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ABSTRACT We describe a method by which a single experiment can reveal both association model (pathway and constants)
and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of
concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer.
Singular value decomposition of the data yields a set of basis vectors from which the scattering curve for each oligomer is
reconstructed using coefficients that depend on the association model. A search identifies the association pathway and constants
that provide the best agreement between reconstructed and observed data. Using simulated data with realistic noise, our method
finds the correct pathway and association constants. Depending on the simulation parameters, reconstructed curves for each
oligomer differ from the ideal by 0.05–0.99% in median absolute relative deviation. The reconstructed scattering curves are
fundamental to further analysis, including interatomic distance distribution calculation and low-resolution ab initio shape
reconstruction of each oligomer in solution. This method can be applied to x-ray or neutron scattering data from small angles
to moderate (or higher) resolution. Data can be taken under physiological conditions, or particular conditions (e.g., temperature)
can be varied to extract fundamental association parameters (DHass, DSass).

INTRODUCTION

Protein-protein interactions play key roles in most biological

processes. High-throughput proteomic techniques (1) have

identified a large number of homo- and heterointeractions, up

to 81,775 in yeast and 38,217 in humans (2). Such techniques

are invaluable for building networks that reveal protein in-

teractions (2,3), but they can only indicate the presence of an

interaction. The function of a protein-protein complex, how-

ever, depends on both the stoichiometries and the strength

of association between subunits, as well as on the structures

of the subunits and complexes. The elucidation of protein

interaction networks thus motivates the development of

methods for rapidly determining interaction parameters and

structures, particularly for the low-affinity transient interac-

tions that are frequently revealed by high-throughput pro-

teomics. Under experimental conditions, such low-affinity

interactions typically yield heterogeneous systems containing

multiple components.

Many techniques are available for determining the stoichi-

ometry and/or strength of an interaction. They include hy-

drogen/deuterium exchange (4), analytical ultracentrifugation

(5), titration calorimetry (6), composition gradient static light

scattering (7,8), and surface plasmon resonance (9). In addi-

tion, classical separation tools such as size exclusion chro-

matography can be combined with other biochemical analyses

to elucidate the nature of a protein-protein association. How-

ever, these techniques can provide only very limited structural

information about the individual proteins or complexes.

Other techniques yield structures of varying resolution, yet

each has limitations that prevent application to the broadest

array of protein-protein complexes. Of the available methods,

x-ray crystallography generally provides the highest resolu-

tion, but the weak and transient interactions of many protein-

protein complexes prevent the growth of diffraction-quality

crystals (10). Even in cases where the structure of a complex

can be determined, only the final oligomeric state can be

identified (and even that can be ambiguous depending on the

observed crystal-packing interactions). Neither the pathway

nor the strengths of association are revealed directly by

a crystal structure. NMR spectroscopy has been used to

determine the structures of protein-protein complexes.

Although new techniques are being developed (11), the large

molecular weight of many complexes hinders analysis.

Consequently, only five NMR structures of protein-protein

complexes in the Protein Data Bank (12) are for proteins of

.200 residues (13). Like crystallography, an NMR structure

reveals neither the pathway nor the strengths of association.

Cryoelectron microscopy can provide structures of up to 5 Å

resolution for complexes large enough to be accurately ori-

ented (10) and is also capable of analyzing heterogeneous

samples. Although it might be possible to infer the associa-

tion model and constants of a protein-protein interaction from

cryoelectron microscopy of equilibria trapped by rapid
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freezing, such measurements would require distinguishing

oligomeric forms and tedious quantification (14). Thus, none

of these tools readily provides both the association model and

significant structural information from a single experiment.

Small-angle scattering (SAS) of either x-rays or neutrons

allows low-resolution structural data to be collected from

proteins that span a large range of molecular weights (15).

Since SAS data are collected from solution, the measure-

ments reflect the structure in solution, and conditions can be

readily altered to reflect physiological changes. The lack of

size restrictions, the absence of a requirement for crystalli-

zation, and rapidity of data collection in solution make SAS

a potentially promising technique for the structural char-

acterization of complexes identified by high-throughput

proteomics assays. The complete analysis of SAS data has

traditionally required a homogenous sample, however, mak-

ing it unsuitable for weak-binding complexes.

Protein complexes can form either between different

proteins (heteroassociation) or between identical proteins

(homoassociation). Excluding random aggregation, homo-

association can proceed by either open or closed symmetry,

distinguished by the relationship between the symmetry

operators and the surface(s) of association. In closed (point-

group) symmetry, no interaction surfaces are left unoccupied

in the oligomers. As oligomers are formed, the association

surfaces are sequestered within the complex, imposing an

upper limit on the oligomeric state that can be achieved.

Additional association (that is, more than two states in the

association pathway) requires the use of additional interac-

tion surfaces with different interaction energies and thus dif-

ferent affinities. Although some sets of affinities are favored

in vivo (16), in principle, any relationship between successive

association events is possible. In contrast, open symmetry

(e.g., the helical association of actin) leaves an unoccupied

interaction surface at each step and allows the formation of

successively longer polymers, with each step using the same

surface and occurring with the same energy.

In this article, we describe a method for analyzing SAS

data from heterogeneous systems undergoing concentration-

dependent association into closed-symmetry homooligomers.

Our method discriminates between different association

pathways, determines the association constants, and recon-

structs the scattering curve of each oligomer from a concen-

tration series of SAS data, which can be collected rapidly in a

single experiment. The method employs singular value de-

composition (SVD) to determine the set of linearly indepen-

dent basis vectors and coefficients that best represent the set of

observed SAS curves. These basis vectors and coefficients

can be used (along with the mass fractions of each oligomer

at each concentration) to reconstruct the scattering curve for

each pure oligomer. The scattering curve of each pure oli-

gomer and the same mass fractions can then be used to ap-

proximate the observed data. Since the mass fractions at each

concentration are dependent on the association pathway and

constants, a search over the feasible closed association path-

ways and constants determines the values that best approximate

the observed data. Scattering curves of individual oligomers

reconstructed by this analysis are available for the computation

of interatomic distance distributions (P(r)), which provide the

pairwise distances between all atoms in each oligomer. P(r)
distributions in turn form the basis for computing low-resolu-

tion reconstructions of each oligomer through the application of

ab initio shape reconstruction algorithms (17,18).

Concentration series of scattering data have previously been

employed to fit the extrapolated forward scattering (I(0)),

which is directly proportional to the molecular mass and con-

centration of the scattering particle, to association models. For

example, this technique has been employed in multiple studies

of the oligomerization of visual arrestin (19,20). Here, in ef-

fect, we extend such analyses to use the entire scattering curve

via the SVD mechanism.

SVD itself has previously been applied to SAS data col-

lected on protein solutions with varying concentrations of a

chemical denaturant to identify, quantify, and characterize the

partially folded intermediates of cytochrome c and lysozyme

(21–23). In contrast, SVD of time-resolved scattering data has

been used to determine that no stable intermediates exist when

the HK97 bacteriophage capsid undergoes acid-induced mat-

uration (24). In the closest precedent to our work, SVD was

used to analyze SAS data collected on samples of the allosteric

enzyme aspartate transcarbamylase where the relative amounts

of the R and T states were altered by titration with the bisub-

strate analog N-(phosphonacetyl)-L-aspartate (PALA) either

alone or with allosteric effectors ATP or CTP (25). The ab-

sence of intermediate states was confirmed, and binding and

allosteric parameters for PALA were found by fitting to the

fractional amounts of each form. In this special case, when

only two states are present and homogeneous samples are

available for both states, the fractional amounts could be es-

timated directly from the coefficients of the decomposition.

Other cases require restrained indirect estimation of the kind

we describe here.

In all these examples, data from some samples that were

homogenous (e.g., completely native or completely dena-

tured protein) were available, easing the task of quantifying

any intermediates. Our method removes that requirement; we

show that a restrained SVD analysis (here restrained by self-

association equations) does not require data from a homo-

geneous sample. We also show that fractional amounts and

restraint parameters can be determined even when more than

two forms are present. Accurate results can thus be obtained

when associations of intermediate strength, including sys-

tems with multiple steps of association, cause heterogeneity

at all experimental concentrations.

METHODS

Formulation of the oligomer reconstruction

We first represent a set of SAS data observed over M scattering angles from

N concentrations of protein as an M 3 N matrix A. Since each scattering curve
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is a mass-weighted linear combination of the scattered intensities of all oli-

gomers present,

A � OF; (1)

where the SAS curves for each of the Nforms oligomers comprise the

unknown M 3 Nforms matrix O, and the Nforms 3 N matrix F contains the

unknown fractional mass of each oligomer at each concentration. Our goal is

to reconstruct O from the data when the N concentrations in the data set

exceed the Nforms number of oligomers while also determining the associ-

ation model and constants reflected in F.

Singular value decomposition analysis

We chose to decompose the SAS data by SVD (Fig. 1 A) because it is robust

and model-independent, allows an independent check on the number of

oligomeric forms present, and seeks to separate noise from significant

components (26). By SVD theory, any matrix A can be written as the product

of three matrices,

A ¼ UðSV
TÞ: (2)

Matrix U is M 3 N with columns forming a set of basis vectors that can be

linearly combined to represent the scattering curves at the protein concen-

trations in the data set. Matrix SVT is N 3 N with rows containing the

amplitude vectors of coefficients applied to each basis vector to represent each

observed scattering curve in A. The decomposition was implemented using

the function svd in MATLAB (version 7.01, The MathWorks, Natick, MA).

Ideally, the number of significant basis vectors, Nsig, is thought to equal

Nforms, the number of different oligomeric forms present in the mixture;

additional basis vectors contain noise. During the initial analysis when Nforms

is not known directly, Nsig can be estimated from the SVD by several criteria.

The smoothness of the basis vectors in U (here a function of scattering angle)

and the relative magnitude of the singular values (diagonal of matrix S) are

well known criteria for this purpose. Since the basis vectors are the com-

ponents of linear combinations that make smoothly varying contributions to

the data curves, the amplitude vectors corresponding to significant basis

vectors should also vary smoothly as the total protein concentration in-

creases. As we demonstrate, though, estimation by these criteria is often

unreliable in this application. In these cases, Nsig is set equal to Nforms of the

trial association pathway (see below).

The value of Nsig allows the definition of submatrices containing the

significant information, Ũ containing the first Nsig columns of U, S̃ containing

the first Nsig rows and columns of the diagonal matrix S, and ṼT containing

the first Nsig rows of VT. The SAS data set can then be approximated as the

product of these submatrices,

A � ŨS̃Ṽ
T
: (3)

Reconstruction of oligomer scattering curves

The matrix O of scattering curves for each oligomer can also be approxi-

mated in Ô as a linear combination of the same Nsig basis vectors in Ũ

weighted by coefficients from a different (and unknown) Nsig 3 Nsig matrix B
(Fig. 1 B),

O � Ô ¼ ŨB: (4)

To complete our reconstruction of the oligomer scattering curves in Ô we

need to determine the best values of B. To solve for B, we note that the data in

A can also be approximated by Â, which consists of the linear combination of

the reconstructed individual oligomer curves in Ô with the mass fraction

coefficients of each oligomer in F,

A � Â ¼ ÔF: (5)

Substituting Eq. 4 into Eq. 5 and reassociating yields

A � Â ¼ ŨðBFÞ: (6)

Pairing the two different approximations of A in Eqs. 3 and 6 then allows us

to solve for B in terms of F and the known S̃ṼT by setting

S̃Ṽ
T ¼ BF: (7)

We present below an algorithm for determining the best F and thus the best B

by minimizing the difference between the reconstructed Â and the experi-

mental data A.

FIGURE 1 Schematic showing the flow of information during the analysis of scattering data. (A) Obtaining basis vectors, their associated weights, and

amplitude vectors by SVD of the input data. (B) Reconstructing both the SAS curves of each oligomer and the set of observed data for a trial association

pathway and constants using the fractional masses from the association model (in F) and the basis vectors (in U) and coefficients (in SVT) from SVD.
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Determining the association model (pathway
and constants)

Searching a set of trial association models

The fractional mass values in F are unknown before the experiment begins.

However, these values can be determined directly from the association

pathway and constants and the concentration of the samples. Different values

in F alter the matrix B (Eq. 7), different values in B in turn alter the re-

constructed scattering curves in Ô (Eq. 4), and F further affects the re-

constructed data in Â (Eq. 5). Variation in F thus alters the values in Ô and the

agreement between Â and the observed data in A. We quantify these effects in

two scoring functions described below. We present an algorithm for deter-

mining the correct association pathway and constants that exploits these

relationships by minimizing the scoring functions.

For each experiment we search a set of feasible association pathways.

While the set of association pathways is in principle infinite, the principles of

closed point group association and previous biological experience limit the

association pathways to a smaller feasible set. Although the set can be

changed depending on knowledge of the biological background, a standard

set of the most common pathways is shown in Table 1.

For each association pathway, we construct a grid with axes representing

the association constants; the dimensions of this grid are thus one less than

the number of forms in the pathway. For example, to consider a three-state

association pathway, such as monomer-trimer-hexamer, the grid is two-di-

mensional, using as the axes the first-to-second-form (here monomer-trimer)

equilibrium constant (K12) and the second-to-third-form (here trimer-hex-

amer) equilibrium constant (K23). In our computations, the range of each axis

spans 32 orders of magnitude in association constants from 10�7 to 1025,

covering the range of feasible associations from very weak to extremely

strong. Each axis contains 320 trial values at integer multiples of each power

of 10 (e.g., 1 3 10�6, 2 3 10�6. . . 9 3 10�6). The grid is searched using an

algorithm (Fig. 2) such that for each trial set of association constants, a trial F

is calculated from the standard association equations (Table 1) and the known

concentrations of the data. A trial B is then calculated with Eq. 7. Equations 4

and 5 then use this F and B to determine Ô and Â. The values of the scoring

functions described below are then computed for each set of trial association

constants (Fig. 1 B).

It is likely that the true values of experimental association constants will

not lie at the integer values in the coarse-grid search described above. We

show, however, that the scoring functions are smooth, and the best scoring

grid points from this coarse search bracket the best values of finer searches.

Thus, using the results of the coarse search, we select dimensions for a new

grid that bracket the best solution found on the coarse grid. The smaller

dimensions of this grid allow it to be easily sampled as finely as 1/100 of the

coarse-grid sampling. The use of coarse and fine-grid searches allows a better

determination of the association constants within reasonable computation

time while also allowing the accurate determination of a confidence interval

(see below).

Since the reconstructed SAS curves in Ô are linear combinations of the

Nforms basis vectors in Ũ (which can have both positive and negative values),

it is mathematically possible for the reconstructed SAS curves to contain

negative values even though scattering intensities are always nonnegative.

Early testing showed that solutions with good scores under the scoring

metrics (although not equal to the best) could be obtained for many associ-

ation models disparate from the simulated system. Examination of these

solutions revealed that they employed one or more oligomer scattering

curves with significant negative values to compensate for the disagreement

between the data and the combination of the other forms. We thus im-

plemented a restraint against negative values in the reconstructed oligomer

curves. Since negative values can appropriately arise in SAS data from sta-

tistical fluctuations around small scattering intensities and our current

method for SVD does not provide for error propagation, we cannot directly

assess the significance of any negative value. Thus, we have conservatively

chosen to exclude an association model only if it yields an oligomer curve

with a substantial number of negative values. In the simulations reported

here, we exclude trial association models where .10% of the points in any

oligomer curve are negative. The excluded solutions, which cover most of

the coarse grid even for the correct pathway, are indicated as blank space in

the coarse-grid search figures.

Evaluating the quality of the association model
and constants

Quality score based on agreement with observed
scattering intensities

The fit to the data arising from the reconstructed oligomer curves associated

with a trial association model can be quantified through a normalized x2

comparison of the data in A and the reconstructed data in Â using the esti-

mated error s(m,n) in each experimental data point,

x
2 ¼ 1

MðN � NformsÞ
+
N

n¼1

+
M

m¼1

Aðm; nÞ � Âðm; nÞ
sðm; nÞ

� �2

; (8)

where m sums over all M data points (scattering angles) in a SAS curve and

n sums over all N scattering curves in the data set. The x2 values are

TABLE 1 Formulations of the equilibrium association

constants for the feasible association pathways

Pathway K12 K23 K34

1-2 [Dim]/[Mon]2 — —

1-3 [Tri]/[Mon]3 — —

1-4 [Tet]/[Mon]4 — —

1-2-4 [Dim]/[Mon]2 [Tet]/[Dim]2 —

1-2-6 [Dim]/[Mon]2 [Hex]/[Dim]3 -

1-3-6 [Tri]/[Mon]3 [Hex]/[Tri]2 -

1-2-8 [Dim]/[Mon]2 [Oct]/[Dim]4 -

1-4-8 [Tet]/[Mon]4 [Oct]/[Tet]2 -

1-2-4-8 [Dim]/[Mon]2 [Tet]/[Dim]2 [Oct]/[Tet]2

1-2-6-12 [Dim]/[Mon]2 [Hex]/[Dim]3 [Dod]/[Hex]2

1-3-6-12 [Tri]/[Mon]3 [Hex]/[Tri]2 [Dod]/[Hex]2

The molar concentration ratios for computing the equilibrium association

constants are listed. For example, for the monomer-trimer-hexamer (1-3-6)

pathway, the association constant for the first-to-second-form equilibrium,

K12, equals [Trimer]/[Monomer]3, whereas the association constant for the

second-to-third-form equilibrium, K23, equals [Hexamer]/[Trimer]2. Dim,

dimer; mon, monomer; tri, trimer; tet, tetramer; hex, hexamer; oct, octamer;

dod, dodecamer.

FIGURE 2 The algorithm used to evaluate possible association constants

for a trial association pathway.

SAS Analysis of Protein Self-Association 4909

Biophysical Journal 94(12) 4906–4923



calculated for M 3 N data points, but the number of degrees of freedom

used for normalization is calculated by subtracting the degrees of freedom

fixed by the Nforms basis vectors of the SVD, where Nforms is determined by

the choice of association pathway to be evaluated. We show that in practice

this score approximately equals 1 for the best fit to data with Gaussian

simulated noise.

Quality score based on relative forward scattering

The intensity of scattering at zero angle (also called I(0) or forward scat-

tering), which can be extrapolated from each oligomer scattering curve in

Ô, should be directly proportional to the molecular weight of that oligomer.

For example, I(0) values from the scattering curves of a monomer, dimer,

and tetramer of a self-associating system should fit the ratio 1:2:4. We can

thus evaluate an association model by a second quality score comparing

the ratio of I(0)s that have been extrapolated from the reconstructed Ô to

the ratio expected for each trial association pathway. The mean-squared

mass ratio difference (MSMRD) score is summed over the Nforms in the

postulated association model and normalized by the number of I(0) mass

ratios,

MSMRD ¼ 1

Nforms � 1
+

Nforms

k¼2

ak;1 �
Ið0Þk
Ið0Þ1

� �2

; (9)

where I(0)k is the reconstructed forward scattering for the kth form and I(0)1

the forward scattering for the first form (typically monomer), whereas ak,1 is

the expected ratio between I(0)k and I(0)1 (e.g., 3.0 for monomer/trimer).

This score then equals zero for a perfect reconstruction. Note that this score

is a generalization of methods used to determine association constants by

fitting specific models to the change in I(0) with concentration (19,20).

For both simulated and experimental data the I(0) values can be estimated

from Ô by the traditional Guinier plot analysis (27). For simulated data with

excellent low-resolution intensities, we estimated the applicable q range for

the Guinier analysis using a postulated radius of gyration (RG) value sig-

nificantly larger than that found for the highest-concentration simulated data

curve and applying it to all the reconstructed oligomers. For experimental

data the best q range may be determined by iterative estimation of RG for the

oligomeric form under consideration and may need to be modified based on

the quality of the lowest-resolution data. Our results show that the MSMRD

is useful as a supplementary metric in determining the correct association

model.

Computing a confidence interval around the best
association model

The values of x2 from the fine-grid search are also used to compute a con-

fidence interval around the best association constants. Since we know the

association constants must lie within the broad range that is searched and we

demonstrate the small variation between scores at adjacent fine-grid points,

the contribution of each grid point can be computed by converting the scores

to a likelihood using p ¼ e�x2

and normalizing their total likelihood to 1. The

normalized scores are ranked and summed to determine the desired confi-

dence boundary. In all cases examined thus far, the confidence boundary

encloses a single smooth and continuous surface.

Simulating scattering data from
a self-associating
monomer-dimer-tetramer system

We simulated small-angle x-ray scattering (SAXS) data from a closed

symmetry self-association in a monomer-dimer-tetramer equilibrium using

the homotetramer iron superoxide dismutase from Sulfolobus solfataricus

(PDB id 1WB8) (28). After separating the homotetramer into a monomer (24

kDa), a hypothetical dimer, and intact tetramer components, theoretical x-ray

scattering intensities for each component in solution (matrix O) were com-

puted using x-ray scattering factors and a Fourier transform of the shape of

the protein as implemented in the program CRYSOL (29). Calculated data

was limited to a qmin of 0.015 and a qmax of either 0.05 (low resolution) or

0.14 (moderate resolution), where q¼ 4p*sin (u)/l. The fractional masses of

each oligomer (matrix F) were computed at seven protein concentrations

equally spaced in a geometric series from 0.25 to 16 mg/ml (0.25, 0.5, 1.0,

2.0, 4.0, 8.0, 16.0 mg/ml), using association constants of K12 ¼ 8.26 3 103

M�1 and K23 ¼ 2.83 3 102 M�1. These concentrations are ones for which

x-ray scattering data can readily be obtained at third-generation synchrotron

sources. The simulated association constants are intentionally noninteger to

test the ability of successive coarse- and fine-grid searches to find noninteger

values such as those expected for real associations. Noiseless simulated

scattering data (to make a noiseless version of matrix A) was then calculated

by multiplying the simulated O times F.

Major sources of noise in experimental scattering data include counting

error, parasitic scatter, and contaminating protein (including aggregates of

the target protein and any fraction of the target protein not participating in the

association). Not all of these are readily modeled, but adding a realistic

Gaussian noise to each simulated SAXS curve simulates the contribution of

counting error. Realistic Gaussian noise was calibrated using experimental

x-ray scattering data (Iexp and its estimated error sexp) from a 1.0-mg/ml

sample of a 21-kDa protein collected at the BioCAT undulator beamline 18-

ID at the Advanced Photon Source (30) and fitted with a high-sensitivity

CCD detector (31). The magnitude of the added noise as a function of res-

olution ssim(q) was then calculated and adjusted for concentration by

ssimðqÞ ¼
IsimðqÞ

kðqÞ ffiffiffiffiffiffiffiffiffifficonc
p ; (10)

where conc is the total protein concentration in units of mg/ml and k(q) is a

resolution-dependent relative noise constant calculated from the experimen-

tal data by

kðqÞ ¼ IexpðqÞ
sexpðqÞ

: (11)

A Gaussian distribution (as an approximation in large counts for Poisson

counting statistics) of random values with width equal to ssim was generated

using the randn function within MATLAB and added to the noiseless

simulated intensities to produce the final simulated SAXS data. Examination

of the simulated data reveals noise characteristics similar to the experimental

standard and varying appropriately with concentration and resolution. We

refer to this amount of added random noise as ‘‘standard noise’’. To evaluate

the reproducibility of our method in the presence of this realistic expected

noise, 10 data sets with standard noise were generated and used as replicates

for testing. An alternative minimal noise model was also employed in initial

tests with ;1/1000 of the standard noise.

Simulating scattering data from
a self-associating
monomer-trimer-hexamer system

The same procedure described above for the homotetramer was used to

simulate SAXS data from a monomer-trimer-hexamer equilibrium using the

hexameric Annexin XII from Homo sapiens (PDB id 1DM5) (32). Scattering

intensities for the monomer (32 kDa), hypothetical trimer, and intact hex-

amer components were computed and combined into several simulated data

sets to test the ability to detect oligomers present as only minor fractions.

Several successive simulations were generated, with progressively larger

values of the association constant K12 to simulate smaller fractions of

monomer at the concentration where the monomer is most common (that is,

the lowest concentration). Ten data sets with realistic standard noise were
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generated from each simulation as described above and used as replicates for

testing.

Simulating scattering data from
a self-associating
monomer-tetramer-octamer system

The same procedure was used to simulate SAXS data from a monomer-

tetramer-octamer equilibrium using the octameric purE protein from E. coli
(PDB id 1QCZ) (33). Scattering intensities for the monomer (17 kDa), hy-

pothetical tetramer, and intact octamer components were computed and

combined using simulated association constants of K12 ¼ 2.87 3 1012 M�3

and K23 ¼ 1.29 3 101 M�1.

Tests of the required data/parameter ratio and of the robustness of our

method to both random and systematic noise were conducted with this

system. To test the robustness to random noise, random noise at several

levels was added to the simulated data as described previously, except that

the ssim(q) of Eq. 10 was multiplied by 1, 2, or 4 before the generation of

random noise. Five data sets were generated for each level of noise and used

as replicates for testing. To test the robustness to systematic noise (e.g., the

presence of aggregates), we constructed a simulated aggregate of this protein

by building a model with six purE octamers packed together as in the crystal

structure. Although not truly replicating the scattering seen with randomly

aggregated protein, adding this protein to each simulated concentration at

0.5%, 1.0%, and 2.0% of the total protein and then calculating the expected

scattering provides the opportunity to obtain an initial view of how de-

composition could be affected by the kinds of systematic noise often seen in

real systems.

To test the data/parameter ratio, additional data sets were simulated that

contained scattering profiles from a smaller number of protein samples of

varying protein concentration. Using the same range of concentrations for

each test (0.25–16.0 mg/ml), we compared the data set with seven concen-

trations and standard noise already generated with smaller data sets of either

five concentrations equally spaced in a geometric series (0.25, 0.71, 2.0, 5.66,

and 16.0 mg/ml) or the theoretical minimum of three concentrations (0.25,

2.0, and 16.0 mg/ml) needed to determine basis vectors for three oligomeric

forms. As described above, five replicates with standard noise were gener-

ated for these smaller data sets and used for testing.

Evaluating successful reconstruction of
oligomeric curves

The association pathway and constants from the top scoring association

model were used to recompute the best oligomer scattering curves in the

matrix Ôbest. The quality of the final set of reconstructed scattering curves

was evaluated by two methods. First, the scattering curves in matrix Ôbest

were used to reconstruct the simulated scattering data as before, and the

differences between the simulated and reconstructed scattering data were

normalized by ssim(q) and examined for a random distribution of residuals.

Second, the reconstructed scattering curves in Ôbest were directly compared

to the scattering curves from the atomic structures in the simulated O, and the

magnitude of their differences was evaluated by calculating the median of the

absolute value of the relative deviation of each data point (MARD).

Implementation

Our simulation and analysis methods have been implemented as MATLAB

scripts. Upon request, the software can be freely obtained for academic use

from the authors. The most intensive calculations (the coarse- and fine-grid

searches) require on the order of minutes to hours for each data set with three-

state association models (two-dimensional searches) and on the order of days

with four-state association models (three-dimensional searches) on a Pen-

tium IV workstation.

RESULTS

Monomer-dimer-tetramer association pathway:
Calculating and assessing simulated
scattering data

We first investigated the ability of our method to determine

the correct association pathway and constants for a sample

self-associating system of closed symmetry. A monomer-

dimer-tetramer equilibrium was selected as the first target of

this study based on the frequent occurrence of this pathway

(15). Scattering curves using x-ray scattering factors were

computed from the atomic coordinates of monomer, dimer,

and tetramer models from iron superoxide dismutase (Fig.

3 A). These curves display an increase in I(0) value corre-

sponding to the relative molecular weight of each oligomer.

The oligomer scattering curves were linearly combined ac-

cording to the mass fractions generated from the standard

chemical equilibrium equations (Table 1) to yield noise-free

simulated data representing heterogeneous solutions of the

associating protein at an experimentally reasonable set of

concentrations. Simulated data with noise at the minimal and

standard levels (Fig. 3 B) was calculated as described in

Methods.

The curves in Fig. 3, A and B, appear to have an iso-

scattering point at q� 0.09, which would be characteristic of

a system with only two states. Closer examination reveals

that what appears to be an isoscattering point is only an ar-

tifact of all three curves crossing in close proximity. Exam-

ining the I(0) and RG values computed by Guinier analysis

from the simulated data (Table 2) shows that, as expected, the

apparent I(0) of the mixtures is a linear combination of the

I(0) values of the homogeneous oligomers times the frac-

tional mass of each oligomer. Similarly, the squares of the

apparent RG values computed from the mixtures are ap-

proximated by the fractional mass-weighted linear combi-

nations of the square of the RG value of each oligomer.

Monomer-dimer-tetramer association pathway:
evaluating significant vectors in SVD

The simulated data were decomposed by SVD as detailed

in Methods. Decomposition of simulated data either with-

out noise or with minimal noise gave the theoretically

expected results (not shown). With minimal noise, decom-

position yielded three smooth basis vectors (columns of U),

equal to the number of simulated oligomeric forms. The set

of basis vectors showed visible noise only beginning with

the fourth. Decomposition also showed a 4.2 3 104-fold

decrease between the third and fourth singular values (di-

agonal elements of S). The corresponding Nforms ¼ 3 am-

plitude vectors (rows of VT) varied smoothly with

concentration, whereas all additional amplitude vectors

displayed nonsmooth variation. The smooth variation in the

amplitude vectors reflects both the fixed contribution of

each basis vector to the scattering curve of each oligomer
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and the smooth variation in the distribution of oligomers

with concentration (see Eq. 7).

Decomposition of simulated data with standard noise

revealed that SVD analysis alone cannot remove all noise

from experimentally realistic simulations. These effects can

be seen (Fig. 4) by examining the first few basis vectors and

associated coefficients. Here, the third basis vector shows

noisy variations, although less than the fourth. The fourth

singular value is also only 1.6-fold smaller than the third

singular value, not enough to make an easy determination

whether three or four basis vectors are significant. Smooth

variation is seen for only the first three amplitude vectors,

however, suggesting that the correct association pathway

has three forms. Nonetheless, the difficulty in evaluating the

basis vectors necessitates testing the set of feasible associ-

ation pathways which contain two, three, and four forms

(utilizing two, three, and four basis vectors, respectively),

so that the additional restraints imposed by fitting an asso-

ciation model will reveal more definitively the number

of basis vectors (oligomeric forms) that contribute to the

scattering.

Monomer-dimer-tetramer association pathway:
search over association pathways, coarse- and
fine-grid searches with confidence intervals, and
the effects of data-resolution range

Our search algorithm (Figs. 1 and 2) was used to find the

association pathway and constants that best describe the

simulated data. We evaluated a set of 10 trial association

pathways containing two, three, and four states (Table 1) by

searching a coarse grid of association constants, with the

number of states (oligomeric forms) Nforms setting the value

of Nsig (number of significant SVD basis vectors used).

The most effective decomposition requires that the shape

of the scattering curves from the different oligomers (and not

just their amplitudes) be distinct. Since differences in shape

become more apparent at higher resolution, we conducted the

FIGURE 3 Simulated SAXS data from two self-associating homooligomers. (A) SAXS curves computed from the atomic coordinates of the simulated

monomer, dimer, and tetramer (dark to light curves, respectively) of PDB 1WB8. (B) SAXS curves from a heterogeneous mixture of monomer, dimer, and

tetramer at association constants K12 ¼ 8.26 3 103 M�1 and K23 ¼ 2.83 3 102 M�1, with standard noise. Curves are shaded from dark to light as the

concentration increases. (C) SAXS curves computed from the atomic coordinates of the simulated monomer, trimer, and hexamer (dark to light curves,

respectively) of PDB 1D5M. (D) SAXS curves from heterogeneous mixtures of the monomer, trimer, and hexamer with standard noise and using association

constants adjusted to give a maximum monomer fraction of 45% at the lowest concentration (Table 4). Curves are shaded from dark to light as concentration

increases.
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same set of searches for a low-resolution data set simulated to

a qmax¼ 0.05 and a moderate resolution data set with qmax¼
0.14. As expected, the moderate-resolution data set per-

formed better than the low-resolution one. The moderate-

resolution data set yielded the correct monomer-dimer-tet-

ramer association pathway with both scoring metrics (Table

3, bold values), whereas the low-resolution data gave more

equivocal outcomes, showing a significant disagreement

between the two metrics. Since accurate data with qmax ¼
0.14 are readily attainable with modern instruments and

moderately concentrated samples, these results do not present

any practical impediment to the application of our method.

The results with the moderate-resolution data are described in

more detail below.

Of all the models evaluated using the moderate-resolution

data, the x2 score of monomer-dimer-tetramer (the simulated

pathway) at K12 ¼ 8 3 103 M�1 and K23 ¼ 3 3 102 M�1

(compared with the simulated values of K12 ¼ 8.26 3 103

M�1 and K23 ¼ 2.83 3 102 M�1) was substantially better

than that for any grid point of any competing pathway for

each of the ten data sets with different random noise. Aver-

aged statistics are shown in Table 3. The second best scoring

association pathway was monomer-dimer-tetramer-octamer

with association constants of K12 ¼ 8.3 3 103 M�1, K23 ¼
3.1 3 102 M�1, and K34¼ 1.1 3 102 M�1, and with a x2 very

close to that of the top scoring model. Not unexpectedly, a

monomer-dimer-tetramer model can be approximated by a

monomer-dimer-tetramer-octamer model with a weak tetra-

mer-octamer association. Expanding the association model

to allow a fourth form, while not also explicitly restraining

the additional scattering curve, to reflect a larger octameric

TABLE 2 Distribution of oligomers in the

monomer-dimer-tetramer simulation and characteristics

of the simulated data

Fractional mass

Monomer Dimer Tetramer I(0) RG (A)

Pure solutions

Oligomer

Monomer 100 — — 9.9 3 106 19.8

Dimer — 100 — 1.9 3 107 24.3

Tetramer — — 100 3.9 3 107 27.2

Heterogeneous solutions

Concentration (mg/ml)

0.25 0.858 0.142 0.000 1.13 3 107 20.7

0.5 0.751 0.248 0.000 1.24 3 107 21.4

1.0 0.594 0.403 0.003 1.40 3 107 22.3

2.0 0.417 0.565 0.018 1.62 3 107 23.3

4.0 0.246 0.670 0.085 1.93 3 107 24.4

8.0 0.108 0.590 0.302 2.50 3 107 25.8

16.0 0.029 0.318 0.653 3.31 3 107 27.0

Fractional masses are calculated from the standard association equations for

K12 ¼ 8.26 3 103 M�1 and K23 ¼ 2.83 3 102 M�1. The I(0) and radius of

gyration (RG) values are computed by Guinier analysis from the noise-free

simulated data for each oligomer and from the standard noise simulations of

the heterogeneous solutions at the indicated concentrations.

FIGURE 4 SVD of the monomer-dimer-tet-

ramer simulation. The first five basis vectors of

the decomposition are shown (left column) along

with the associated amplitude vectors from VT

(right column) and the singular values from S

(insets). Due to the large range of coefficient

S values, the values of the amplitude vectors do

not accurately reflect their true relative contri-

bution. Thus, the amplitude vectors are scaled

solely to maximize visibility.
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oligomer allows additional freedom for fitting noise. The

exact K34 value may reflect mostly that freedom.

Plotting the results of the coarse-grid search for the mono-

mer-dimer-tetramer pathway reveals a small set of neigh-

boring grid points that score well in x2 (Fig. 5 A). The

smoothness of the coarse grid search suggests that the best

values lie near the integer grid point of K12 ¼ 8 3 103 M�1

and K23 ¼ 3 3 102 M�1. Boundaries for a finer grid were set

at K12 ¼ 5 3 103 to 2 3 104 M�1 and K23 ¼ 2 3 102 to 4 3

102 M�1 and searched with a spacing between adjacent grid

points of 1/100 of the distance between the coarse-grid points

(Fig. 5 B). The best solution from the finer grid is K12¼ 8.31 3

103 6 75 M�1 and K23 ¼ 2.83 3 102 6 4 M�1 at a x2 of

2.99 6 0.99 (mean 6 SD from 10 simulated data sets). These

values for the association constants are ,1 SD from the

simulated values. This finer search also shows smooth vari-

ation in x2, allowing the accurate evaluation of a confidence

interval (Fig. 6). Even finer grid searches are not required

because a small set of grid points around the minimum gives

nearly identical scores. The smoothness of the scoring metric

over both grid searches validates the successive grid search

approach.

The MSMRD score based on the difference between the

observed and expected forward scattering, I(0), values was

also calculated over the coarse- and fine-grid searches. The

best MSMRD score identified in the coarse-grid searches

(Fig. 7 A) is the monomer-dimer-tetramer pathway with K12¼
8 3 103 M�1 and K23 ¼ 3 3 102 M�1, the same model se-

lected as the best by x2. Evaluating the monomer-dimer-

tetramer pathway with finer grid spacing (Fig. 7 B) gave a best

solution of K12 ¼ 8.11 3 103 6 287 M�1 and K23 ¼ 2.95 3

102 6 4 M�1, in close agreement with the best score by x2.

The value of the two scoring functions was evaluated from

these simulations (and those that follow). Examining the

MSMRD score over the competing models (Table 3) reveals

that the x2 score and the MSMRD score agree only when they

both predict the correct model. The next best x2 scores (1-2-

4-8 and 1-2-6-12) have relatively poor MSMRD scores, and

the next best MSMRD scores (1-3 and 1-4) have poor x2

scores. At the same time, several simulations below will re-

veal situations that are less clear, where the x2 metric is

generally (but not always) more accurate than the MSMRD

when the two disagree. Thus, the MSMRD forms a valuable,

but supplementary, metric for determining the correct model.

TABLE 3 Summary of coarse-grid evaluation of different association models against the simulated monomer-dimer-tetramer data

at two resolution ranges

x2 MSMRD

Pathway K12 6 SD* K23 6 SDy K34 6 SDz Score 6 SD§ K12 6 SD K23 6 SD K34 6 SD Score 6 SD

Moderate resolution (qmax ¼ 0.14 Å�1), K12 ¼ 8.26 3 103, K23 ¼ 2.83 3 102

1-2 2000 6 0 — — 2300 6 4.2 3000 6 0 — — 4.1 6 0.8

1-3 4e6 6 0 — — 780 6 1.5 1.8e8 6 1.5e8 — — 0.0011 6 6.9e-4

1-4 1e10 6 0 — — 1900 6 2.7 9e13 6 0 — — 0.0032 6 0.0038

1-2-4 8000 6 0 300 6 0 — 3.3 6 0.8 8000 6 310 300 6 0 — 2.3e-4 6 2.3e-4
1-2-6 4000 6 0 9.4e5 6 5.2e4 — 10.4 6 1.4 5.7e5 6 3.1e5 2.2e4 6 2e4 — 0.3 6 0.044

1-3-6 9e7 6 8e6 9.4 6 4.2 — 26.4 6 1.8 7.3e9 6 1.4e9 7.7 6 0.9 — 0.038 6 0.0017

1-2-8 3000 6 0 4e9 6 0 — 18.5 6 0.6 6.7e5 6 1.2e5 4.3e6 6 1.6e6 — 1.6 6 0.055

1-4-8 7e11 6 0 40 6 0 — 90.3 6 1.8 6.9e14 6 1.2e14 0.6 6 0.2 — 0.031 6 0.0081

1-2-4-8 8300 6 670 310 6 57 110 6 67 3.5 6 2.3 6.0e4 6 0 290 6 57 20 6 0 0.21 6 0.039

1-2-6-12 4000 6 0 1.1e6 6 4.8e5 3,400 6 840 6.6 6 2.2 6.9e4 6 3200 9.9e4 6 3200 2000 6 0 1.6 6 0.16

Low resolution (qmax ¼ 0.05 Å�1), K12 ¼ 8.26 3 103, K23 ¼ 2.83 3 102

1-2 3e-4 6 0 — — 47 6 0.88 3000 6 0 — — 4.1 6 0.03

1-3 4e6 6 0 — — 1200 6 3.6 3.0e8 6 0 — — 6.6e-4 6 4.5e-4

1-4 1e10 6 0 — — 2900 6 5.6 8.1e13 — — 2.8e13

1-2-4 8,000 6 0 300 6 0 — 3.5 6 0.40 8000 6 0 300 6 0 — 1.5e-4 6 5.7e-5
1-2-6 4000 6 0 1e6 6 0 — 9.1 6 0.41 5.4e5 6 3.5e5 2.6e4 6 2.2e4 — 0.35 6 0.05

1-3-6 8e7 6 0 100 6 0 — 41 6 0.12 7.5e9 6 1.6e9 8 6 1.1 — 0.04 6 0.003

1-2-8 3,000 6 0 4e9 6 0 — 13 6 0.46 4000 6 0 9e6 6 0 — 0.56 6 0.01

1-4-8 7e11 6 0 40 6 0 — 160 6 0.60 9.4e14 6 7.3e14 0.92 6 0.76 — 0.02 6 0.002

1-2-4-8 7,900 6 930 1030 6 750 19 6 40 2.0 6 0.85 1.9e4 6 1.1e4 240 6 53 6.3 6 2.8 0.0068 6 0.004

1-2-6-12 6700 6 480 1.4e7 6 1.4e7 5200 6 2000 1.7 6 0.23 6100 6 2,800 6.0e11 6 1.3e12 1.7e4 6 3.3e4 0.035 6 0.022

Simulated data sets were constructed for the monomer-dimer-tetramer association with different maximum resolutions (qmax ¼ 0.14 Å�1 for moderate

resolution and qmax¼0.05 Å�1 for low resolution). A coarse grid of association constants for each tested pathway was evaluated by x2 and MSMRD scoring

for both resolution ranges. The expected best score when simulated association constants match the grid points exactly would be x2 ¼ 1 and MSMRD ¼ 0.

The pathway with the best scoring association constants for each simulation and scoring method is indicated in bold.

*Mean 6 SD of the best first-association constant K12 for that pathway over 10 simulated data sets.
yMean 6 SD of the best second-association constant K23 for that pathway over 10 simulated data sets.
zMean 6 SD of the best third-association constant K34 for that pathway over 10 simulated data sets.
§Mean 6 SD of the score of the best set of association constants over 10 simulated data sets.
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X-ray scattering curves for each oligomer were re-

constructed from one standard noise data set under the se-

lected monomer-dimer-tetramer association pathway with

the best x2 search values of K12¼ 8.31 3 103 M�1 and K23¼
2.83 3 102 M�1. These reconstructions differ from SAXS

curves computed from the atomic structure of each oligomer

by 0.26% for monomer, 0.23% for dimer, and 0.12% for

tetramer in MARD (Fig. 8 A).

To search for systematic errors in the reconstruction, re-

sidual values comparing the simulated scattering data (in

matrix A) and reconstructed scattering data (in matrix Â) were

examined (Fig. 9 A). Since the data spans a large range of

intensity values, residual values were normalized by ssim(q).

This plot of normalized differences reveals largely random

fluctuations. The normalized residuals do increase slightly at

higher concentrations and at higher scattering angle. The

reasons for this distribution of residuals are being explored. A

reconstruction using the exact simulated values of the asso-

ciation constants (K12 ¼ 8.26 3 103 M�1 and K23 ¼ 2.83 3

102 M�1) was also generated, and the same trends were ob-

served. Thus these trends are not due to any small errors in the

association constants, but they may be related to unsuitable

relative weightings within the SVD for the different scatter-

ing data points and/or the multiple data sets.

Monomer-trimer-hexamer association pathway:
further evaluating the search over association
pathways, evaluating the minimum required
amount of an oligomeric form

The detection of an oligomeric form by this method is clearly

limited by the fractional presence of that form in the con-

centrations used for data collection. To test our method on

another association pathway and to estimate the minimum

amount of one form that can be detected, simulated mono-

mer-trimer-hexamer association models (Table 4) were

generated with a range of 2–55% fractional mass of monomer

in the lowest protein concentration (that is, the one containing

the greatest fraction of monomer). X-ray scattering curves

were computed from atomic models of monomer, hypothet-

ical trimer, and hexamer forms constructed from the structure

of Annexin XII. These scattering curves were combined

under the various models, and standard noise was added (Fig.

3 C). Nine alternative association pathways were compared

with monomer-trimer-hexamer by coarse-grid searches for

each of 10 data sets with random noise. The mean and

standard deviation (SD) of the best grid point returned from

each search by x2 and MSMRD was determined (Table 5).

Only the 55% monomer was unambiguously successful,

with both scores indicating the monomer-trimer-hexamer

FIGURE 5 Association constants for the monomer-dimer-tetramer simu-

lation colored by quality of x2 score. The monomer-dimer-tetramer simu-

lation described in the text and Table 2 was analyzed using the same

association pathway and evaluated by the x2 agreement between recon-

structed and simulated data (Eq. 8). (A) Coarse-grid search with spacing at

integer values as described in Methods. Note that white space indicates a

nonphysical reconstruction (.10% negative scattering intensities, as dis-

cussed in Methods), and that the large volume of the total search space not

shown here also yielded nonphysical reconstructions. (B) Fine-grid search

over the range of best coarse-grid x2 values with spacing between adjacent

grid points set at 1/100 of the coarse-grid spacing.

FIGURE 6 Confidence interval for the association constants of the mono-

mer-dimer-tetramer simulation. The intervals for 75% (red), 90% (blue), and

95% (green) confidence calculated from the fine-grid search evaluated by x2

as described in Methods are indicated.
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model as the best and returning association constants at the

coarse-grid values adjacent to the true values. Here again,

the next best x2 scores have poor MSMRD scores and, the

next best MSMRD scores have poor x2 scores. Not surpris-

ingly, as the percentage of monomer decreases, it becomes

progressively harder to determine the correct association

model. Several of the most interesting comparisons are with

the association pathways most similar to the monomer-

trimer-hexamer pathway: monomer-trimer, trimer-hexamer

(equivalent to monomer-dimer with a ‘‘monomer’’ of three

times the sequence mass), monomer-dimer-hexamer, and

monomer-trimer-hexamer-dodecamer. For example, the x2

score continues to return the correct pathway with fairly

accurate association constants at 45% and 35% monomer,

whereas the MSMRD score supports the monomer-trimer

pathway. The x2 score continues to return the correct path-

way (although with increasingly inaccurate association con-

stants), even down to 2% monomer. This better performance

of the x2 score in detecting the correct pathway to 2% and the

correct pathway and constants to 35% forms one basis for our

assigning the x2 a primary role in our method and the

MSMRD a supplementary one. If this result can be gener-

alized, detection of small amounts of an oligomeric form can

be expected with the x2 metric, although greater amounts will

be required to accurately determine the association constants.

To further evaluate the quality of the reconstruction with

data containing limited amounts of monomer, one set of

FIGURE 7 Association constants in the monomer-dimer-tetramer grid

search colored by quality of MSMRD score. The monomer-dimer-tetramer

simulation described in the text and Table 2 was analyzed using the same

association pathway and evaluated by the MSMRD agreement between re-

constructed and expected forward scattering (Eq. 9). (A) Coarse-grid search

with spacing at integer values, as described in Methods. Note that white space

indicates a nonphysical reconstruction (.10% negative scattering intensities,

as discussed in Methods), and that the large volume of the total search space

not shown here also yielded nonphysical reconstructions. (B) Fine-grid search

over the range of best coarse-grid MSMRD values with spacing between

adjacent grid points set at 1/100 of the coarse-grid spacing.

FIGURE 8 Reconstructed scattering curves for each oligomer (symbols)

compared with scattering curves derived directly from the atomic structures

(solid lines). The best grid point returned from the fine-grid association model

search was used to reconstruct each oligomer scattering curve. (A) Monomer-

dimer-tetramer simulation reconstructed with K12 ¼ 8.31 3 103 M�1 and

K23 ¼ 2.83 3 102 M�1. The MARDs from the scattering curves calculated

from the atomic models are 0.26% for monomer (x), 0.23% for dimer (s), and

0.12% for tetramer (*). (B) Monomer-trimer-hexamer simulation (45% mon-

omer) reconstructed with K12¼ 8.11 3 109 M�2 and K23¼ 5.36 3 101 M�1.

The MARDs from the scattering curves calculated from the atomic models are

0.99% for monomer (x), 0.13% for trimer (s), and 0.05% for hexamer (*).
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simulated data with standard noise produced for the 45%

monomer simulation (Fig. 3 D) was analyzed further. This

data set was evaluated with a fine-grid search (not shown)

with dimensions of K12 ¼ 6 3 109 to 8.5 3 109 M�2 and

K23 ¼ 5 3 101 to 7 3 101 M�1 with spacing 1/100 of the

coarse grid. The best grid point returned by this search, K12¼
8.11 3 109 M�2 and K23 ¼ 5.36 3 101 M�1, compares well

with the values of K12 ¼ 8.23 3 109 M�2 and K23 ¼ 5.28 3

101 M�1 used for the simulation. Reconstructed oligomer

scattering curves using the best grid search association con-

stants differ from scattering curves computed from the atomic

structure of each oligomer by 0.99% for monomer, 0.13%

for trimer, and 0.05% for hexamer in MARD (Fig. 8 B).

Not surprisingly, unlike the previous simulation where the

forms were equally accurately reconstructed, the monomer is

here significantly less accurately reconstructed than the other

forms.

A normalized residual plot computed in the same manner

as for the monomer-dimer-tetramer simulation showed no

systematic deviations with scattering angle, but smaller than

expected values for the lowest concentration and values that

increase with concentration (Fig. 9 B). The reasons for this

nonrandom distribution of residuals are presumably related

to those in the first simulation.

The overall success of this reconstruction suggests an

ability to detect and reconstruct minor oligomeric forms and

to determine at least approximately correct association con-

stants in situations where the minor form is present in as

small as 45% fractional mass in the concentration most

highly populated for that form. At the same time, a complete

FIGURE 9 Normalized residuals comparing Â (scattering data recon-

structed using the top scoring association model) to A (simulated data). (A)

Normalized residuals for the monomer-dimer-tetramer simulation at protein

concentrations of 0.25, 2.0, and 16.0 mg/ml (darkest to lightest, respec-

tively). (B) Normalized residuals for the monomer-trimer-hexamer simula-

tion (45% monomer) at protein concentrations of 0.25, 2.0, and 16.0 mg/ml

(darkest to lightest, respectively).

TABLE 4 Distribution of oligomers in simulations of a

monomer-trimer-hexamer association with decreasing

fractional mass of the monomer

Fractional masses

Concentration (mg/ml) Monomer Trimer Hexamer

55% Monomer, K12 ¼ 5.53 3 109, K23 ¼ 52.8

0.25 0.552 0.448 0.000

0.5 0.211 0.788 0.002

1.0 0.058 0.926 0.016

2.0 0.014 0.866 0.121

4.0 0.002 0.466 0.532

8.0 0.000 0.099 0.901

16.0 0.000 0.014 0.987

45% Monomer, K12 ¼ 8.23 3 109, K23 ¼ 52.8

0.25 0.453 0.547 0.000

0.5 0.152 0.845 0.003

1.0 0.040 0.936 0.024

2.0 0.009 0.821 0.170

4.0 0.001 0.370 0.629

8.0 0.000 0.069 0.931

16.0 0.000 0.009 0.991

35% Monomer, K12 ¼ 1.25 3 1010, K23 ¼ 52.8

0.25 0.352 0.647 0.000

0.5 0.106 0.890 0.004

1.0 0.026 0.937 0.037

2.0 0.005 0.757 0.238

4.0 0.000 0.279 0.720

8.0 0.000 0.046 0.954

16.0 0.000 0.006 0.994

10% Monomer, K12 ¼ 5.88 3 1010, K23 ¼ 52.8

0.25 0.103 0.895 0.002

0.5 0.024 0.956 0.020

1.0 0.005 0.840 0.155

2.0 0.001 0.403 0.596

4.0 0.000 0.076 0.924

8.0 0.000 0.010 0.990

16.0 0.000 0.001 0.999

2% Monomer, K12 ¼ 2.94 3 1011, K23 ¼ 52.8

0.25 0.022 0.967 0.010

0.5 0.005 0.901 0.094

1.0 0.001 0.519 0.480

2.0 0.000 0.119 0.881

4.0 0.000 0.016 0.984

8.0 0.000 0.002 0.998

16.0 0.000 0.000 1.000

Fractional masses are calculated from the standard association equations

using successively stronger values of K12 to decrease the fraction of mono-

mer present at the lowest protein concentration.
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TABLE 5 Best coarse-grid points returned for simulations of a monomer-trimer-hexamer association with decreasing fractional

mass of the monomer

x2 MSMRD

Pathway K12 6 SD* K23 6 SDy K34 6 SDz Score 6 SD§ K12 6 SD* K23 6 SDy K34 6 SDz Score 6 SD§

55% Monomer, K12 ¼ 5.53 3 109, K23 ¼ 52.8

1-2 (3-6) 6,000 6 0 — — 1,800 6 4.3 3,000 6 0 — — 4.0 6 0.060

1-3 4.0e7 6 0 — — 610 6 4.2 2.0e8 6 0 — — 0.0055 6 0.0011

1-2-4 2,100 6 320 1.9e4 6 3,200 — 280 6 26 5.6e4 6 5,500 1,000 6 0 — 0.014 6 9.2e-4

1-2-6 6.0e4 6 0 3e5 6 0 — 170 6 1.6 7.2e4 6 4,500 2.0e6 6 0 — 0.79 6 0.031

1-3-6 6.0e9 6 0 50 6 0 — 4.4 6 1.7 5.2e9 6 2.5e9 51 6 27 — 0.0030 6 0.0025
1-2-8 3,000 6 0 2.9e10 6 5.8e9 — 340 6 13 1.4e5 6 8.9e4 3.8e9 6 1.8e9 — 2.1 6 0.11

1-4-8 1.0e14 6 0 20 6 0 — 200 6 2.3 6.0e14 6 3.7e14 3.4 6 3.7 — 0.0036 6 0.0023

1-2-4-8 9.1e4 6 1.7e4 2,900 6 1,700 97 6 4.8 27 6 5.2 8.0e4 6 0 3,200 6 420 20 6 0 0.16 6 7.7e-3

1-2-6-12 9.0e4 6 0 8.8e4 6 6,300 6,400 6 1,100 21 6 8.4 8.7e4 6 8,200 5.2e8 6 3.4e8 2.5e4 6 5,300 1.9 6 0.20

1-3-6-12 3.4e9 6 5.5e8 72 6 22 52 6 4.5 14 6 7.1 8.0e9 6 0 100 6 0 20 6 0 0.52 6 0.10

45% Monomer, K12 ¼ 8.23 3 109, K23 ¼ 52.8

1-2 (3-6) 7,000 6 0 — — 1,900 6 4.0 3,000 6 0 — — 2.9 6 0.058

1-3 5.0e7 6 0 — — 450 6 2.07 3.0e8 6 0 — — 0.0024 6 3.8e-4
1-2-4 2,000 6 0 3.0e4 6 0 — 170 6 17 6.2e4 6 4,500 880 6 45 — 0.0043 6 8.3e-4

1-2-6 6.2e4 6 6,300 4.8e5 6 6.3e4 — 110.0 6 1.1 3.2e5 6 8.4e4 4.8e5 6 8.3e4 — 0.31 6 0.047

1-3-6 7.2e9 6 1.5e9 626 0 — 5.3 6 1.5 8.4e9 6 5.5e8 54 6 5.5 — 0.0055 6 0.0034

1-2-8 3.0e4 6 0 3.0e9 6 0 — 400 6 5.0 2.8e5 6 8.4e4 5.6e9 6 3.2e9 — 1.9 6 0.27

1-4-8 6.0e13 6 0 50 6 0 — 140 6 1.6 7.0e14 6 2.2e14 1.6 6 0.88 — 0.031 6 0.0082

1-2-4-8 1.0e5 6 0 3,000 6 0 100 6 0 39 6 8.1 1.0e5 6 0 7,500 6 530 30 6 0 0.40 6 0.01

1-2-6-12 9.2e4 6 1.7e4 1.4e5 6 8.4e4 6,200 6 420 27 6 12 2.0e5 6 0 8.2e7 6 3.8e7 1.8e4 6 4,600 2.1 6 0.49

1-3-6-12 3.0e9 6 0 90 6 22 42 6 18 21 6 13 1.0e10 6 0 980 6 45 30 6 0 1.9 6 0.16

35% Monomer, K12 ¼ 1.25 3 1010, K23 ¼ 52.8

1-2 (3-6) 9,000 6 0 — — 2,000 6 4.5 3,000 6 0 — — 2.0 6 0.016

1-3 6.0e7 6 0 — — 340 6 1.9 4.0e8 6 0 — — 7.5e-5 6 7.1e-5
1-2-4 2,000 6 0 6.3e4 6 4,800 — 97 6 11 7.6e4 6 5,500 740 6 55 — 0.0043 6 0.0017

1-2-6 2.7e4 6 1.3e4 5.2e6 6 2.4e6 — 83 6 5.5 4.0e5 6 1.7e5 2.4e5 6 8.9e4 — 0.37 6 0.020

1-3-6 8.2e9 6 6.3e8 79 6 3.2 — 7.9 6 6.6 8.6e9 6 5.5e8 40 6 0 — 0.019 6 0.0053

1-2-8 7,400 6 970 2.9e11 6 1.4e11 — 230 6 6.6 3.0e5 6 2.2e5 4.6e8 6 8.9e7 — 2.0 6 0.11

1-4-8 1.0e13 6 0 400 6 0 — 110 6 7.1 1.3e15 6 9.3e14 4.8 6 4.4 — 0.012 6 0.014

1-2-4-8 8.9e4 6 1.1e4 2,600 6 530 200 6 0 52 6 9.4 3.0e5 6 0 2,000 6 0 20 6 0 0.19 6 0.10

1-2-6-12 5.7e4 6 9,500 6.6e5 6 2.0e5 8,600 6 520 35 6 10 2.6e5 6 5.2e4 4.2e6 6 1.0e6 1.0e4 6 0 3.2 6 0.46

1-3-6-12 2.0e9 6 0 280 6 45 66 6 15 29 6 8.0 2.0e10 6 0 100 6 0 20 6 0 1.2 6 0.73

10% Monomer, K12 ¼ 5.88 3 1010, K23 ¼ 52.8

1-2 (3-6) 2.0e4 6 0 — — 1,900 6 6.0 3,000 6 0 — — 0.53 6 0.0032

1-3 2.0e8 6 0 — — 480 6 4.7 9.0e8 6 0 — — 8.2e-4 6 3.6e-4
1-2-4 1,400 6 600 1.3e6 6 9.9e5 — 11 6 1.0 4.0e5 6 3.0e5 560 6 400 — 0.028 6 0.021

1-2-6 1.9e5 6 3.8e4 9.4e5 6 1.1e6 — 100 6 0.8 7.2e5 6 7.9e5 5.0e5 6 4.1e5 — 0.62 6 0.18

1-3-6 3e9 6 0 1,000 6 0 — 2.1 6 0.5 5.0e10 6 2.4e10 6.0 6 12 — 0.025 6 0.029

1-2-8 5,300 6 480 4.4e11 6 9.7e10 — 240 6 1.0 9.8e5 6 6.1e5 1.9e8 6 1.9e8 — 2.0 6 0.18

1-4-8 2.9e12 6 3.2e11 1,900 6 320 — 15 6 1.8 4.0e15 6 3.4e15 9.0 6 1.4 — 0.12 6 0.091

1-2-4-8 1,900 6 410 8.6e5 6 1.5e6 200 6 630 13 6 5.6 8.4e5 6 1.3e5 1,900 6 1,200 65 6 15 0.71 6 0.07

1-2-6-12 6,500 6 1,100 8.7e8 6 2.3e8 9.3e5 6 8,200 8.5 6 5.0 4.7e5 6 3.5e5 6.3e5 6 4.1e5 1.9e5 6 8,800 6.9 6 5.2

1-3-6-12 2.1e8 6 1.4e8 2.2e4 6 1.7e4 230 6 270 10 6 4.4 8.2e10 6 1.1e10 580 6 360 46 6 8.9 1.6 6 0.079

2% Monomer, K12 ¼ 2.94 3 1011, K23 ¼ 52.8

1-2 (3-6) 5.0e4 6 0 — — 1,300 6 3.4 3,000 6 0 — — 0.048 6 9.7e-4

1-3 5.0e8 6 0 — — 180 6 0.72 1.0e9 6 0 — — 0.050 6 0.0023

1-2-4 810 6 240 1.7e7 6 1.5e7 — 2.3 6 0.32 2.6e5 6 1.3e5 1,800 6 490 — 0.018 6 0.014
1-2-6 2.0e4 6 0 2.0e8 6 0 — 64 6 0.48 6.8e5 6 4.5e4 7.4e5 6 8.9e4 — 0.65 6 0.058

1-3-6 4.8e9 6 6.3e8 3,200 6 630 — 1.7 6 0.15 2.6e10 6 8.9e9 300 6 0 — 0.22 6 0.098

1-2-8 1.0e4 6 0 6.4e12 6 5.2e11 — 84 6 3.7 5.0e5 6 1.9e5 3.6e9 6 2.9e9 — 2.5 6 0.19

1-4-8 8.0e12 6 0 12 6 20 — 3.4 6 1.2 4.4e15 6 1.7e15 68 6 4.5 — 0.11 6 0.049

1-2-4-8 4.3e5 6 2.7e5 1.1e5 6 3.1e5 110 6 120 2.6 6 0.63 6.6e5 6 1.5e5 6,400 6 8,600 400 6 300 1.3 6 0.12

1-2-6-12 1.9e5 6 1.9e5 4.5e9 6 1.3e10 9.0e4 6 1.2e5 3.9 6 1.0 5.2e5 6 1.6e5 2.7e6 6 1.8e6 3.2e4 6 6,300 6.2 6 0.64

1-3-6-12 4.0e8 6 0 3.9 6 4.4 5.5e9 6 3.5e9 100 6 64 5.5e8 6 2.1e8 3.4 6 3.7 4.5e9 6 2.1e9 32 6 0.88

The pathway with the best scoring association constants for each simulation by x2 or MSMRD is indicated in bold.

*Mean 6 SD of the best first association constant K12 for that pathway over 10 simulated data sets.
yMean 6 SD of the best second association constant K23 for that pathway over 10 simulated data sets.
zMean 6 SD of the best third association constant K34 for that pathway over 10 simulated data sets.
§Mean 6 SD of the score of the best set of association constants over 10 simulated data sets.
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determination of the association model (both pathway and

constants) requires the presence of a substantial fraction of

each form in at least one sample concentration. Possible

experimental strategies for ensuring this requirement by ad-

justing the experimental conditions are discussed below.

Monomer-tetramer-octamer association
pathway: evaluating required data sets and
random and systematic noise

Our second simulation provided strong evidence that, not

surprisingly, the determination of the association pathway

and constants is a significantly more difficult task than the

determination of the correct association pathway alone. Al-

though 45% fractional mass is required to determine the as-

sociation constants reasonably accurately (to within one

coarse-grid unit) (Table 5), the correct association pathway is

found down to 2% fractional mass. This finding allowed us

to conduct more extensive simulation studies of additional

factors in less computation time by measuring success or

failure against the more stringent standard of finding accurate

association constants.

We desired to evaluate the effects of different levels of

random and systematic noise arising from simulated counting

error and the presence of a simulated protein aggregate, re-

spectively. We also wanted to evaluate the requirement for

number of data sets at different concentrations and to test the

application of another association pathway to our method.

We thus constructed a monomer-tetramer-octamer simula-

tion using the purE protein. Simulated scattering data was

calculated as before, and random or systematic noise was

added at several levels, as described in Methods.

We found that random noise at any of these levels does

not significantly impair the method’s ability to determine the

correct association constant through coarse- and fine-grid

searches using either the x2 or MSMRD scores (Table 6). The

best association constants do not change as a function of noise.

Surprisingly, the x2 values do increase with additional random

noise, whereas the MSMRD values do not. These effects are

unexpected, since x2 is normalized by the noise level, whereas

MSMRD is not. The insensitivity of the MSMRD perhaps

arises from the fact that the MSMRD score depends on the

least noisy, lowest-resolution data. In any case, our method

seems to be quite robust to additional random noise.

For the test of systematic noise, we constructed a simulated

aggregate of this protein by building a model with six oc-

tamers packed together as in the crystal structure. Adding

such an ordered form will not truly replicate the effect on

scattering seen with randomly aggregated protein, but it does

represent a large molecule contaminant of the same tertiary

structure as the desired protein. Such contaminants could be

both more difficult to remove experimentally and harder to

extract from the data computationally (although see Discus-

sion for potentially useful experimental and computational

techniques). Simulations adding this contaminant at varying

levels thus begin to test the response of our method to sys-

tematic errors similar to those most likely to occur. Additions

of even 0.5% of this contaminant do affect the results (Table

6). The x2 scores increase greatly, although the effects on the

determination of the best association constants by x2 are quite

small. The MSMRD scores become quite variable and their

best association constants are altered by 100-fold. Larger

amounts of simulated aggregate have a correspondingly

greater negative effect. Clearly our method is somewhat

sensitive to the effects of such contaminants, but can still

yield useful information with low contaminant levels. How

large an impediment this actually is in practice will need to be

evaluated in the future.

We also employed this system (with 13 standard random

noise) to evaluate the relationship between the number of

data sets at different protein concentrations (effectively the

data/parameter ratio) and the quality of the analysis. Using

the same range of protein concentrations for each test (0.25–

16 mg/ml), we prepared data sets containing the seven con-

centrations employed thus far, which are twofold dilutions

from 16 mg/ml to 0.25 mg/ml and form an equally spaced

geometric series. We compared these data sets with smaller

data sets of either five concentrations equally spaced in a

geometric series or the theoretical minimum of three con-

centrations (also equally spaced) needed to determine basis

vectors for three oligomeric forms (Table 6). The change

from seven to five concentrations had little effect on the

outcome. Reducing the number of concentrations to three led

to numerical instabilities in matrix inversion. Although the

MSMRD score does fairly well under this instability, the x2

returns meaningless results. We thus suggest that our method

should always be employed with more data curves than olig-

omeric states. Although three oligomeric forms can be effec-

tively reconstructed with as few as five scattering curves, as

a practical matter we would recommend that experimenters

collect as many scattering curves at different concentrations

as practical, both to improve the data/parameter ratio and to

cover the range of concentrations over which the various forms

will be represented in significant amounts.

DISCUSSION

Current techniques for evaluating protein interactions gener-

ally provide either high-resolution, but static, structures of

protein complexes (most easily those with large binding af-

finities), or a description of the stoichiometries and/or strength

of the interactions. It has not previously been possible to

obtain both association models and substantial structural in-

formation from a single biophysical experiment. Analysis of

a concentration series of SAXS data as detailed in this article

provides a biophysical tool capable of simultaneously eluci-

dating equilibrium parameters from weakly associating sys-

tems, and allowing low-resolution reconstructions of each

oligomer. Such a method is ideal for studying homo- and

heterointeractions in weakly associating systems, without size

restrictions or the need for crystallization.
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Two scoring metrics have been developed for use with our

method. We find that the most reliable results are achieved

when x2 and MSMRD agree with each other. Some previous

studies (19,20) have attempted to deduce association models

solely from the extrapolated I(0) values. We propose that our

decomposition method and employing both metrics may help

avoid potential errors. When suboptimal conditions (low

resolution, a low fraction of an oligomeric form, or system-

atic noise) occur, we have seen that the two metrics may not

agree, with the x2 generally proving the better guide. We note

that the MSMRD metric may be further developed through

accurate experimental calibration of the forward scattering

against standards of known concentration and molecular

mass and then restraining the I(0) expected for the lowest-

molecular-weight form to the sequence mass (for monomer)

or a small multiple of it (for other oligomers).

Though we explore concentration-dependent association

in this article, this technique can be applied to study associ-

ation under the control of other experimental variables. So-

lution conditions such as temperature or the concentration of

ions can also be varied in the SAS data set both to understand

the physiological significance of these changes and to allow

the extraction of the related thermodynamic parameters, in-

cluding DH, DS, and SKobs (34). Experimental conditions

could also be varied to create an environment that either fa-

vors or disfavors association (e.g., addition of the same

concentration of chaotropic or cosmotropic/crowding re-

agents to all samples). Varying these conditions potentially

allows the collection of the most effective data for decom-

position (e.g., .45% of each form in at least one data set, see

Table 5) at the protein concentrations that are suitable for

solution scattering.

TABLE 6 Best coarse- and fine-grid points returned for simulations of a monomer-tetramer-octamer association

x2 MSMRD

Pathway K12 6 SD* K23 6 SDy Score 6 SDz K12 6 SD K23 6 SD Score 6 SD

7 concentrations, 1 3 Standard Noise, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 4.0e12 6 0 10 6 0 76 6 0.57 2.0e12 6 0 8.0 6 0 0.0091 6 3.0e-4

1-4-8 (fine§) 2.9e12 6 0 13 6 0 1.2 6 0.17 2.7e12 6 2.9e10 14 6 0.41 1.4e-6 6 1.2e-6

7 concentrations, 2 3 Standard Noise, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 4.0e12 6 0 10 6 0 30 6 11 2.0e12 6 0 8.0 6 0 0.0095 6 8.3e-4

1-4-8 (fine§) 2.9e12 6 1.0e10 13 6 0.032 3.1 6 1.5 2.8e12 6 3.4e10 14 6 0.67 1.1e-6 6 1.0e-6

7 concentrations, 4 3 Standard Noise, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 4.0e12 6 0 10 6 0 14 6 4.4 2.0e12 6 0 7.8 6 0.45 0.010 6 8.8e-4

1-4-8 (fine§) 2.8e12 6 2.7e10 13 6 0.15 6.1 6 2.9 2.7e12 6 1.0e11 14 6 0.62 5.3e-7 6 6.3e-7

7 concentrations, 1 3 Standard Noise, 0.5% Aggregate, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 3.0e12 6 0 10 6 0 170 6 1.1 9.0e10 6 0 10 6 0 0.0029 6 4.0e-4

1-4-8 (fine§) 2.5e12 6 4.5e9 11 6 0.017 140 6 0.77 5.5e10 6 1.1e9 11 6 0.71 9.2e-4 6 1.1e-4

7 concentrations, 1 3 Standard Noise, 1% Aggregate, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 2.0e12 6 0 10 6 0 390 6 0.73 7.0e10 6 0 50 6 0 0.0020 6 7.8e-4

1-4-8 (fine§) 2.2e12 6 0 11 6 0.0084 330 6 0.82 7.2e10 6 6.6e8 48 6 0.77 1.1e-7 6 1.3e-7

7 concentrations, 1 3 Standard Noise, 2% Aggregate, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 2.0e12 6 0 8.0 6 0 980 6 2.9 6.0e9 6 0 2,000 6 0 0.039 6 0.0021

1-4-8 (fine§) 1.5e12 6 1.5e9 9.9 6 0.015 890 6 2.6 1.0e10 6 1.1e8 970 6 11 1.1e-5 6 8.1e-6

5 concentrations, 1 3 Standard Noise, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) 4.0e12 6 0 10 6 0 160 6 0.75 5.0e12 6 0 40 6 0 0.011 6 7.3e-4

1-4-8 (fine§) 2.9e12 6 0 13 6 0 1.1 6 0.16 2.7e12 6 3.0e10 14 6 0.18 1.6e-6 6 1.3e-6

3 concentrations, 1 3 Standard Noise, K12 ¼ 2.87 3 1012, K23 ¼ 12.9

1-4-8 (coarse) NA{ NA{ NA{ 2.0e12 6 0 7.4 6 0.89 7.0e-4 6 4.0e-4

1-4-8 (fine§) NA{ NA{ NA{ 2.66e12 6 6.57e10 20.16 6 2.98 3.62e-8 6 2.53e-8

The effects of increased noise, decreasing amount of data, and contamination by a large simulated aggregate of the protein were examined by varying the

simulation conditions.

*Mean 6 SD of the best first-association constant K12 for that pathway over five simulated data sets.
yMean 6 SD of the best second-association constant K23 for that pathway over five simulated data sets.
zMean 6 SD of the score of the best pair of association constants over five simulated data sets.
§A fine grid was searched starting from the results of the coarse-grid search with a spacing between adjacent points 1/100 of the spacing of the coarse grid. In

some cases, the range of the fine-grid search had to be extended beyond one coarse-grid point on either side of the best coarse-grid values to find the best fine-

grid solution.
{Since three basis vectors are required for the three-state model, data curves at three concentrations are the theoretical minimum that can be employed, and are

subject to increased numerical instability compared to the other situations, which are overdetermined. In this simulation, matrix inversion warnings were

received, and unreasonable results were returned with the x2 metric, even though the MSMRD metric returned somewhat more reasonable results.
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Our method is currently described for homoassociations, but

the extension to heteroassociations is direct (H. Chandola, T. E.

Williamson, B. A. Craig, C. Bailey-Kellogg, and A. M. Friedman,

unpublished). When used to study heteroassociations we

expect even more robust performance, since the ability to con-

trol the amounts of the two components will provide a greater

range of heterogeneous mixtures, and thus scattering curves,

for decomposition. Furthermore, scattering from homoge-

nous solutions of one or more of the individual components

will generally also be available to aid the analysis.

To determine the association constants we have employed

successively finer grid searches. We have chosen this method

over direct determination of the constants or iterative re-

finement from initial values for ease of implementation and

for the ability to directly evaluate and compare the quality of

all feasible models. We demonstrate that successive grid

searches are effective here where there are a limited number

of variables and smooth surfaces for the scoring functions. A

suitable future alternative is the use of iterative optimization,

either directed (e.g., nonlinear least squares minimization) or

stochastic (e.g., Monte Carlo), starting from the best values

from an initial grid search. Such methods might become

particularly suitable with the use of more complex models

that require estimation of additional variables (e.g., an ag-

gregated fraction).

Some methods for investigating self-associating systems

either require or are aided by association/dissociation kinetics

that are rapid (e.g., sedimentation velocity) or slow (e.g.,

separation of oligomers by size exclusion) over the time

course of the experiment. Since the samples for scattering can

be prepared at their final concentrations and allowed to reach

equilibrium before data collection, the present method can

be conducted on associations with any kinetics. In fact, our

method also opens the possibility of collecting a time series

of scattering data after rapid dilution of the sample, which

could be decomposed and analyzed using equations that link

fractional mass to time and the kinetic constants for disso-

ciation. When combined with equilibrium measurements,

this method could be used to determine the kinetic constants

for both association and dissociation. This method would

also help reveal the presence and structures of any kinetic

intermediates, similar to the rapid scattering studies done to

monitor protein refolding (35).

In the test cases shown here, we demonstrate that the scat-

tering curves for individual oligomers can be reconstructed to

an accuracy ranging from 0.05 to 0.99% in MARD. Prelimi-

nary studies (not described) show that errors at these levels

have only small visible effects on estimation of the P(r) curve

and three-dimensional reconstruction. The exact propagation

of errors into the individual oligomer scattering curve, and

then into the P(r) curve and three-dimensional reconstruction

are matters for future investigation.

The proposed method has several potential limitations.

However, the limitations are for the most part being allevi-

ated with recent technology. The first limitation is the

availability of samples that are suitable for scattering analy-

sis. Aggregation, solubility, and sensitivity to radiation

damage have traditionally limited the use of scattering for

some proteins. We demonstrate that the presence of larger

contaminants degrades our results, although aggregation can

be alleviated by good sample preparation, filtration, or the use

of size-exclusion chromatography in line with data collection

(36). Size exclusion chromatography might be particularly

useful with our method for any proteins that are in rapid

equilibrium during and after the chromatography, although

precise concentrations in the sample cell may then prove

harder to control and monitor. Proteins of lower solubility

can be investigated with stronger x-ray sources (30) and more

sensitive detectors (31), and radiation damage can be limited

by free radical scavengers and flowing sample past the beam

during exposure (37). Access to facilities is another limitation

that is improving and can be expected to improve further with

the development of new x-ray and neutron sources. Finally,

the amounts of purified protein required for a complete

analysis are also being reduced by stronger sources, more

sensitive detectors, and by sample cells better designed to

exploit small beam sizes (30).

One system-specific feature limiting application of our

method includes the sometimes small differences in scatter-

ing between different oligomers. The change in mass frac-

tions must be large enough and each oligomer along an

association pathway must be different enough in size and/or

shape to yield scattering data curves with intensity differ-

ences significantly greater than the noise. This limitation was

manifest when we attempted to apply the decomposition

analysis to data simulated from actin, which undergoes open

association to form successive larger linear oligomers. How-

ever, the small differences in scattering between successive

actin oligomers (and thus across the concentration data se-

ries) resulted in accurate reconstruction only in the presence

of exceedingly small amounts of noise. Such difficult self-

associating systems not yet amenable to our method may

yield to the formulation of additional restraints in the analy-

sis. One intriguing additional restraint is enforcing the sym-

metry in real space that corresponds to the trial association

model, perhaps by searching for the correct placement of

symmetry axes around a fixed monomer (11). Such additional

restraints may also aid those situations where low amounts of

an oligomeric form (Table 5) or the presence of systematic

noise (Table 6) weakens the ability to conduct the most ac-

curate analysis.

Alleviating another system-specific problem, the presence

of scattering components that do not participate in the asso-

ciation reactions (e.g., nonspecific aggregates and proteins

denatured or damaged at the interaction surface), will require

a more dynamic solution. Unlike sedimentation experiments,

where the nonparticipating protein sediments differently from

the participating protein, nonparticipating protein scatters just

like the corresponding form of participating protein. Thus,

adding a nonparticipating fraction parameter is not useful in
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our method; it serves only to change the protein available for

association within the model, leading to a correction in the

association constants, but not improving the agreement with

the data. Therefore, it is impossible to actually fit the non-

participating fraction from the data. As an alternative,

changing conditions in the kinetic scattering experiment de-

scribed above would lead to a change in protein association

that would be different with different nonparticipating frac-

tions. In this way the nonparticipating fraction and its form

(monomer or oligomer) might be quantified.

Notwithstanding these limitations and areas for future

development, the simulations described here demonstrate the

feasibility of decomposing scattering data from heteroge-

neous self-associating systems to obtain accurate association

constants and scattering curves for individual forms. Even

though the ‘‘standard noise’’ data used here was simulated to

accurately reflect the noise levels found in real data, further

degradation of the signals by additional random or systematic

noise still allows the extraction of useful information (Table

6), suggesting the potential for robust performance in prac-

tice. Work is proceeding on the evaluation of scattering data

collected from suitable protein systems.
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