t� ¼ exp �ðt � toÞ2

2s
2

� �
a

s
ffiffiffiffiffiffi
2p
p

1 erf
t � t1

s1

ffiffiffiffiffiffi
2p
p

� �
1 erf

t1

s1

ffiffiffiffiffiffi
2p
p

� �� �
exp �t � t1

v

h ib
2
:

(8)

Such a synthetic IRF can be convoluted analytically with an exponential

decay function, the result of which can be fit directly to the time resolved data

to derive the lifetime [ItotðtÞ] and anisotropy [global fit of IVVðtÞ and IVHðtÞ]
decay parameters. With this approach, the effect of noise in the IRF is

minimized and the formulation and exploration of complex associated

(linked) intensity and anisotropy decay models is greatly facilitated.

Atomic force microscopy

AFM images were acquired on a Digital Instruments (Veeco) Multimode

scanning probe microscope IIIa using a J-Scanner in air at a scan rate of 1 Hz

with 512 lines/image. Imaging was performed in tapping mode with a DNP-S

(nominal spring constant, 0.06 N/m) cantilever. An aliquot of the aggregated

sample was diluted with water and spin-coated on a freshly cleaved mica

surface.

RESULTS AND DISCUSSION

Induction of AS fibrillation

Fibrillation of AS in vitro is typically carried out by incu-

bation of 70–100 mM protein solutions at 37�C, pH 7.0–7.5,

under continuous stirring. Under these experimental condi-

tions, the reaction was completed within 4 days (33), al-

though there existed unpredictable variability between

replicates in terms of the fraction of aggregated material and

t1/2.

Elevated temperature and lowered pH lead to an enhanced

rate of AS fibrillation (32,33), manifested by an increase in

the population of partially folded intermediates with a sig-

nificant content of b-structure (32). For the purpose of

quickly generating significant amounts of fibrils, 300 mM AS

protein solutions were incubated at 70�C with continuous

shaking. We also took advantage of the acceleration provided

by the decrease in the pH of the Tris-HCl buffer, from 7.2 at

37�C to 6.2 at 70�C (33). After 4 h of incubation, the solu-

tions were visibly turbid and yielded a positive signal with

ThioT, the reference dye used for detection of amyloid fibrils,

the presence of which was confirmed by atomic force mi-

croscopy (AFM, Fig. 1). Fibrils with the characteristic twists

of mature fibrils and a diameter of ;9 nm (from the height)

were clearly observed. Preliminary comparative solid-state

NMR measurements of AS fibrils formed at 37�C and 70�C

indicate that the major conformational features of the fibrillar

core are unchanged at the higher temperature (H. Heise and

M. Baldus, MPI for Biophysical Chemistry, personal com-

munication, 2007). This material was used for all further

experiments with purified fibrils.

The kinetics of aggregation at 70�C was characterized by

an aggregation halftime (t1=2) 1/10th that observed at 37�C,

whereas kapp was increased by a modest factor of 2 (data

not shown). These findings indicate that at 70�C, the rate of

monomer addition was somewhat greater but that the major

effect of the higher temperature and lower pH was to increase

the efficiency of nucleation (32,33).

Fluorescence and binding properties of
ANS/TNS derivatives interacting with AS

To apply the NAS probes for amyloid detection, a charac-

terization of the spectroscopic properties of their protein

FIGURE 1 AFM images of AS fibrils formed at 70�C. (A) Fibrils showing

characteristic twists and a diameter (height) of ;9 nm. Image, 10 3 10 mm2.

(B) Expanded view of the boxed section shown in A. Image, 3.5 3 3.5 mm2.
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complexes and their underlying structural basis was required.

We compared the fluorescence properties of the ANS/TNS

derivatives interacting with monomeric and fibrillar AS to

those of ThioT. These determinations included the estimation

of affinities for fibrillar AS in an effort to further elucidate the

modes of interaction.

The steady-state emission of the probes in buffer or in the

presence of monomeric AS was negligible or very low (Fig.

2), suggesting that the dyes either interact poorly with the

monomer or that they are bound in a solvent-exposed mode.

The anionic forms of the ANS/TNS derivatives may sense

and interact directly with positively charged side chains

of the protein. Ion pair formation, particularly external, of

1-anilinonaphthalene-8-sulfonate (1,8-ANS) with several pro-

teins and peptides has been reported (47,48). The presump-

tion that the binding of NAS is enhanced by electrostatic

interactions is supported by the pH dependence of 2,6-TNS

and bis-ANS fluorescence in the presence of Ab(1–40) am-

yloid fibrils or the soluble form, in which the gain in signal

correlates with the increasingly positively charged peptide at

acidic pH (30,35). Bis-ANS also binds strongly to various

soluble and aggregated (amyloid) species of transthyretin,

albeit at very acidic pH (14). At neutral pH, AS possesses 15

positively charged Lys residues that may function as poten-

tial binding sites. Eleven are located in the amphipathic

N-terminus (residues 1–60; net charge 16 including the

N-terminal amino group) and one in the hydrophobic NAC

region (residues 61–95); the remaining C-terminal region has

a net charge of�13 including the C-terminal carboxyl group.

The weak fluorescence signals observed in the presence of

native AS may also arise from an interaction of the naph-

thalene dyes with transient highly-solvent-exposed hydro-

phobic patches on the disordered monomeric protein. This

view is supported by NMR data indicating that native AS

populates a dynamic ensemble of conformers ranging from

highly unfolded to fairly compact structures (42).

Upon mixing the NAS probes with AS fibrils, a pro-

nounced increase in the fluorescence intensity, accompanied

by a hyperchromic shift (not well defined for the probes that

are virtually nonfluorescent in water), was observed (Fig. 2

and Table 1). In comparison with the free dyes, the spectra of

2,6-ANS and 2,6-TNS bound to fibrillar AS were shifted

toward the blue edge by 54 nm and 38 nm, respectively

(Table 1). These changes suggest that the bound probes ex-

perience a hydrophobic environment and/or occupy a polar

region allowing only restricted motion (26,27).

The affinities of the probes for AS fibrils were determined

by fluorimetric titration, in which small increments of con-

centrated probe solution were added to the protein. The in-

tensities corresponding to the maximum of the emission band

for each dye are plotted in Fig. 3 as a function of the dye

concentrations. Control experiments (dyes injected into a

buffer solution) are also shown. The data were corrected for

inner filter effects and analyzed according to Eq. 4, yielding

the intrinsic fluorescence of the unbound, fL; and bound, fPL;
dye, and the apparent dissociation constant Kd (Table 1). To

minimize the number of adjustable parameters, fL was ob-

tained from the blank curves and was appreciable only for

2,6-ANS and 2,6-TNS.

A more informative comparison of the relative fluorescent

signals generated by the bound NAS probes was obtained by

correcting the fPL by multiplicative factors accounting for the

wavelength-dependent differences in excitation intensities

and detection efficiencies. Such estimates of relative fluo-

rescence (rfPL), normalized by the value for bis-ANS, are

given in Table 1. They follow the order bis-ANS . 2,6-TNS�
2,6-ANS � bis-TNS. We conclude that bis-ANS offers the

highest sensitivity in the detection of amyloid protein. The

corresponding apparent equilibrium dissociation constants

(all in the micromolar range) were ranked differently: 2,6-

ANS � bis-ANS , 2,6-TNS � bis-TNS (Table 1). It is in-

teresting that the dissociation constants of the monomeric and

FIGURE 2 Fluorescence probes for aggregated states of AS. (A) Chemical structures of the dyes used in this work: (left to right) 2,6-ANS, 2,6-TNS, bis-

ANS, bis-TNS, and ThioT. (B–F) Fluorescence emission spectra of (B) 2,6-ANS, (C) 2,6-TNS, (D) bis-ANS (E) bis-TNS and (F) ThioT, in buffer alone

(black), or in the presence of monomeric (red) or purified fibrillar (blue) AS. The curves corresponding to the dye in buffer or with monomeric AS are

multiplied fivefold. Dye, 1 mM; protein, 10 mM.

N-Arylaminonaphthalene Amyloid Probes 4871

Biophysical Journal 94(12) 4867–4879



dimeric forms of both ANS and TNS derivatives were sim-

ilar, suggesting that only one naphthalene ring contributes to

the binding, albeit manifesting somewhat distinct spectro-

scopic parameters. (In the event that the binding site ac-

commodates two ANS or one bis-ANS, the derived value of

Kd for ANS would increase by a factor of ;2.) As discussed

further below, we cannot exclude the influence of site het-

erogeneity nor probe structural features (methyl group sub-

stituent and/or substitution position) on the distinctive

binding of the ANS and TNS moieties. Most probably,

electrostatic (47,48) as well as predominant van der Waals

and hydrophobic interactions are involved. By way of com-

parison, we note that the reported dissociation constants of

ThioT for different amyloid fibrils vary from 0.03 to 10 mM

(5). We obtained a somewhat higher value for AS fibrils

(Table 1), but the methods of determination may not be di-

rectly comparable. In addition, we obtained Kd and fPL values

for ThioT with different fibril preparations ranging from 1 to

15 mM and 20 to 90, respectively, reflecting the inherent ir-

reproducibility associated with the use of this dye.

Steady-state fluorescence anisotropy, Æræ; is a quantity that

reflects the rate and extent of molecular motions and/or en-

ergy transfer during the excited-state lifetime of a fluo-

rophore. The Æræ values determined for the probes bound to

AS fibrils ranged from 0.29 to 0.38 (Table 1), indicating that

the dyes were rigidly bound to the fibrillar structure. The

values were very similar for 2,6-ANS and 2,6-TNS, and 10%

higher for bis-ANS and bis-TNS (Table 1).

Time-resolved fluorescence spectroscopy provides infor-

mation about binding-site heterogeneity, which is often dif-

ficult to obtain from steady-state measurements due to

spectral overlap of the absorption and emission and reactions

occurring during the excited state of the fluorophore. Deter-

minations of intensity decays were performed on the com-

plexes of the various probes with AS fibrils.

The experimental profiles, along with the corresponding

fits according to a multiexponential decay model (Eq. 5) and

the weighted residuals, are shown in Fig. 4 (fit parameters are

given in Table 1). The probes 2,6-ANS and 2,6-TNS bound

to AS fibrils had a short component of ;4 ns and a long

lifetime of ;10 ns, accounting for 90% of the steady-state

fluorescence intensity (Table 1). In the case of the dimeric

probes, the short component was ;3 ns and the long com-

ponent of ;7 ns represented ;80% of the signal (Table 1).

The fluorescence decays of NAS derivatives in aqueous so-

lutions are generally monoexponential, with lifetimes of

,0.25 ns (43), i.e., much shorter than the values obtained

with the fibril complexes. The double-exponential decay of

the latter indicates that the excited states experience at least

two microenvironments with rather different polarities.

FIGURE 3 Titration of fibrillar AS with NAS probes and ThioT. Purified AS fibrils with increasing amounts of (A) 2,6-ANS, (B) 2,6-TNS, (C) bis-ANS, (D)

bis-TNS, and (E) ThioT. Data correspond to the emission at the indicated wavelengths, in the presence of fibrils (squares with dots) or in buffer (circles with

dots). The initial protein concentration in monomeric units was 2 mM (A), 4 mM (B), and 8 mM (C–E). The lines represent the best fits obtained using Eq. 4 and

the estimated parameters are given in Table 1. Data were corrected for inner filter effects.

TABLE 1 Properties of different fluorescent probes upon binding to fibrillar AS

2,6-ANS 2,6-TNS bis-ANS bis-TNS ThioT

lmax
L (nm)* 471 475 NA NA NA

lmax
PL (nm) 417 437 493 505 483

fL 1.22 6 0.01 0.35 6 0.01 0 0 0

fPL 167 6 2 169 6 2 198 6 3 124 6 2 21 6 1y

rfPL 0.61 0.64 1 0.66 —

Kd (mM) 8.8 6 0.5 11.7 6 0.4 8.6 6 0.5 11.6 6 0.7 14.9 6 0.4y

Æræ 0.29 0.30 0.34 0.33 0.38

tiðnsÞ=fi
z 4.2/0.10 3.9/0.10 3.4/0.22 3.3/0.27 0.5/0.23

9.9/0.90 10.3/0.90 7.3/0.88 7.0/0.73 2.1/0.77

NA, not applicable.

*lmax
L and lmax

PL are the maximum wavelengths of fluorescence emission spectrum of the unbound and bound dye, respectively.
yValues in the range 20–90 and 1–15 mM were obtained for fPL and Kd; respectively, for different fibril preparations.
zStandard deviation errors of fitted lifetimes were typically 0.1 ns for the fast component and 0.05 ns for the slow component.
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Naphthalene derivatives generally exhibit multiexponential

decays upon interaction with proteins. Examples are 2,6-TNS

bound to apomyoglobin (49), bis-ANS interacting with ag-

gregated states of the amyloid protein transthyretin (14) and

native AS (37), and 1,8-ANS bound to proteins (50). For

1,8-ANS, the short lifetime (;3 ns) was ascribed to probe

molecules located at the protein-solvent interface and shown

to be sensitive to protein association (50). Similar values

were recently reported for polyamino acids employed as

models for external binding sites of proteins (48). The long-

lived decay has been attributed to buried binding sites ex-

cluded from water. These are presumed to be responsive to

overall conformational changes, yet independent of the as-

sociation state (50).

In accordance with these observations, we tentatively as-

sign the short lifetimes of the probe-AS complexes to inter-

actions with the N-terminal protein segments rich in Lys

residues. Upon incorporation of AS into fibrils, the N-ter-

minus is excluded from the fibrillar core yet exhibits a rigid

conformation as of residue 22, albeit with some degree of static

disorder (51). The long lifetime component would correspond

to a binding site embedded in the fibril structure and protected

from bulk water, as suggested by high-resolution solid-state

NMR data showing that the central core of fibrillar AS con-

sists of well-defined b-strands comprising at least residues

38–95 (51). A water-shielded core region extending from at

least residue 65 to 89 has also been identified (H. Heise and

M. Baldus, MPI for Biophysical Chemistry, personal com-

munication, 2007). The existence of water-excluded cavities

can be inferred from the dissociation of fibrils exposed to

high pressure (52) and by numerous spectral features of

pyrene-labeled cysteine mutants of AS (see (60)). These re-

gions would be expected to bind hydrophobic compounds

such as bis-ANS (52).

In the case of ThioT, two lifetime components were also

observed, although both were short (0.5 ns and 2.1 ns, the

latter accounting for 77% relative intensity) (Table 1). As

discussed earlier, these results suggest the existence of dif-

ferent microenvironments for bound ThioT, as has also been

inferred in studies of insulin and Ab(1–40) amyloid fibrils

(30). ThioT bound to aggregated transthyretin exhibits three

lifetimes ranging from 0.1 to 3.9 ns (14).

The pronounced red shift and the decrease in quantum

yield of NAS derivatives placed in a polar medium are usu-

ally interpreted in terms of solvent relaxation about the ex-

cited-state species (27). The greater dipole moment of the

excited state relative to the ground state induces a greater

degree of solvent relaxation (26,27). In the event that equi-

librium about the excited-state dipole is not achieved, emis-

sion during the process of solvent relaxation leads to a

spectrum reflecting the time-dependent ensemble of partially

relaxed states. The phenomenon can be explored in the

nanosecond timescale by measurement of TRES, as dem-

onstrated by the environmental relaxation of 2,6-TNS bound

to proteins and membranes (49,53). In this study, we exam-

ined the dynamic spectral relaxation of complexes of cer-

tain NAS and AS fibrils with TRES, as illustrated in Fig. 5 for

2,6-TNS.

Fluorescence decays were acquired at a number of wave-

lengths across the emission spectrum (Fig. 5 A). The decays

were faster at the shorter wavelengths. In such cases, one

presumes that deactivation at the blue edge is by both

emission and relaxation, whereas the molecules selected at

the red edge are relaxed before emission. The deconvoluted

data analyzed in terms of the multiexponential model (Eq. 5)

led to decay curves as a function of emission wavelength

(Fig. 5 B). The mean lifetime increased with wavelength (Fig.

5 B, inset). A new set of intensity decays were scaled so as to

FIGURE 4 Time-resolved fluorescence of the different probes bound to fibrillar AS. Fluorescence decay profiles of (A) 2,6-ANS, (B) 2,6-TNS, (C) bis-ANS,

(D) bis-TNS, and (E) ThioT bound to AS fibrils. The lines represent the best fits obtained according to Materials and Methods, and the estimated parameters are

given in Table 1. The weighted residuals are shown in the lower panels. Dye, 10 mM; protein, 100 mM.
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equate their integrated intensities to the corresponding rela-

tive steady-state intensities at the respective emission wave-

lengths (Eq. 6) The normalized intensity decay profiles are

shown in Fig. 5 C along with the corrected steady-state

emission (inset) and the normalized TRES spectra at selected

time points (Fig. 5 D). A distinct red shift with increasing

time (3 nm in 20 ns) was observed, as represented by the time-

dependent center of mass (Fig. 5 D, inset). As discussed

above, the dye-binding sites in amyloids are probably het-

erogeneous, accounting at least in part for the observed TRES

behavior of 2,6-TNS. In the case of two ground-state species

with distinct emission spectra, either inherent to the probe or

reflecting heterogeneous binding sites, one would expect two

lifetimes with relative amplitudes (but not lifetimes) varying

with wavelength. However, in the case of 2,6-TNS, both the

lifetimes and relative intensities varied across the spectrum

(data not shown). It has been reported that the intensity

(quantum yield) of NAS derivatives decreases in environments

leading to red shifts of the emission maximum (26,27). Our

data, in contrast (Fig. 5 B, inset), are indicative of a time-

dependent reorientation of the immediate environment of the

bound dye as the most plausible basis for the observed be-

havior. One should be mindful that the concept of ‘‘environ-

ment’’ includes consideration of rigid polar residues of the

protein in the binding pocket, as well as solvent molecules

with properties differing from those of the bulk medium.

For 2,6-ANS, a dual wavelength-dependent behavior was

observed. Initially, the decay rates decreased with wave-

length but then gradually increased. This complex behavior

requires further exploration. No time-dependent changes

were observed with the other dyes, a finding that does not

necessarily imply an absence of excited-state processes. They

may simply have been very fast and thus unresolved on the

experimentally available nanosecond timescale.

Monitoring AS aggregation with
ANS/TNS derivatives

A major aim of our study was to demonstrate that NAS de-

rivatives can serve as useful external optical probes for

monitoring amyloid formation. The kinetics of AS aggrega-

tion was studied by both steady-state and time-resolved flu-

orescence spectroscopy, including anisotropy decay. Fig. 6

shows the fluorescence spectra of bis-TNS at different time

points during protein fibrillation (Fig. 6 A) along with the

normalized kinetic aggregation curves detected for all the

probes (Fig. 6 B). The changes in time-resolved fluorescence

parameters during the course of aggregation are presented in

Fig. 7 and Table 2. Time-dependent anisotropy data are

featured in Figs. 8 and 9.

At the onset of the aggregation assay, a low but distinct

fluorescence signal was detected with bis-TNS (Fig. 6 A) and

FIGURE 5 TRES of 2,6-TNS bound to AS fibrils. (A) Experimental fluorescence decays at selected emission wavelengths. (B) Normalized fits of

fluorescence decays. (Inset) Mean fluorescence lifetime. (C) Steady-state normalized decays obtained with Eq. 6. (Inset) Corrected normalized steady-state

emission spectrum of 2,6-TNS bound to AS fibrils. (D) Intensity normalized TRES at different time points after excitation, calculated according to Eq. 6. (Inset)

Center of mass of the fluorescence spectra as a function of time.

FIGURE 6 Aggregation kinetics of AS monitored by

steady-state fluorescence. (A) Emission spectra of bis-TNS

during AS aggregation. (B) Time course of AS aggregation

sensed by NAS dyes and ThioT; blank (0 time value)

subtracted intensities at 415 (2,6-ANS), 426 (2,6-TNS),

480 (bis-ANS), 485 (bis-TNS), and 483 nm (ThioT),

respectively. Lines represent the fits obtained with Eq. 1.

Dye, 10 mM; protein, ;97 mM. Samples were run in

duplicate.
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the other NAS derivatives, but not with ThioT. We attribute

these initial signals to interactions with monomeric AS but do

not exclude a finite contribution from low amounts of pre-

aggregated material that were not removed using the mod-

erate centrifugation employed in these experiments.

As aggregation proceeded, all probes exhibited an increase

in fluorescence intensity (Fig. 6 B) and, in some cases,

spectral shifts, as featured for bis-TNS in Fig. 6 A. We pro-

pose that these phenomena reflect the progressive formation

of hydrophobic binding sites and restructuring of preexistent

binding sites, resulting in the state of reduced polarity in-

herent to the cross-b-amyloid conformation of prefibrillar

intermediates and mature fibrils. All of the aggregation pro-

files monitored by intensity had the characteristic sigmoidal

shapes expected for a nucleation-polymerization process

(Fig. 6 B). According to this model, nucleation centers

formed at the outset and during the lag phase spawn oligo-

meric species leading to the initiation and elongation of fila-

mentous and fibrillar structures. However, a close comparison

of the aggregation curves revealed significant differences in

the aggregation kinetics. In the case of 2,6-ANS and 2,6-

TNS, the increase in fluorescence intensity paralleled that of

ThioT, with aggregation t1=2 values of ;46 6 3 h. The t1=2

measured in the standard ThioT assay (dye excess), was very

similar, but was shorter (38 6 1 h) for bis-ANS and bis-TNS.

It is unlikely that this result was due to differences in binding

affinity, inasmuch as the hierarchy in the progression curves

did not correspond to the order of dissociation constants

(Table 1). It is more likely that the lower t1=2 reflected in-

teractions with prefibrillar species, as was further indicated

by the steady-state and time-resolved anisotropy data (see

below). Myriad conformational structures are present in the

intermediate stages of aggregation, ranging from spherical

oligomers to rodlike and wormlike protofibrils (54). In the

case of AS, spheroids, chains of spheres, and rings resem-

bling circularized protofibrils were identified by AFM

(33,54). In addition, the b-sheet content of AS aggregates,

assessed by Raman spectroscopy, is greater in protofibrils

than in spherical oligomers ((54) and references therein).

The time-resolved fluorescence parameters were also

sensitive to protein aggregation. Already at the beginning of

the aggregation, the fluorescence decays of the NAS probes

exhibited a double-exponential character with a short-lived

component of 1.4–2.4 ns and a longer dominant lifetime of

5–9 ns (Fig. 7 and Table 2). Both lifetimes exceeded values

reported for the free dyes, indicating the existence of at least

two distinct microenvironments of the bound probes. In ac-

cordance with our previous assignments, we attribute the

FIGURE 7 Aggregation kinetics of AS monitored by time-resolved fluorescence. Changes in fluorescence lifetimes (bars, left axis) and fractional intensity

of the long-lived component (h, right axis) of (A) 2,6-ANS, (B) 2,6-TNS, (C) bis-ANS, (D) bis-TNS, and (E) ThioT during protein aggregation.

TABLE 2 Time resolved fluorescence parameters of different probes during AS aggregation

2,6-ANS 2,6-TNS bis-ANS bis-TNS ThioT

Time (h) ti (ns) fi ti (ns) fi ti (ns) fi ti (ns) fi ti (ns) fi

0 1.7 0.24 2.4 0.26 1.8 0.29 1.4 0.33

8.9 0.76 9.6 0.74 5.7 0.71 4.8 0.67

24 2.3 0.17 2.7 0.24 2.3 0.31 1.9 0.33 0.6 0.49

9.0 0.83 9.4 0.76 6.0 0.69 5.5 0.67 1.5 0.51

48 3.0 0.15 3.3 0.20 2.9 0.28 2.5 0.25 0.5 0.33

9.4 0.85 9.7 0.80 6.5 0.72 6.5 0.75 1.3 0.65

72 3.2 0.17 3.2 0.17 3.3 0.29 2.7 0.29 0.4 0.26

9.4 0.83 9.7 0.83 7.1 0.71 7.0 0.71 1.3 0.74

96 3.3 0.13 3.0 0.16 3.1 0.25 2.8 0.27 0.4 0.29

9.5 0.87 9.5 0.84 6.7 0.75 6.8 0.73 1.2 0.71

120 3.3 0.12 3.2 0.17 3.2 0.27 2.9 0.29 0.6 0.36

9.5 0.88 9.6 0.83 7.0 0.73 7.1 0.71 1.4 0.64

Analyses were performed with the DAS6 software. Standard deviation errors of fitted lifetimes were typically 0.1 ns for the fast component and 0.05 ns for

the slow component.
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short lifetimes to the interaction of the dyes with lysine-rich

N-terminal domains and the longer-lifetime components to

binding in the area of tertiary interactions within monomeric

AS. Despite its predominantly disordered state, AS exhibits a

compaction of the N- and C-termini and a foldback of the

C-terminus over the NAC region (42). In a previous study of

bis-ANS complexes with AS, a three-exponential decay was

reported with lifetimes of 0.15, 2.6, and 7.6 ns (35). The

authors assigned the short lifetime to the unbound probe, and

the other two components to at least two types of hydro-

phobic surfaces on the protein. Using the second method of

data analysis (Materials and Methods), we also resolved three

components for the bis-ANS/AS complexes (initial values

0.4–0.5 ns, 2.5–2.8 ns, and 6.5–6.6 ns), the shortest of which

accounted for only 7–8% of the steady-state fluorescence

intensity. This value decreased during aggregation, as ex-

pected from the progressively decreasing concentration of

free dye. The two-component fits to the bis-ANS decays

sufficed for most purposes of data interpretation. The life-

times for both the bis-ANS and bis-TNS complexes increased

during aggregation, with little change in relative amplitude:

the fast component almost doubled and the slow component

increased from 4.8–5.7 ns to ;7 ns at the end of fibrillation

(Fig. 7 and Table 2).

The two lifetimes of 2,6-ANS, as well as the fractional

intensity of the long-lived component, also increased as ag-

gregation proceeded. In contrast, only the lifetime of the fast-

decay component of 2,6-TNS increased with incubation time.

These observations are in agreement with the steady-state

fluorescence data, suggesting the formation of new hydro-

phobic cavities and/or a reorganization of the existing bind-

ing sites leading to a decreased polar character during fibril

formation. According to our proposed mode of binding,

the short lifetimes are modified due both to protein self-as-

sociation (50) and loss of conformational flexibility of the

N-terminus (51). On the other hand, the long-lived compo-

nents change due to the formation of a well-defined cross-b-

structure in the NAC region, which limits the mobility of the

dyes and protects them from bulk solvent molecules.

In the case of ThioT, the steady-state fluorescence intensity

began to rise after 24 h of incubation (Fig. 6 B) and the two

lifetimes remained constant thereafter (Fig. 7 and Table 2).

These observations confirm that binding of ThioT is restricted

to the mature amyloid fibrils as a consequence of their specific

secondary, tertiary, and quaternary structural features (5–7).

The time-resolved anisotropies of the various dyes showed

a distinctive dependence on the elapsed time of the aggre-

gation reaction (Fig. 8). With the exception of ThioT, all

FIGURE 8 Anisotropy decays during the course of AS aggregation. Anisotropy profiles for (A) 2,6-ANS, (B) 2,6-TNS, (C) bis-ANS, (D) bis-TNS, and (E)

ThioT at 0 (black), 24 (red), 48 (blue), 72 (magenta), 96 (green), and 120 h (purple). The peak of the IRF was at ;16 ns for NAS dyes and at ;9 ns for ThioT.

FIGURE 9 Fits to anisotropy data acquired during the course of AS aggregation. (A) Limiting anisotropy (mean value, see Materials and Methods) as a

function of incubation time. (B) Time-resolved anisotropy for bis-TNS at 48 h incubation. Fit according to the analytical convolution technique (see text for

parameters). (C) Anisotropy magnitude ro � rNð Þf for bis-ANS and bis-TNS during aggregation (see text for details). Symbols are as defined in A; closed and

open represent duplicate samples.
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curves increased from an initial value of anisotropy (not fully

resolved in Fig. 8 due to truncation). The limiting values

likewise increased and plateaued after 72 h (Figs. 8 and 9 A).

The intensity-weighted mean values rmean
N differed for the

three classes of molecules: monomeric NAS, 0.28; dimeric

NAS, 0.26; ThioT, 0.33. The progressive increase of NAS

dye anisotropy during aggregation indicates that these com-

pounds sense the presence and properties of oligomeric

prefibrillar intermediates. In particular, the single NAS dyes

appear to detect a compact conformation of the native protein

as well as oligomeric species, whereas the dimeric NAS dyes

exhibit a higher sensitivity for the early steps of aggregation.

ThioT exclusively detects fibrils and as a consequence the

anisotropy of its complexes is high and constant after the

onset of finite emission intensities (Fig. 9).

We subjected the anisotropy decay data of bis-ANS and

bis-TNS to further analysis using the analytical convolution

technique described in Material and Methods (see Eq. 8).

Numerous models of associated intensity-anisotropy decay

modes were explored, the simplest of which was most suc-

cessful in fitting the data. The model in question assumes an

exponential decay of anisotropy from an initial (ro) to a ter-

minal (rN) limiting value, which then remains constant.

These parameters and the rotational correlation times, f, are

common to both intensity lifetime components, such that

rðtÞ ¼ ðro � rNÞ�t=f
1 rN: (9)

In view of the interpretation of the two lifetime components

in the context of binding site heterogeneity, this interpretation

is clearly a simplification, one that would be biased to the

properties of the dominant slower-decaying species. None-

theless, the fits provided good representations of the exper-

imental time-resolved anisotropy, including the initial period

extending into the IRF (Fig. 9 B). For both dyes, ro and rN

increased during aggregation, but the apparent rotational

correlation times clustered in the range of 0.4–1 ns. This low

value is consistent with other determinations based on cova-

lent adducts of short-lifetime organic dyes with monomeric

AS (C. W. Bertoncini, E. A. Jares-Erijman, and T. M. Jovin,

unpublished) and is much smaller than that predicted for the

global rotational relaxation of a protein molecule with the

molecular mass of AS, either in a compact or extended (41)

conformation. We conclude that the observed relaxation

reflected local motion of the dye docked to its binding site(s)

and that its amplitude decreased as the oligomeric-prefibrillar-

fibrillar forms increased in size and rigidity. This phenome-

non, expressed quantitatively as an ‘‘anisotropy magnitude’’,

the product of ro � rNð Þf; appears to distinguish distinct

initial and terminal phases of aggregation (Fig. 9 C), an

interesting observation that requires further investigation.

In studies based on fluorescence anisotropy, it is important

to consider mechanisms for depolarization other than rota-

tional diffusion. In particular, rapid decays of anisotropy can

occur due to energy transfer between excited- and ground-

state molecules in close proximity, in which case the per-

ceived time constant is not a rotational correlation time but

rather is related to the rate of energy transfer. We estimated a

homotransfer Förster radius (Ro) for bis-ANS of 2.2 nm

(using a value of 2/3 for k2). Under the condition of our

experiments, and assuming a finite degree of binding of the

dyes to monomeric AS, the estimated ratio of bound ligand to

aggregated protein would probably not exceed a value of

;0.1. We also note that the measured time constants did not

display the systematic increase expected for homotransfer

occurring during a progressive conversion of the protein. We

conclude tentatively that homotransfer was not significant,

although it cannot be excluded.

The rotational correlation times corresponding to global

tumbling of structures the size of protofibrils and fibrils are

expected to largely exceed the lifetime of the molecular

probes used in this work. In this regard, fluorescence probes

having longer decay times are more appropriate for the de-

termination of the size distribution of oligomeric species. In

an parallel effort conducted in our laboratory, we exploited

the long fluorescent lifetime as well as the spectral and po-

larization properties of residue-specific covalent adducts of

pyrene with AS for detecting the multiple stages of AS ag-

gregation (see (60)).

Structural interpretations

The interest in protein aggregation has increased tremen-

dously in the last decades due to its relevance to protein

misfolding and deposition diseases (1). Historically, the

presence of amyloid fibrils ex vivo and insights into the

mechanisms and kinetics of amyloid formation in vitro have

been obtained by use of fluorescence dyes such as Congo red

and ThioT (3). However, the specificity and sensitivity of

these two dyes have been questioned (3,5,13). In addition, the

need for periodic manual sampling, and the dependence of

the signal on fibril morphology and solution conditions are

deficiencies inherent to these in vitro assays. Furthermore,

the dyes are believed to be insensitive to oligomeric inter-

mediates, although some analogs appear to detect soluble Ab

oligomers (12).

NAS derivatives have been used extensively to explore

particular aspects of protein misfolding and self-assembly.

We present here a systematic and comparative evaluation of

the interactions of selected members of the family (2,6-ANS,

2,6-TNS, bis-ANS, and bis-TNS) with AS in an effort ded-

icated to the expansion of the available set of fluorescent tools

for studying mechanisms of amyloid formation. The sensi-

tivity of these extrinsic reporter molecules to polarity and to

the mobility of surrounding dipoles provides additional in-

formation related to structural aspects not revealed by ThioT.

This circumstance is of particular interest due to the in-

creasing number of high-resolution structural models of fi-

brillar aggregates from different sources.
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We have shown that NAS derivatives exhibit a low fluo-

rescence in the presence of native AS but become highly

fluorescent when bound to AS fibrils. Hyperchromic shifts,

high steady-state anisotropy values, increased fluorescence

lifetimes, and solvent relaxation in the nanosecond timescale

observed upon interaction with fibrillar structures suggest

that the bound probes experience a hydrophobic environment

and/or a polar surrounding with restricted motion. In addi-

tion, both steady-state and time-resolved fluorescence pa-

rameters change during the course of amyloid formation. The

side chains on each side of the b-sheet form rows (so-called

channels) running along the b-sheet (and therefore the fibril),

perpendicular to the strands (55). Taking into account the

volume occupied by the side chains, the width of the channels

would be ,6.5 Å (55). It has been proposed that the long and

thin ThioT molecule (molecular dimensions 15.2 Å, 6.1 Å,

and 4.3 Å, corresponding to the x, y, and z axes, respectively)

inserts itself into these channels with its shortest axis per-

pendicular to the fibril axis, closely surrounded by the side

chains (6). Since NAS probes have comparable molecular

dimensions, one expects them to bind to AS fibrils in a

similar fashion. The physical confinement conferred by the

close proximity of the side chains would result in restricted

motions of the probes (and their molecular environment),

along with a shielding from bulk solvent molecules, thereby

leading to the observed spectroscopic characteristics.

NAS probes bind to AS fibrils with apparent dissociation

constants in the micromolar range. It has been shown that bis-

ANS can interfere with protein-protein interactions, includ-

ing those in thermally or chemically induced aggregation

processes (56), as well as in the assembly of microtubules in

vitro (57), bacteriophage P22 capsids (58), vesicular stoma-

titis virus (59), and amyloid formation of the prion protein

(38,39). However, to abolish protein association, a high dye/

protein molar ratio is required. According to our data, sub-

stoichiometric quantities should suffice for biosensing pur-

poses, and we are exploring the requirements for establishing

sensitive and quantitative continuous aggregation assays

based on the NAS dyes.
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