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ABSTRACT The method of FRAP (fluorescence recovery after photobleaching), which has been broadly used to measure
lateral mobility of fluorescent-labeled molecules in cell membranes, is formulated here in terms of continuous time random walks
(CTRWs), which offer both analytical expressions and a scheme for numerical simulations. We propose an approach based on the
CTRW and the corresponding fractional diffusion equation (FDE) to analyze FRAP results in the presence of anomalous
subdiffusion. The FDE generalizes the simple diffusive picture, which has been applied to FRAP when assuming regular diffusion,
to account for subdiffusion. We use a subordination relationship between the solutions of the fractional and normal diffusion
equations to fit FRAP recovery curves obtained from CTRW simulations, and compare the fits to the commonly used approach
based on the simple diffusion equation with a time dependent diffusion coefficient (TDDC). The CTRW and TDDC describe two
different dynamical schemes, and although the CTRW formalism appears to be more complicated, it provides a physical
description that underlies anomalous lateral diffusion.

INTRODUCTION

Protein mobility in cell membranes has been of great interest

due to the essential role it plays in various biological func-

tions on the cell level (1–4). This mobility has been measured

by various techniques (5–8), one of which is the widely used

fluorescence recovery after photobleaching (FRAP) (9),

which measures the recovery of fluorescence at a certain spot

on a membrane after photobleaching. The fluorescence re-

covery originates from fluorescently tagged proteins that

move randomly in the membrane and cause the recovery of

the fluorescence by replacing the bleached proteins. Several

experimental approaches (in particular single particle track-

ing (SPT)), have shown that proteins in membranes might

display non-Brownian motion (10–15) characterized by

mean-squared displacements (MSDs) that do not grow line-

arly with time contrary to what is obtained for normal dif-

fusion (16,17). In some cases, the MSDs follow the scaling

Ær2ðtÞæ ; ta (a 6¼ 1), meaning that conventional models such

as the fluid mosaic model of Singer and Nicolson (18) do not

provide a complete picture of protein movements in cell

membranes. Observations made by SPT have demonstrated

four different types of movement of proteins in cell mem-

branes (19): Brownian motion (a ¼ 1), anomalous sub-

diffusion (0 , a , 1), anomalous superdiffusion (1 , a), and

spatial localization (immobile proteins; a ¼ 0). Although

Brownian motion has a firm theoretical basis, the origins of

the reported non-Brownian motions are not always clear and

are still open to speculation. For instance, Ritchie et al. (10)

claim that membranes might be divided into corrals by the

cytoskeleton, and therefore the movements of proteins are

assumed to occur by hopping from one corral to another.

The existence of anomalous diffusion raises the need for a

theoretical framework that allows one to analyze recovery

curves obtained using FRAP by taking into consideration the

fact that proteins do not move by Brownian motion. Here we

focus on subdiffusion (0 , a , 1) and use continuous time

random walks (CTRWs) (20,21) to simulate the diffusional

anomaly (22,23). The simulation results can then be fitted by

a modified diffusion equation (24) that extends the diffusive

picture to include subdiffusion (23,25). The article is orga-

nized as follows: the next section describes some aspects of

anomalous diffusion and its characteristics. The third section

introduces the fractional diffusion equation (FDE) and the

time-dependent diffusion coefficient (TDDC), also referred

to as fractional Brownian motion (FBM). The fourth section

deals with how to handle FRAP recovery curves when

anomalous diffusion occurs. In the fifth section, we describe

the methods used to simulate and calculate FRAP curves. We

then present results and compare the CTRW and TDDC

approaches, and end with our conclusions.

ANOMALOUS DIFFUSION

A characteristic that distinguishes anomalous from regular

diffusion is the time dependence of the MSD of a particle’s

trajectories. For normal diffusion, the MSD increases linearly

with time:

Ær2æ ¼ 2dKt; (1)

where d is the spatial dimension and K is the diffusion coef-

ficient [length2=time]. In the anomalous subdiffusion case, the

MSD does not grow linearly with time, but rather follows (23)

Ær2ðtÞæ ¼ 2dKa

Gð1 1 aÞ t
a
; 0 , a , 1; (2)
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where Ka is the anomalous diffusion coefficient of units

[length2=timea] and a is the anomaly exponent. G(x) is the

gamma function (26).

We assume that the CTRW describes the ‘‘microscopic

dynamics’’ that underlies the observed anomalous diffusion

in membranes. In systems modeled by CTRW, particles usu-

ally move randomly according to two independent probability

density functions (pdfs): a pdf for choosing jump lengths and

another pdf for choosing waiting times between jumps (27). In

general, however, the jump lengths and waiting times can be

coupled (28,29). Fig. 1 presents schematically a decoupled

random walker on a two-dimensional grid. Here the jump

lengths are fixed and the waiting time may vary from site to

site and from visit to visit at a particular site.

If the jump lengths’ pdf and waiting times’ pdf have finite

second and first moments, respectively (variance and mean,

respectively), the motion of the particles will always yield

normal diffusion (23). This means that under these con-

ditions, we encounter a behavior that can be described using

Fick’s diffusion equation. This normal behavior can be

modified by choosing a waiting time pdf, CðtÞ; that does not

possess a mean waiting time (23). Namely, there is no

timescale in the problem and the particle is spatially trapped

for extended periods of time. As an example, such a waiting

time can be obtained in a closed form using the Mittag-Leffler

function (30):

Eað�ðntÞaÞ ¼ +
N

n¼0

½�ðvtÞa�n

Gðna 1 1Þ; 0 , a , 1: (3a)

The Mittag-Leffler function is a generalization of the expo-

nential function and reduces to it for a ¼ 1: For 0 , a , 1;
the short time behavior of the function is

Eað�ðntÞaÞ} 1� ðntÞa

Gða 1 1Þ; nt� 1; (3b)

and the long time has the asymptotic power law behavior

Eað�ðntÞaÞ} 1

Gða 1 1ÞðntÞa; nt � 1: (3c)

When taking the time derivative of the Mittag-Leffler

function,

CðtÞ ¼ � d

dt
Eað�ðntÞaÞ; (4)

we obtain a waiting time pdf whose asymptotic behavior is

fat tailed that follows an inverse power law at large times,

t� 1=n:

CðtÞ} 1=ðnat11aÞ; 0 , a , 1: (5)

Equation 5 displays a broad pdf with a slowly decaying tail

that has a nonnegligible probability of very long waiting

times. Such a fat-tailed pdf is characterized by a diverging

mean, Ætæ ¼
RN

0
t9Cðt9Þdt9 ¼N: For a¼1, Eq. 4 reads CðtÞ ¼

ne�nt; for which Ætæ ¼ 1=n:
Equation 5 describes a situation in which there is a non-

negligible probability that a particle gets stuck in space for

very long times (21). Particles that move randomly according

to CTRW with a waiting time pdf as in Eq. 5 display an

overall motion that is subdiffusive. Although Eq. 4 provides

a closed form expression for fat-tailed waiting times, pdfs

of waiting times can stem from different origins that lead

to subdiffusion in a variety of systems. Examples include

dispersive transport in amorphous semiconductors (27),

dispersion of contaminates in underground water (31), and

subdiffusion due to crowding in living cells (32). A model

that might be relevant to the problem we are interested in,

at least over some time window, is that of a system of local

potential wells that act as momentary traps for particles, with

a rate of leaving a trap being (33):

b } expð�DE=kTÞ: (6)

Here DE is the activation energy needed to leave the trap.

Assuming that the depths of the potential wells are distributed

exponentially,

rðDEÞ} expð�DE=kT0Þ; (7)

where rðDEÞ is the density of traps of depth DE; and T0 is an

effective temperature that characterizes the trap distribution.

In such systems, the waiting time pdf follows a power law

(33) as in Eq. 5 with

a ¼ T=T0: (8)

The motion is therefore subdiffusive for T , T0; which cor-

responds to 0 , a , 1: For temperatures T . T0; for which

a . 1; the waiting time pdf possesses a first moment, and

regular diffusion is expected as observed in some amorphous

semiconductors (27,33).

FIGURE 1 CTRW model on a two-dimensional lattice. The waiting times

are symbolized by circles whose area is proportional to the waiting time a

walker spends at a lattice point before the next jump event occurs. The jumps

lengths are equidistant.
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One can consider the movement of proteins in cell mem-

branes with the above example in mind (34). If such energetic

traps exist, anomalous behavior would arise. Traps can also

be structural in nature as proposed by Ritchie et al. (10),

where cytoskeleton fences confine the spatial motion of

proteins, or due to dead ends along a structural backbone

(8,10,35). In what follows, we use CTRW to describe the

anomalous motion of proteins and how it shows up in FRAP

experiments. This might help clarify recent debates about

subdiffusion in SPT measurements (8,10,36).

THE FRACTIONAL DIFFUSION EQUATION

We proceed by using a generalization of the diffusion equa-

tion to account for anomalous subdiffusion. This generali-

zation, known as the FDE, or the fractional Fokker-Planck

equation (FFPE) (23,25), is expressed in terms of fractional

calculus (noninteger order of differentiation). Instead of

the regular diffusion equation usually assumed in FRAP

analysis,

@Cðr; tÞ
@t

¼ K=
2
Cðr; tÞ; (9)

where K is the diffusion coefficient (see Eq. 1), a fractional

order equation is introduced:

@Caðr; tÞ
@t

¼ 1

GðaÞ
@

@t

Z t

0

dsðt � sÞa�1
Ka=

2
Caðr; sÞ: (10)

Equation 10 is nonlocal in time and is characterized by a

long-range kernel. It can be rewritten by using the Riemann-

Liouville operator of noninteger order of differentiation:

ð0D
1�a

t ; 0 , a , 1Þ: @Caðr; tÞ
@t

¼ 0 D
1�a

t ðKa=
2
Caðr; tÞÞ;

(11)

where Ka is the anomalous diffusion coefficient (see Eq. 2).

We denote with the subscript a the concentration and

diffusion coefficient in the case of anomalous diffusion (see

Eq. 2). The Riemann-Liouville operator has the integral form

0D
1�a

t f ðtÞ ¼ 1

GðaÞ
@

@t

Z t

0

dsðt � sÞa�1
f ðsÞ: (12)

Equations 10 and 11 reduce to the regular diffusion equation,

Eq. 9, for a ¼ 1: Note that in our example in Eq. 4, the

waiting time is an exponential for a ¼ 1; so that the anomaly

disappears. Equation 10 has been derived from a CTRW

model with the waiting time pdf as in Eq. 5. The derivation

holds for long times and is based on the Kramers-Moyal

expansion (24,37).

Whenever particles display anomalous subdiffusion that

originates from a fat-tailed distribution of waiting times, Eq.

9 should be replaced by Eq. 11. The latter should be applied

in the analysis of FRAP experiments in the presence of

subdiffusion, bearing in mind that all proteins are assumed to

move according to Eq. 5. In case of different protein popu-

lations, ‘‘distributed order’’ equations can be introduced

(38), which add more parameters to the problem.

The solution of the FDE, Eq. 11, is given by a subordi-

nation relationship to the known solution Cðr; tÞ of the nor-

mal equation (23,39):

Caðr; tÞ ¼
Z N

0

dsAðs; tÞ � Cðr; s�Þ; (13)

where s� ¼ Ka

K s; Caðr; tÞ is the solution of the FDE, Eq. 11,

which we are interested in, and Cðr; sÞ is the solution of the

regular diffusion equation, Eq. 9, for the same initial and

boundary conditions. The solutions are related through the

integral in Eq. 13, where A(s,t) serves as a kernel function.

A(s,t) is the modified one-sided Levy distribution function

(23), which we discuss later on in more detail. The subor-

dination accounts for the time cost of simple random walk

steps introduced due to waiting times. It generally offers a

translation of the number of steps into time (33). In the case

of fat-tailed waiting times, the subordination takes the form

of Eq. 13 with Aðs; tÞ: Solving Eq. 11 for the initial condi-

tions of starting at the origin at time t ¼ 0; a non-Gaussian

solution is obtained, which is characterized by a cusp at the

origin (23) as shown in Fig. 2. Some evidence for the cusped

behavior has been reported by Khan et al. (40), where single-

particle tracking measurements were used to investigate

Class I and II MHC proteins in the plasma membrane.

Although this cannot be taken as a proof of a CTRW mech-

anism, it provides support to the role played by broadly dis-

tributed waiting times.

A few points to be noted:

a. The process described by CTRW with the fat-tailed pdf

in Eq. 5 is nonstationary and displays aging (41,42).

Aging in CTRW systems with inverse power law waiting

times pdf, Eq. 5, stems from the nonstationary nature of

FIGURE 2 Solution of Eq. 11, Caðx; tÞ; in one-dimension with the anom-

alous exponent a ¼ 3=4; drawn for the consecutive time t ¼ 0.5, 2, 6. The

cusp shape of the pdf is distinct. See Metzler and Klafter (23).
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the process. As time evolves, less and less events occur

per time interval, demonstrating the growing probability

to get stuck for longer and longer times. This aspect of

aging is shown in Fig. 3, where the occurrence of events

is plotted as a function of time. As a result, experimental

observations depend on the time of measurement relative

to the starting times. Therefore, when solving the FDE,

the initial conditions should be carefully dealt with. The

starting time can be viewed from the CTRW point of

view as the time when all particles start their random

waiting period for the first jump. In FRAP experiments,

the bleach time does not correspond to the starting time

of the movement of the proteins. Here we assume a

measurement that starts (bleaching time) at the same time

that the system is prepared. In the more general case of

subdiffusion, one should consider aging with care. Each

protein may arrive at the membrane at some different

time. However, in the case that cytoplasmic proteins ex-

change with proteins in the membrane, there is a possi-

bility for a broad range of arrival (starting) times, and the

aging treatment would be even more complicated (43).

b. As mentioned, Eq. 11 is nonlocal in time, a property

intimately related to the nonstationary nature of the

CTRW with fat tails. Another commonly used general-

ization of the normal diffusion equation is the TDDC,

which replaces the diffusion constant with a time-depen-

dent diffusion coefficient:

@Cðr; tÞ
@t

¼ aKt
a�1

=
2
Cðr; tÞ: (14)

Equation 14 is local in time in contrast to Eq. 11 and has a

Gaussian type solution to be contrasted with the cusp shape

solution of the FDE solution (Fig. 2). One should be aware

that these two descriptions of anomalous behavior describe

different physical processes. The CTRW description (or

FDE) describes a particle moving among energetic or struc-

tural traps with time spent in each trap taken from a power

law pdf, whereas the TDDC, Eq. 14, corresponds to a

different mechanism of motion whose meaning is less obvi-

ous (16). Equation 14 is also referred to as fractional Brownian

motion (FBM), since its solution gives the Gaussian FBM

Cðr; tÞ with a subdiffusive variance (44). Being local in time,

the equation does not describe the long range temporal

correlations typical of FBM (45).

c. In real systems, the power law in Eq. 5 might be trun-

cated at long times, which would make the anomalous

subdiffusion an intermediate behavior. Such truncation

changes the process from nonstationary to stationary,

eliminating the aging problem. Nevertheless, the descrip-

tion we present here is still valid for intermediate time

windows depending on the system parameters (38). The

truncated case can be dealt with in terms of the ‘‘distri-

bution order’’ equation, as mentioned earlier.

FRACTIONAL FRAP

We now continue by formulating FRAP experimental reali-

zations in terms of CTRW and the corresponding FDE Eq.

11 and Eq. 13. CTRW for FRAP was first used by Nagle (21)

for a one-dimensional case. Let us start by repeating the

expression for fluorescence in the case of regular diffusion,

where Eq. 9 holds. We recall that in FRAP experiments, one

does not measure directly the concentration but rather the

fluorescence given as (9)

FðtÞ ¼ q

A

Z
IðrÞCkðr; tÞd2

r; (15)

where I(r) is the intensity of the laser beam, Ckðr; tÞ is the

concentration of the fluorophore proteins (q and A are the

products of the quantum efficiencies and attenuation factor,

respectively) and k is a measure of the amount of the bleach

that is connected to the initial conditions (not to be confused

with K, the diffusion coefficient). In our calculations, we

assumed a Gaussian laser beam. The temporal evolution of

the fluorescence for simple diffusion and a Gaussian laser

beam is then (9)

FðtÞ ¼ F
0 +

N

n¼0

ð�kÞn

n!

1

1 1 nð1 1 2ðt=tDÞÞ

� �
R 1 ð1� RÞF0:

(16)

FIGURE 3 Characteristic of aging is the decreasing frequency of jumps

as time evolves. CTRW with 100 independent particles was simulated and

the number of jumps was detected for the same time interval at different

times. A fat-tailed waiting time pdf was used with a ¼ 1=4: The decrease

in the density of lines for larger times demonstrates a decrease in the

number of events and therefore the aging concept. Note the different time

scales in a and b.
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Here, F0 is the fluorescence before photobleaching, F0 is the

fluorescence immediately after the bleach, and R is the frac-

tion of the mobile proteins.

If the proteins undergo anomalous subdiffusion in the

membrane, we start from the FDE, Eq. 11, to describe their

movement and make use, to obtain the fluorescence, of

Eq. 13:

FaðtÞ ¼
Z

drIðrÞCaðr; tÞ ¼
Z

drIðrÞ
Z N

0

Aðs; tÞCðr; s�Þds:

(17)

Changing the order of integrations, we reach

FaðtÞ ¼
Z N

0

dsAðs; tÞ
Z

IðrÞCðr; s�Þdr; (18)

and since the second integral on the right-hand side is just the

fluorescence for normal diffusion, we can rewrite Eq. 18 as

FaðtÞ ¼
Z N

0

dsAðs; tÞFðs�Þ: (19)

which has the same form of Eq. 13 and is given explicitly by

FaðtÞ ¼
Z N

0

dsAðs; tÞ

3 F
0 +

N

n¼0

ð�kÞn

n!

1

11nð112ðs=tD;aÞÞ

� �
R1ð1�RÞF0

� �
:

(20)

Equation 20 is the central result in this article and provides an

expression for fluorescence recovery in FRAP experiments

for those systems in which the ‘‘microscopic dynamics’’ is

well approximated by CTRW with fat tails. It provides a way

to obtain the fluorescence in the subdiffusion case by inte-

grating over the normal fluorescence recovery function

multiplied by a modified one-sided Levy function (23).

Using this method, we can derive anomalous fluorescence

curves for a variety of experimental conditions as calculated

earlier by Axelrod et al. (9). A word of caution: the FRAP

method, which is usually applied for both membrane and

bulk measurements, is not sensitive to the various types of

motion of individual particles, but rather measures ensemble

properties. This means that when obtaining FRAP curves,

one sees only an average of the different individual behaviors

and therefore an apparent diffusion behavior. This corre-

sponds in the CTRW framework to a single waiting time

CðtÞ: Equation 20 holds for those measurements that start at

the same time that the fluorescent particles start diffusing.

The one-sided Levy function Aðs; tÞ; for a general a; is

given by the series

Aðs; tÞ ¼ 1

s
+
N

n¼0

ð�1Þn

Gð1�a�anÞGð11nÞ
s

t
a

� �11n

: (21)

This function, however, has a simple form only for a few

special cases (23):

for a¼ 1=2 : Aðs; tÞ ¼ 1ffiffiffiffiffi
pt
p exp �s

2

4t

� �
; (22)

and for a¼ 1=3 :

Aðs; tÞ ¼
ffiffiffiffi
s

3t

r "
I�1=3

2s
3=2

3
ffiffiffiffi
3t
p

 !
� I1=3

2s
3=2

3
ffiffiffiffi
3t
p

 !#
; (23)

where I1=3; I�1=3 are the modified Bessel functions (26).

For a ¼ 1; A(s,t) reduces to dðs� tÞ: From Eqs. 21–23, we

see that s has the dimensions of ½time�a;which means that the

parameter tD;a in Eq. 20 has the same fractional dimensions

of time. When fitting Eq. 20 to experimental data, or to CTRW

simulations in our case, tD;a and a are the two informative

fitting parameters.

Starting from Eq. 14, we can also derive the fluorescence

recovery curve that corresponds to the TDDC. Repeating the

steps of Axelrod et al. (9), we reach the solution for a

Gaussian laser beam profile and pure diffusion. In this case,

the fluorescence as a function of time has the form of Eq. 14:

FðtÞ ¼F
0 +

N

n¼0

ð�kÞn

n!

1

11nð112ðt=tDÞaÞ

� �
R1ð1�RÞF0;

(24)

where again F0 is the fluorescence before bleaching, F0 is

the fluorescence immediately after the bleach, and R is the

fraction of moving proteins. Equation 24 has a much simpler

form than Eq. 20. It resembles Eq. 16 by replacing ðt=tDÞ by

ðt=tDÞa: Both Eqs. 20 and 24 reduce to Eq. 16 when a ¼ 1:
We believe, however, that the underlying process is better

described by the CTRW and therefore by Eqs. 11 and 20.

CTRW SIMULATIONS VERSUS THEORY

We simulated FRAP experiments for several cases as de-

scribed below and performed calculations to be compared

with these simulations. The simulations were based on the

National Instruments CVI programming tool. The software

we produced enabled us to simulate and visualize FRAP

experiments for both normal and anomalous diffusion. All

the calculations and simulations were done for the case of a

Gaussian laser beam profile for which the normal fluores-

cence recovery is given by Eq. 16. In addition, we chose all

the proteins to be mobile; namely, R ¼ 1. We calculated the

integral in Eq. 20 using Mathematica (Wolfram Research,

Champaign, IL) software symbolic and numerical integra-

tion. We started with simulating FRAP experiment for nor-

mal diffusion for testing reasons. The curves obtained from

the simulations were then fitted to the calculated ones with

one fitting parameter, tD: This parameter, which appears in

Eq. 16, is presented in Axelrod et al. (9) as

tD [
w

2

4K
; (25)

where K is the diffusion coefficient and w is the half width at

which the laser beam intensity is at e�2 of its height at the
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origin. After fitting tD; we easily calculated the diffusion

coefficient. To check the validity of this coefficient, we used a

different simulation of this same system that measured the

MSD of an ensemble of particles as a function of time. The

diffusion coefficient was calculated from Eq. 1 and was

compared to the diffusion coefficient from the FRAP simu-

lations. In comparing the two coefficients, we got an excel-

lent agreement with a factor of ,0.3% difference.

The next step was to simulate anomalous diffusion. This

was done by assigning every protein a certain waiting time

taken from a Levy a-stable distribution (46,47), whose fat tail

is given by Eq. 5. We used the heap algorithm to arrange and

sort the jumping times of proteins. A similar equation to the

normal case holds also for the anomalous case:

tD;a [
w

2

4Ka

; (26)

and we recall that Ka has the units ½Length�2=½Time�a; and

tD;a has the unit ½time�a: Our goal was first to find the tD;a

parameter when all the other parameters matched their

simulation counterparts. The calculations were done for the

case of a ¼ 1=2;a ¼ 1=3; and a ¼ 3=4: We started by

obtaining the diffusion coefficient for each a by using the

simulation measuring the MSD as a function of time for an

ensemble of particles (over 53106) and fitting it to Eq. 2. Fig.

4 shows a log-log plot of this simulation. It is important to

note that, as expected, the diffusion coefficients depend on

the anomaly exponent (a), which means that two diffusion

coefficients that have different exponents are not equal.

We then performed calculations of FRAP curves for

anomalous diffusion. We first performed analytical and nu-

merical calculations for a ¼ 1=2 (using Mathematica soft-

ware) to obtain the fluorescence recovery function for the

corresponding anomalous case. We then fitted (a one pa-

rameter fit of tD;a) the simulated curve to this function nu-

merically and calculated the diffusion coefficient by using

Eq. 26. We compared the result with the coefficient of the

simulated MSD. The comparison of the two diffusion coef-

ficients gave us excellent agreement (within 0.6%). We fol-

lowed the same procedure for a ¼ 1=3 with a good match of

the diffusion coefficients (a factor of ,0.5%). In these fits, a

was known and we therefore had to fit only a one-parameter

fit (tD;a). The mobile fraction of proteins (R), which serves as

another fitting parameter in a FRAP experiment, is taken here

to be unity, R ¼ 1. The reason for this choice is that in

anomalous subdiffusion due to CTRW, some proteins might

get stuck for a considerable amount of time and are viewed

therefore as immobile during the time of experiment. So

being immobile is a matter of the observation time window.

This is accounted for by the CTRW process with a single fat-

tailed waiting time pdf as assumed in this article.

The next step was to perform a two-parameter fit of both

a and tD;a as is actually done in FRAP experiments using the

programming tool of Mathematica software. To do so, we

had to develop a special algorithm that could calculate FRAP

curves for different a and tD;a values using the series rep-

resentation of the one-sided Levy function, Eq. 21. The fit

was performed to a FRAP simulation for the case of a ¼ 3=4:
We obtained very good agreement for both parameters: a ¼
0:74 for the anomalous exponent and ;10% difference for

tD;a when compared to the simulation results. Both the

simulation data and the calculated FRAP curve for these

parameters are shown in Fig. 5.

We also fitted the fluorescence function calculated from

the TDDC/FBM equation to the simulated curve based on

CTRW to compare the obtained anomalous diffusion coef-

ficient with previous fit to the FDE. When fitting this func-

FIGURE 4 Log-log plot of the MSD versus time for a ¼ 1=2 and a ¼
1=3: The diffusion coefficients K1=2 and K1=3 are calculated from the slopes

of the fitted lines.

FIGURE 5 Fitting simulation data of fluorescence recovery curves with

parameters a and tD using the series representation of the one-sided Levy

function, A(s,t). (Solid line) Calculated curve. (Open circles) Simulated

curve. The fluorescence and time are in arbitrary units.
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tion, however, we had again to deal with the question of how

to treat the mobile fraction R. We examined a few fits for

these fluorescence functions. Since we knew the correct pa-

rameters of the system, we could determine which fit best

suited the system. We fitted the curves for two cases: 1), a

three-parameter fit of tD; R, and a (see Eq. 24); and 2), a fit of

tD and a only, taking R ¼ 1 as done for the FDE case. We

calculated the tD parameter in the following way:

tD¼
v

2

4b

� �1=a

; (27)

where b is the diffusion coefficient and tD has the dimensions

of [time]. The latter differs from the dimensions of tD;a in the

solution of the FDE. The MSD for the TDDC/FBM, Eq. 14,

has the form

Ær2æ¼ 4bt
a
: (28)

When performing different fits, we observed different local

minima that fitted almost equally well the curves. When

fitting the two cases, a ¼ 1=2 and a ¼ 1=3;we reached local

minima that did not suit well the simulation results. From

these fits we obtained both the diffusion coefficient (Ka) and

the anomaly exponent (a). We obtained the anomaly expo-

nent a from the FBM fit to the simulated a ¼ 1=2 case with a

factor of up to 3.5% difference and for a ¼ 1=3 with a factor

up to 9% difference. The diffusion coefficients that we

obtained were less accurate. For the simulated a ¼ 1=2

case, the difference was up to 40% difference and for a ¼
1=3 the difference was up to 70% difference. In all cases we

obtained better results when taking R ¼ 1. The diffusion

coefficients were of the order of magnitude of the actual

diffusion coefficient. When we fitted the curves with the

suitable a (a ¼ 1/2 or a ¼ 1/3 and R ¼ 1), the diffusion

coefficients that we obtained were much more accurate.

However, this approach is not applicable when fitting real

FRAP experimental data, since one does not know a priori the

a-value. When fitting the data with a value of R calculated

using the fluorescence at the end of the experiment, as usually

done, the fitting would lead to erroneous curves (a is .1) as

can be seen in Fig. 6.

CONCLUSIONS

We presented what to our knowledge is a new method to

model the fluorescent recovery curves that correspond to

FRAP experiments in the case of anomalous diffusion. The

method is based on the CTRW process with a fat-tailed

waiting time pdf. We confronted CTRW and its corre-

sponding FDE with the TDDC/FBM. Both the FDE and the

TDDC better fit the ‘‘microscopic’’ CTRW modeling when

all proteins are assumed mobile, R ¼ 1.

The CTRW framework provides a reasonable way to de-

scribe analytically and numerically the diffusion of proteins

in cell membranes. In the anomalous case, the FDE derived

from CTRW allows a simple formal extension of the regular

diffusion formulation of FRAP recovery curves.
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