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ABSTRACT The previously identified membrane-active regions of the hepatitis C virus (HCV) E1 and E2 envelope glycoproteins
led us to identify different segments that might be implicated in viral membrane fusion, membrane interaction, and/or protein-
protein binding. HCV E2 glycoprotein contains one of the most membranotropic segments, segment 603–634, which has been
implicated in CD81 binding, E1/E2 and E2/E2 dimerization, and membrane interaction. Through a series of complementary
experiments, we have carried out a study of the binding and interaction with the lipid bilayer of a peptide corresponding to segment
603–634, peptide E2FP, as well as the structural changes induced by membrane binding that take place in both the peptide and the
phospholipid molecules. Here, we demonstrate that peptide E2FP binds to and interacts with phospholipid model membranes,
modulates the polymorphic phase behavior of membrane phospholipids, is localized in a shallow position in the membrane, and is
probably oligomerized in the presence of membranes. These data support the role of E2FP in HCV-mediated membrane fusion,
and sustain the notion that this segment of the E2 envelope glycoprotein, together with other segments of E2 and E1 glycoproteins,
provides the driving force for the merging of the viral and target cell membranes.

INTRODUCTION

Hepatitis C virus (HCV), an enveloped positive single-

stranded RNA virus of the Flaviviridae family, has an im-

portant impact on public health since it is the leading cause of

acute and chronic liver disease in humans, including chronic

hepatitis, cirrhosis, and hepatocellular carcinoma (1–3). At

the moment, there exists no vaccine to prevent HCV infection,

and current therapeutic agents have limited success against

HCV (4). The HCV genome consists of one translational open

reading frame encoding a polyprotein precursor of ;3010

amino acids in length, including structural and nonstructural

proteins, that is cleaved by host and viral proteases (5). The

polyprotein precursor is cotranslationally and posttransla-

tionally processed by both cellular and viral proteases at the

level of the endoplasmic reticulum membrane to yield 10

mature structural and nonstructural proteins. The structural

proteins include the core, which forms the viral nucleocapsid,

and the envelope transmembrane glycoproteins E1 and E2.

The structural proteins are separated from the nonstructural

proteins by the short membrane protein p7. HCV entry into

the cell is achieved by the fusion of viral and cellular mem-

branes, and morphogenesis and budding has been suggested

to take place in the endoplasmic reticulum (6). Therefore, the

protein regions implicated in fusion and/or budding must in-

teract with the biological membrane and should be conser-

vative membranotropic sequences. The variability of the HCV

proteins gives the virus the ability to escape the host’s immune

surveillance system and the development of a vaccine proves

to be a difficult task (7). Furthermore, HCV proteins are very

sensitive to folding, assembly, mutations, and deletions. Find-

ing protein-membrane and protein-protein interaction inhibi-

tors could be a good strategy against HCV infection, since they

might prove to be potential therapeutic agents.

The viral structure of HCV is thought to adopt a classical

icosahedral scaffold in which the E1 and E2 envelope gly-

coproteins are anchored to the host-cell-derived double-layer

lipid envelope. Both of them are essential for host-cell entry,

binding to receptor(s), and fusion with the host cell mem-

brane, as well as in viral particle assembly (8). E1 and E2 are

type I transmembrane glycoproteins, with an N-terminal ec-

todomain and a short C-terminal transmembrane domain.

They interact with each other and assemble as noncovalent

heterodimers. It is significant that their transmembrane do-

mains play a major role in the E1/E2 heterodimer formation,

membrane anchoring, and endoplasmic reticulum retention

(9–12). The HCV envelope glycoproteins E1 and E2 are

included in the class II fusion proteins, because the putative

fusion peptide is localized in an internal sequence linked by

antiparallel b-sheets; moreover, proteomics computational

analyses suggest that HCV envelope glycoprotein E1 is a

truncated class II fusion protein (13). The HCV membrane

fusion process is pH-dependent, and low endosomal pH

promotes the arrangement of E1/E2 to its active form (14).

Many aspects regarding the function and properties of both

HCV E1 and E2 glycoproteins still remain unresolved; even

so, the location of the fusion peptide is controversial, since

several data suggest that it could be located in either E1 or E2.
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Although previous data have proposed a direct role of HCV

E1 in membrane fusion, whereas HCV E2 should mediate the

binding with receptor CD81, and should also be responsible

for heterodimerization with E1, recent data suggest that in-

deed both E1 and E2 glycoproteins participate in the mem-

brane fusion mechanism (14–18).

We have recently identified the membrane-active regions of

the HCV E1 and E2 glycoproteins by observing the effect of

E1 and E2 glycoprotein-derived peptide libraries on model

membrane integrity, and have found different segments that

present high positive values of hydrophobic moment, hydro-

phobicity, and interfaciality (19). These results permit us to

suggest the possible location of different segments in these

proteins that might be implicated in protein-lipid and protein-

protein interactions, helping us to understand the processes that

give rise to the interaction between the different proteins and

the membrane. The most membranotropic regions of E2 are

made up of segments comprising residues 455–489, which

include the hypervariable HVR-2 region, 525–565 and 603–

634 (19). Region 603–634 shows a very high hydrophobicity

and interfaciality, as well as significant leakage, hemifusion,

and fusion effects in membrane model systems (19). Of sig-

nificance is the demonstration, using infectious HCV pseu-

doparticles, that mutations in this region abolished infectivity

and membrane fusion, demonstrating that this segment of the

E2 glycoprotein participates in the viral fusion process (15). It

is known that the mechanism by which proteins facilitate the

formation of fusion intermediates is a complex process in-

volving several segments of fusion proteins (20,21), and at the

same time, there are still many questions to be answered re-

garding the E1 and E2 mode of action in HCV and cell host

membrane fusion. Since the 603–634 region of the HCV E2

envelope glycoprotein might be involved in membrane de-

stabilization and at the same time take part in the fusion events

as a helper for the fusion peptide and/or the pretransmembrane

regions, as well as other segments, we have made an in-depth

study of the 603–634 HCV E2 region, peptide E2FP, patterned

after peptides 603-LTPRCLVDYPYRLWHYPC-620, 610-DYP-

YRLWHYPCTLNFSIF-627, and 617-HYPCTLNFSIFKVR-

MYVG-634 (peptides 34–36 from the original HCV E1/E2

peptide library, respectively (19)). We have studied the

binding and interaction of E2FP with membrane model sys-

tems, as well as the structural changes that take place in both

the peptide and phospholipid molecules induced by mem-

brane binding through a series of complementary experi-

ments. In this work, we show that peptide E2FP strongly

partitions and buries into phospholipid membranes, interacts

with negatively charged phospholipids, and modulates the

phase polymorphic behavior of model membranes.

MATERIALS AND METHODS

Materials and reagents

The peptide E2FP, corresponding to the sequence 603-LTPRCLVDYPYRL-

WHYPCTLNFSIFKVRMYVG-634 from HCV strain 1B4J (with N-terminal

acetylation and C-terminal amidation) was obtained from Genemed Synthesis,

San Francisco, CA. The peptide E2FP was purified by reverse-phase high-

performance liquid chromatography (C-8 column (Vydac, Hesperia, CA), 250

3 4.6 mm, flow rate 1 ml/min; solvent A, 0.1% trifluoroacetic acid; solvent B,

99.9% acetonitrile, and 0.1% trifluoroacetic acid) to .95% purity, and its

composition and molecular mass were confirmed by amino acid analysis and

mass spectroscopy. Since trifluoroacetate has a strong infrared absorbance at

;1673 cm�1, which interferes with the characterization of the peptide amide

I band (22), residual trifluoroacetic acid, used both in peptide synthesis and

in the high-performance liquid chromatography mobile phase, was removed

by several lyophilization/solubilization cycles in 10 mM HCl (23). Egg

L-a-phosphatidylcholine (EPC), egg L-a-phosphatidic acid (EPA), egg sphin-

gomyelin (SM), bovine brain phosphatidylserine (BPS), egg transsterified

L-a-phosphatidylethanolamine (TPE), lyso-a-phosphatidylcholine (LPC),

1,2-dimyristoylphosphatidylcholine (DMPC), 1,2-dimyristoylphosphatidyl-

glycerol (DMPG), 1,2-dimyristoylphosphatidylserine, 1,2-dimyristoylphosphat-

idic acid (DMPA), 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine

(DEPE), 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphatidylethanolamine, liver

lipid extract, cholesterol (Chol), Lissamine rhodamine B 1,2-dihexadecanoyl-

sn-glycero-3-phosphoethanolamine, and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-

1,2-dihexadecanoyl-sn-glycero-3-phosphatidylethanolamine (NBD-PE) were

obtained from Avanti Polar Lipids (Alabaster, AL). 5-Carboxyfluorescein (CF)

(.95% by high-performance liquid chromatography), 5-doxyl-stearic acid

(5NS), 16-doxyl-stearic acid (16NS), dehydroergosterol (ergosta-5,7,9(11),22-

tetraen-3b-ol), sodium dithionite, deuterium oxide (99.9% by atom), Triton

X-100, EDTA, and HEPES were purchased from Sigma-Aldrich (Madrid,

Spain). 1,6-Diphenyl-1,3,5-hexatriene (DPH), 1-(4-trimethylammoniumphenyl)-

6-phenyl-1,3,5-hexatriene (TMA-DPH), and 4-(2-(6-(dioctylamino)-2-naphthalenyl)

(ethenyl)-1-(3-sulfopropyl)-pyridinium inner salt (di-8-ANEPPS) were ob-

tained from Molecular Probes (Eugene, OR). All other reagents used were of

analytical grade from Sigma-Aldrich. Water was deionized, twice distilled,

and passed through a Milli-Q equipment (Millipore Ibérica, Madrid, Spain)

to a resistivity better than 18 MV cm.

Vesicle preparation

Aliquots containing the appropriate amount of lipid in chloroform/methanol

(2:1, v/v) were placed in a test tube, the solvents removed by evaporation

under a stream of O2-free nitrogen, and finally, traces of solvents were

eliminated under vacuum in the dark for .3 h. The lipid films were re-

suspended in an appropriate buffer and incubated either at 25�C or 10�C

above the gel-to-liquid-crystal-phase transition temperature (Tm) with in-

termittent vortexing for 30 min to hydrate the samples and obtain multi-

lamellar vesicles (MLV). The samples were frozen and thawed five times to

ensure complete homogenization and maximization of peptide/lipid contacts,

with occasional vortexing. Large unilamellar vesicles (LUV) with mean

diameter 0.1 and 0.2 mm for leakage or hemifusion and fusion experiments,

respectively, were prepared from multilamellar vesicles by the extrusion

method (24), using polycarbonate filters with a pore size of 0.1 and 0.2 mm

(Nuclepore Corp., Cambridge, CA). The phospholipid and peptide concen-

tration were measured by methods described previously (25,26).

Membrane leakage measurement

LUVs with a mean diameter of 0.1 mm were prepared as indicated above in

buffer containing 10 mM Tris, 20 mM NaCl, pH 7.4, and CF at a concentration

of 40 mM. Nonencapsulated CF was separated from the vesicle suspension

through a Sephadex G-75 filtration column (Pharmacia, Uppsala, Sweden)

eluted with buffer containing 10 mM TRIS, 100 mM NaCl, 1 mM EDTA, pH

7.4. Membrane rupture (leakage) of intraliposomal CF was assayed by treating

the probe-loaded liposomes (final lipid concentration, 0.125 mM) with the

appropriate amounts of peptide using a 5 3 5 mm fluorescence cuvette on a

Cary Eclipse spectrofluorometer (Varian, San Carlos, CA), stabilized at 25�C

with the appropriate amounts of peptide, each well containing a final volume of

400 ml. The medium in the cuvettes was continuously stirred to allow the rapid
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mixing of peptide and vesicles. Leakage was assayed until no more change in

fluorescence was obtained. The fluorescence was measured using a Varian

Cary Eclipse spectrofluorometer . Changes in fluorescence intensity were re-

corded with excitation and emission wavelengths set at 492 and 517 nm, re-

spectively. Excitation and emission slits were set at 5 nm. One hundred percent

release was achieved by adding Triton X-100 to the cuvette to a final con-

centration of 0.5% (w/w). Fluorescence measurements were made initially

with probe-loaded liposomes, afterward by adding peptide solution, and fi-

nally by adding Triton X-100 to obtain 100% leakage. Leakage was quan-

tified on a percentage basis according to the equation, %L ¼ ½ðFf � F0Þ3 100�=
ðF100 � F0Þ; where Ff is the equilibrium value of fluorescence after peptide

addition, F0 is the initial fluorescence of the vesicle suspension, and F100 is

the fluorescence value after the addition of Triton X-100.

Phospholipid-mixing measurement

Peptide-induced vesicle lipid mixing was measured by resonance energy

transfer (27). This assay is based on the decrease in resonance energy transfer

between two probes (NBD-PE and Lissamine rhodamine B 1,2-dihexadecanoyl-

sn-glycero-3- phosphoethanolamine) when the lipids of the probe-containing

vesicles are allowed to mix with lipids from vesicles lacking the probes. The

concentration of each of the fluorescent probes within the liposome mem-

brane was 0.6% mol. LUVs with a mean diameter of 0.2 mm were prepared as

described above. Labeled and unlabeled vesicles in the proportion 1:4 were

placed in a 5 3 5-mm fluorescence cuvette at a final lipid concentration of

100 mM in a final volume of 400 ml, stabilized at 25�C under constant

stirring. The fluorescence was measured using a Varian Cary Eclipse fluo-

rescence spectrometer using 467 nm and 530 nm for excitation and emission,

respectively. Excitation and emission slits were set at 10 nm. Since labeled/

unlabeled vesicles were mixed in a proportion of 1:4, 100% phospholipid

mixing was estimated with a liposome preparation in which the membrane

concentration of each probe was 0.12%. Phospholipid mixing was quantified

on a percentage basis according to the equation, %PM ¼ ½ðFf � F0Þ3 100�=
ðF100 � F0Þ; where Ff is the value of fluorescence obtained 15 min after

peptide addition to a liposome mixture containing liposomes with 0.6% of

each probe plus liposomes without any fluorescent probe, F0 is the initial

fluorescence of the vesicles, and F100 is the fluorescence value of the lipo-

somes containing 0.12% of each probe.

Inner-monolayer phospholipid-mixing
(fusion) measurement

Peptide-induced phospholipid-mixing of the inner monolayer was measured by

a modification of the phospholipid-mixing measurement stated above (28).

This assay is based on the decrease in resonance energy transfer between two

probes (NBD-PE and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-

3- phosphoethanolamine) when the lipids of the probe-containing vesicles are

allowed to mix with lipids from vesicles lacking the probes. The concentration of

each of the fluorescent probes within the liposome membrane was 0.6 mol %.

LUVs with a mean diameter of 0.2 mm were prepared as described above.

LUVs were treated with sodium dithionite to completely reduce the NBD-

labeled phospholipid located at the outer monolayer of the membrane. Final

concentration of sodium dithionite was 100 mM (from a stock solution of

1 M dithionite in 1 M TRIS, pH 10.0) and incubated for ;1 h on ice in the

dark. Sodium dithionite was then removed by size-exclusion chromatogra-

phy through a Sephadex G-75 filtration column (Pharmacia) eluted with

buffer containing 10 mM TRIS, 100 mM NaCl, 1 mM EDTA, pH 7.4. The

proportion of labeled and unlabeled vesicles, lipid concentration, and other

experimental and measurement conditions were the same as indicated above

for the phospholipid mixing assay.

Peptide binding to vesicles

The partitioning of the peptide into the phospholipid bilayer was monitored

by the fluorescence enhancement of tryptophan. Fluorescence spectra were

recorded in an SLM Aminco 8000C spectrofluorometer with excitation and

emission wavelengths of 290 and 348 nm, respectively, and 4-nm spectral

bandwidths. Measurements were carried out in 20 mM HEPES, 50 mM

NaCl, EDTA 0.1 mM, pH 7.4. Intensity values were corrected for dilution,

and the scatter contribution was derived from lipid titration of a vesicle blank.

Partitioning coefficients were obtained using (29)

I

I0

¼ 1 1
Imax

I0

� 1

� �
3

KP L½ �
W½ �1 KP L½ �

� �� �
;

where I and I0 are the final and the initial intensities respectively, kP is a mole

fraction partition coefficient that represents the amount of peptide in the

bilayers as a fraction of the total peptide present in the system, Imax is a

variable value for the fluorescence enhancement at complete partitioning

determined by fitting the equation to the experimental data, [L] is the lipid

concentration, and [W] is the concentration of water (55.3 M). The peptide

concentration in the assays was 30 mM.

Steady-state fluorescence anisotropy

MLVs were formed in 100 mM NaCl, 0.05 mM EDTA, 25 mM HEPES, pH

7.4. Aliquots of TMA-DPH or DPH in N,N9-dimethylformamide (2 3 10�4

M) were directly added into the lipid dispersion to obtain a probe/lipid molar

ratio of 1:500. Samples were incubated for 15 or 60 min for TMA-DPH and

DPH, respectively, 10�C above the Tm of the phospholipid mixture. After-

ward, the peptides were added to obtain a peptide/lipid molar ratio of 1:15

and incubated at 10�C above the Tm of each lipid for 1 h, with occasional

vortexing. All fluorescence studies were carried using 5 3 5-mm quartz

cuvettes in a final volume of 400 ml (315 mM lipid concentration). All the

data were corrected for background intensities and progressive dilution. The

steady-state fluorescence anisotropy, Æræ, was measured with an automated

polarization accessory using a Varian Cary Eclipse fluorescence spectrom-

eter, coupled to a Peltier device (Varian) for automatic temperature change.

The vertically and horizontally polarized emission intensities, elicited by

vertically polarized excitation, were corrected for background scattering by

subtracting the corresponding polarized intensities of a phospholipid prep-

aration lacking probes. The G-factor, accounting for differential polarization

sensitivity, was determined by measuring the polarized components of the

fluorescence of the probe with horizontally polarized excitation (G ¼ IHV/

IHH). Samples were excited at 360 nm (slit width, 5 nm) and fluorescence

emission was recorded at 430 nm (slit width, 5 nm). The values were cal-

culated from the equation (30). The steady-state anisotropy was defined by

equation Æræ ¼ ðIVV � GIVHÞðIVV 1 2GIVHÞ; where IVV and IVH are the

measured fluorescence intensities (after appropriate background subtraction)

with the excitation polarizer vertically oriented and the emission polarizer

vertically and horizontally oriented, respectively.

Fluorescence quenching of Trp emission by
water-soluble and lipophylic probes

For acrylamide quenching assays, aliquots from a 4 M solution of the water-

soluble quencher were added to the solution-containing peptide in the presence

and absence of liposomes at a peptide/lipid molar ratio of 1:100. The results

obtained were corrected for dilution and the scatter contribution was derived

from acrylamide titration of a vesicle blank. The data were analyzed according

to the Stern-Volmer equation (31), F0=F ¼ 1 1 Ksv½Q�; where I0 and I rep-

resent the fluorescence intensities in the absence and presence of the quencher

[Q], respectively, and Ksv is the Stern-Volmer quenching constant, which is a

measure of the accessibility of Trp to acrylamide. Quenching studies with

lipophylic probes were performed by successive addition of small amounts of

5NS or 16NS in ethanol to the samples of the peptide incubated with LUV. The

final concentration of ethanol was kept below 2.5% (v/v) to avoid any sig-

nificant bilayer alterations. After each addition, there was an incubation period

of 15 min before the measurement. The effective quencher concentration in

the membrane, [Q]L, was calculated using the relationship (32)
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Q½ �L¼ Q½ �T 1� KPQgL L½ �
1� gL L½ �1 KPQgL L½ �

� �
KPQ

1� gL L½ �;

where gL is the phospholipid molar volume, [Q]T is the total quencher con-

centration, [L] is the lipid molar concentration, and KPQ is the partition

coefficient of the quencher. The KPQ values for 5NS and 16NS were as

reported previously (33). The fluorescence data were analyzed using a direct

fit according to the relationship (34)

I0

I
¼ 1 1 KSV½Q�L
ð1 1 KSV½Q�LÞð1� fBÞ1 fB

;

where I0 is the fluorescence intensity in the absence of quencher, KSV is the

Stern-Volmer quenching constant, and fB ¼ I0,B/I0, where I0,B is the fluores-

cence intensity of the fluorophore population accessible to the quencher. The

excitation and emission wavelengths were 290 and 348 nm, respectively.

Fluorescence measurements using
FPE-labeled membranes

LUVs with a mean diameter of 0.1 mm were prepared in buffer containing

10 mM TRIS-HCl, pH 7.4. The vesicles were labeled exclusively in the outer

bilayer leaflet with fluoresceinphosphatidylethanolamine (FPE), as described

previously (35). Briefly, LUVs were incubated with 0.1 mol % FPE dissolved

in ethanol (never more than 0.1% of the total aqueous volume) at 37�C for 1 h

in the dark. Any remaining unincorporated FPE was removed by gel filtration

on a Sephadex G-25 column equilibrated with the appropriate buffer. FPE-

vesicles were stored at 4�C until use in an oxygen-free atmosphere. Fluores-

cence time courses of FPE-labeled vesicles were measured after the desired

amount of peptide was added into 400 ml of lipid suspensions (200 mM lipid)

using a Varian Cary Eclipse fluorescence spectrometer. Excitation and emis-

sion wavelengths were set at 490 and 520 nm, respectively, using excitation

and emission slits set at 5 nm. Temperature was controlled with a thermostatic

bath at 25�C. The contribution of light scattering to the fluorescence signals

was measured in experiments without the dye and was subtracted from the

fluorescence traces. Data were fitted to a hyperbolic binding model (36) using

the equation F ¼ ðFmax ½P�Þ=ðKd 1 ½P�Þ;where F is the fluorescence variation,

Fmax the maximum fluorescence variation, [P] the peptide concentration, and

Kd the dissociation constant of the membrane binding process.

Measurement of the membrane dipole potential
using di-8-ANEPPS-labeled membranes

Aliquots containing the appropriate amount of lipid in chloroform-methanol

(2:1 v/v) and di-8-ANEPPS were placed in a test tube to obtain a probe/lipid

molar ratio of 1:100 and LUVs, with a mean diameter of 90 nm, were pre-

pared as described previously. Steady-state fluorescence measurements were

recorded with a Varian Cary Eclipse spectrofluorometer. Dual wavelength

recordings with the dye di-8-ANEPPS were obtained by exciting the samples

at two different wavelengths (450 and 520 nm) and measuring their intensity

ratio, R450/520, at an emission wavelength of 620 nm (37,38). By exciting

the membrane suspensions at two different wavelengths corresponding to

the maximum and the minimum of the difference spectrum, a fluorescence

intensity ratio R can be calculated, which can be used as a measure of the

relative changes in the magnitude of the dipole potential. The fluorescence

ratio R is defined as the ratio of the fluorescence intensity at an excitation

wavelength of 450 nm divided by the intensity at 520 nm. The lipid con-

centration was 200 mM, and all experiments were performed at 25�C.

Infrared spectroscopy

For IR spectroscopy, the samples were prepared as above but in D2O buffer;

;25 ml of a pelleted sample in D2O was placed between two CaF2 windows

separated by 50-mm thick Teflon spacers in a liquid demountable cell

(Harrick, Ossining, NY). The spectra were obtained in a Bruker IFS55

spectrometer (Bruker Biospin, Rheinstetten, Germany) using a deuterated

triglycine sulfate detector. Each spectrum was obtained by collecting 200

interferograms with a nominal resolution of 2 cm�1, transformed using tri-

angular apodization, and a sample shuttle accessory was used to obtain

sample and background spectra to average background spectra between

sample spectra over the same time period. The spectrometer was continu-

ously purged with dry air at a dew point of �40�C. All samples were

equilibrated at the lowest temperature for 20 min before acquisition. An

external bath circulator, connected to the infrared spectrometer, controlled

the sample temperature. For temperature studies, samples were scanned

using 2�C intervals with a 2-min delay between consecutive scans. Sub-

traction of buffer spectra taken at the same temperature as the samples,

center-of-gravity frequencies, and band-narrowing methods were performed

interactively using either GRAMS/32 or Spectra-Calc (Galactic Industries,

Salem, MA), as described previously (39,40).

Differential scanning calorimetry

MLVs were formed as described above in 100 mM NaCl, 0.05 mM EDTA

and 25mM HEPES, pH 7.4. The peptides were added to obtain a peptide/lipid

molar ratio of 1:15. The final volume was 1.2 ml (500 mM lipid concentra-

tion), and was incubated 10�C above the Tm of each phospholipid for 1 h,

with occasional vortexing. Samples were degassed under vacuum for 10–15

min with gentle stirring, before being loaded into the calorimetric cell. Dif-

ferential scanning calorimetry (DSC) experiments were performed in a VP-

DSC differential scanning calorimeter (MicroCal) under a constant external

pressure of 30 psi to avoid bubble formation, and samples were heated at a

constant scan rate of 60�C/h. Experimental data were corrected from small

mismatches between the two cells by subtracting a buffer baseline before

data analysis. The excess heat capacity functions were analyzed using Origin

7.0 (Microcal). The errors in determination of Tc and DH were 0.2�C and 0.5

kJ/mol, respectively. The thermograms were defined by the onset and

completion temperatures of the transition peaks obtained from heating scans.

To avoid artifacts due to the thermal history of the sample, the first scan was

never considered; second and further scans were carried out until a repro-

ducible and reversible pattern was obtained.

31P NMR

Samples were prepared as described above at a lipid/peptide molar ratio of

50:1 and concentrated by centrifugation (14,000 rpm for 15 min). 31P NMR

spectra were recorded at different temperatures in the Fourier transform

mode in a Bruker Avance 500 MHz NMR (Bruker BioSpin) spectrometer

operating at a resonance frequency of 202.38 MHz for 31P-nuclei and using a

5 mm probe BBO BB-1H. Probe temperature was maintained at 60.2�C by a

Bruker BVT 3000 variable digital temperature unit. Measurements, spectra

acquisition, and calibration were essentially performed as previously de-

scribed (41). Typical acquisition parameters: spectral width of 30 kHz in 16

K data points, p/2 pulse widths of typically 6.5 ms, and relaxation delays of 5 s.

Typically, 1600 scans were recorded with deuterium (D2O) lock.

Small-angle x-ray scattering experiments

MLVs at a concentration of 5% (w/w) prepared without or with the peptide at

a lipid/peptide molar ratio of 50:1 were prepared as stated above and sub-

mitted to 15 temperature cycles (heating at 45�C and cooling at –20�C).

Small-angle x-ray diffraction (SAXD) measurements were carried out using

a Hecus SWAX-camera (Hecus X-ray Systems, Graz, Austria), as described

previously (42), with Ni-filtered Cu-Ka radiation (l ¼ 1542 Å) originating

from a sealed-tube x-ray generator (GE-Seifert, Ahrensburg, Germany) op-

erating at a power of 2 kW (50 kV, 4 mA). Sample-to-detector distance was
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27.8 cm. A linear-position-sensitive detector was used with 1024-channel

resolution. SAXD angle calibration was done with silver stearate. The

measurements were performed with the sample placed in a thin-walled 1-mm

diameter quartz capillary held in a steel cuvette holder at different temper-

atures with an exposure time of 1 h. The SAXD curves were analyzed after

background subtraction and normalization in terms of a full q-range model

using the program GAP (43).

RESULTS

The HCV E1 envelope glycoprotein is thought to be re-

sponsible for the membrane fusion process, whereas the

HCV E2 envelope glycoprotein is thought to mediate the

binding to the host cell, although other roles could not be

ruled out (14,15,44). It is interesting that several hydropho-

bic patches have been identified in the E2 protein that might

be important for modulating membrane binding and in-

teraction (17,19). In Fig. 1, we present the analysis of the

hydrophobic moment, hydrophobicity, and interfaciality

distribution along the E2 envelope glycoprotein sequence of

the HCV_1B4J strain, assuming it forms an a-helical wheel

along the whole sequence (19). Although the E1 and E2

HCV envelope glycoproteins are supposed to be class II

membrane fusion proteins and therefore their a-helix content

should not be as high as that of class I membrane fusion

proteins, these data give us a depiction of the potential sur-

face zones that could be implicated in the modulation of

membrane binding. As we have shown previously, the se-

quence comprising residues 603–634 is one of the most

membranotropic regions of HCV E2 (19). Furthermore, it has

been shown recently that this segment participates in the viral

fusion process (15). Because of that, we present here the

results of the study of the interaction with model membranes

of a peptide derived from this region, the E2FP peptide,

comprising residues 603–634 (see Fig. 1). Peptide E2FP has

been patterned after peptides 34 (603-LTPRCLVDYPYRL-

WHYPC-620), 35 (610-DYPYRLWHYPCTLNFSIF-627), and

36 (617-HYPCTLNFSIFKVRMYVG-634), from the original

HCV E2 peptide library (19).

The ability of the E2FP peptide to interact with membranes

was determined from the increase in fluorescence emission

intensity of its Trp residues in the presence of model mem-

branes (45) containing different phospholipid compositions

at different lipid/peptide ratios (Fig. 2 A). It should be recalled

that HCV pseudoparticle membrane fusion does not require

any protein or receptor at the membrane surface, and it has

been shown as well that the presence of Chol enhances it

(14). The fluorescence emission of the peptide in buffer had a

maximum at 344 nm, typical for Trp in a polar environment,

whereas in the presence of liposomes it decreased to 333 nm,

implying binding of the peptide to the membrane bilayer (a

low-polarity environment was sensed by Trp). These results

were further corroborated when the Trp fluorescence inten-

sity of the E2FP peptide increased when the lipid/peptide ratio

was increased, indicating a significant change in the envi-

ronment of the Trp moiety of the peptide (Fig. 2 A). From

fitting, Kp values in the range 105–106 were obtained for

different phospholipid compositions (Table 1), indicating

that the peptide was bound to the membrane surface with

very high affinity (39,45–47). Slightly higher Kp values were

obtained for negatively charged phospholipid-containing

bilayers; the E2FP peptide has a positive net formal charge,

so that an electrostatic effect might be the reason to observe

higher-Kp-value compositions containing negatively charged

phospholipids. Furthermore, in the presence of model mem-

branes, the anisotropy values of the peptide Trp increased

upon increasing the lipid/peptide ratio, with the limiting

value being ;0.125 for liver membranes (not shown), indi-

cating a significant motional restriction of the Trp moieties of

the peptide at a relatively high lipid/protein ratio (30). We

have also used the electrostatic surface potential probe FPE

FIGURE 1 Hydrophobicmoment (HM),

hydrophobicity (H), and interfaciality

(I) distributions for HCV E2 envelope

glycoprotein (19), assuming it forms

an a-helical wheel (71). Only positive

bilayer-to-water transfer free-energy val-

ues are shown (the darker, the greater).

The residue numbers are indicated at the

left. The sequence of the E2FP peptide

studied in this work is shown and high-

lighted in the figure with dotted lines.
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(48) to monitor the binding of the E2FP peptide to model

membranes composed of different lipid compositions at

different lipid/peptide ratios (not shown). Supporting the

previous data, E2FP had a high affinity for model membranes,

higher for liposomes composed of the liver lipid extract than

for the others. Changes in the membrane dipole potential

magnitude elicited by E2FP were monitored by means of the

spectral shift of the fluorescence probe di-8-ANEPPS

(37,49,50). The variation of the fluorescence intensity ratio

R450/520 normalized as a function of the peptide concentration

for different membrane compositions is shown in Fig. 2 B. In

the presence of the peptide, the greater decrease in R450/520

value was measured in the presence of negatively charged

lipid compositions, confirming again the presence of a spe-

cific interaction of the peptide with vesicles bearing nega-

tively charged phospholipids.

We also studied the accessibility of the Trp residue of

membrane-bound E2FP peptide toward acrylamide, a neutral,

water-soluble, highly efficient quenching molecule. The

quenching data is presented in Fig. 2 C and the lower KSV

values obtained in the presence of lipids, compared with the

measurements in their absence (Table 1), suggest that the

E2FP peptide is buried in the membrane, becoming less ac-

cessible for quenching by acrylamide. Linear Stern-Volmer

plots are indicative of the Trp residue being accessible to

acrylamide, and in all cases, the quenching of the peptide Trp

residues showed acrylamide-dependent concentration be-

havior. It is interesting that the KSV values in the presence of

EPG- and EPA-containing vesicles were slightly lower than

in the presence of the other vesicles, indicating that the

peptide was slightly more buried inside the membrane in the

presence of those phospholipids. The transverse location

FIGURE 2 (A) Determination of the

partition constant, Kp, of E2FP through

the change of the intrinsic tryptophan

fluorescence in the presence of increas-

ing lipid concentrations. (B) Effect of

E2FP on the membrane dipole potential

monitored through the fluorescence ratio

(R) of di-8-ANEPPS. (C) Stern-Volmer

plots of the quenching of the Trp fluo-

rescence emission of E2FP by acrylam-

ide. (D) Depth-dependent quenching of

the Trp fluorescence emission of E2FP

by 5NS (solid symbols) and 16NS (open

symbols) in LUVs. Peptide in buffer is

represented in B as an open pentagon.

LUVs were composed of EPC/Chol at

a molar ratio of 5:1 (s), BPS/Chol at a

molar ratio of 5:1 ()), EPG/Chol at a

molar ratio of 5:1 (h), EPA/Chol at

a molar ratio of 5:1 (n) and liver extract

lipids (=). In C and D, the lipid/peptide

ratio was 100:1, whereas the lipid con-

centration was 200 mM in B–D. Vertical

bars indicate standard deviations of the

mean of triplicate samples.

TABLE 1 Partition coefficients, Stern-Volmer quenching constants, and maximal leakage, hemifusion, and fusion values at a

phospholipid/peptide ratio of 15:1 for the E2FP peptide incorporated in LUVs of different compositions

LUV

compositions

KP

(Trp)

Ksv (M�1)

Acrylamide

Ksv (M�1)

5NS

Ksv (M�1)

16NS

Leakage

(max %)

Hemifusion

(max %)

Fusion

(max %)

EPG/Chol, 5:1 4.85 3 105 1.124 4.44435 3.119 100 100 59

EPA/Chol, 5:1 1.24 3 106 2.006 2.69487 1.708 100 100 55

BPS/Chol, 5:1 8.6 3 105 3.826 5.65617 1.979 100 100 56

EPC/Chol, 5:1 2.49 3 105 3.418 2.16296 0.550 78 69 50

Liver extract 2.57 3 105 2.782 3.84889 0.131 46 46 40

E2FP in buffer — 5.456 — — — — —
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(penetration) of the E2FP peptide into the lipid bilayer was

evaluated by monitoring the relative quenching of the fluo-

rescence of the Trp residues by the lipophylic spin probes

5NS and 16NS when the peptide was incorporated into ves-

icles with different phospholipid compositions (Fig. 2 D and

Table 1). It can be seen that, in general and for each one of the

different membrane compositions studied, the E2FP peptide

was quenched more efficiently by 5NS, a quencher for

molecules near or at the interface, than by 16NS, a quencher

for molecules buried deep in the membrane, suggesting that

E2FP remained close to the lipid/water interface.

To further explore the effect of the E2FP peptide in the

destabilization of membrane vesicles, we studied their effect

on the release of encapsulated fluorophores in model mem-

branes of various compositions. The extent of leakage ob-

served at different peptide/lipid molar ratios and the effect on

different phospholipid compositions is shown in Fig. 3 A (see

also Table 1). The E2FP peptide induced the highest per-

centage of leakage (leakage values between 90 and 100%),

even at lipid/peptide ratios as high as 15:1, for liposomes

containing negatively charged phospholipids (Fig. 3 A).

Lower, but significant, leakage values were obtained for

liposomes composed of EPC alone, EPC plus Chol, EPC plus

TPE, and EPC/SM/Chol at a molar ratio of 52:18:30, since

at a lipid/peptide ratio of 30:1, leakage values .60% were

observed. Liposomes composed of lipid liver extract and

liposomes composed of EPC/SM/Chol at a molar ratio of

5:1:1 were the ones that elicited the lowest leakage values,

i.e., ;50% (Fig. 3 A). The induction of outer-monolayer lipid

mixing (hemifusion) by the E2FP peptide was tested with

several types of vesicles utilizing the probe dilution assay

(27,28), and the results are shown in Fig. 3 B. The higher

hemifusion values were found for liposomes containing

negatively charged phospholipids (liposomes containing

EPG, EPA, and BPS), as well as liposomes containing TPE,

which showed high hemifusion values near 100% at a lipid/

peptide molar ratio of 5:1. Lower hemifusion values were

observed for liposomes containing either EPC or EPC plus

Chol (;78% leakage). Liposomes containing complex

mixtures of lipids, i.e., the liver extract and EPC/SM/Chol,

showed ;40% leakage at the lowest lipid/peptide molar ratio

used. It is interesting that liposomes containing LPC dis-

played the least leakage values (;20%). Inner-monolayer

lipid-mixing (fusion) results induced by the E2FP peptide in

liposomes of different compositions are shown in Fig. 3 C. In

contrast to the results shown above, the highest fusion values

were found for the complex mixture containing EPC/SM/

Chol at a molar ratio of 52:18:30 (leakage values of ;70% at

a lipid/peptide molar ratio of 5:1) Leakage values between

60% and 50% were found for liposomes containing nega-

tively charged phospholipids, as well as for liposomes con-

taining TPE, whereas leakage values between 50% and 40%

were found for liposomes composed of EPC, either pure or

with added Chol, EPC/SM/Chol at a molar ratio of 5:1:1, and

liposomes composed of the liver lipid extract.

The effect of the E2FP peptide on the structural and ther-

motropic properties of phospholipid membranes was inves-

tigated by measuring the steady-state fluorescence anisotropy

of the fluorescent probes DPH and TMA-DPH (51–53) in-

corporated into model membranes composed of saturated

synthetic phospholipids as a function of temperature (Fig. 4).

In general, E2FP was capable of decreasing the cooperativity

of the transition Tm for all phospholipids, as observed by both

types of probes. With respect to the anisotropy, at tempera-

tures above, but not below, the Tm for liposomes composed of

DMPG, E2FP induced a greater increase in the anisotropy

values for DPH (Fig. 4 B) than for TMA-DPH (Fig. 4 A). This

effect was similar to that found for DMPA (Fig. 4, C and D),

DMPC (Fig. 4, E and F) and the complex mixture EPC/SM/

Chol at a molar ratio of 5:1:1 (Fig. 4, G and H). In contrast,

there was no significant change in the anisotropy either below

or above Tm for DEPE liposomes (Fig. 4, I and J). These data

would suggest that E2FP was capable of decreasing the mo-

bility of the phospholipid acyl chains when compared to the

FIGURE 3 Effect of the E2FP peptide on (A) membrane rupture, i.e., leakage, (B) membrane phospholipid mixing of the outer monolayer, i.e., hemifusion,

and (C) membrane phospholipid mixing of the inner monolayer, i.e., fusion, of fluorescent probes encapsulated in LUVs containing different lipid

compositions at different lipid/peptide molar ratios. The lipid compositions used were EPC/Chol at a molar ratio of 5:1 (s), BPS/Chol at a molar ratio of 5:1

()), EPG/Chol at a molar ratio of 5:1 (h), EPA/Chol at a molar ratio of 5:1 (n), liver extract lipids (=), EPC/SM/Chol at a molar ratio of 5:1:1 (9), EPC/SM/

Chol at a molar ratio of 52.18.30 (9), EPC (d), EPC/LPC at a molar ratio of 5:1 (n), and EPC/TPE at a molar ratio of 5:1 (;).
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pure phospholipid (except in the case of DEPE). These re-

sults suggest that the E2FP peptide, although interacting with

the membrane, should be located at the lipid-water interface,

and that its incorporation should not be affected significantly

by differences in headgroup charge (41). It is of interest that

E2FP is capable of decreasing significantly the cooperativity

of DEPE (Fig. 4, I and J; see below). We have also studied the

intrinsic anisotropy of the peptide Trp residues in the pres-

ence of liposomes composed of pure synthetic phospholipids

(Fig. 4 K). In solution, the anisotropy value was ;0.3 along

the whole range of temperatures studied. However, in the

presence of the phospholipids, the anisotropy values differed

depending on temperature: they were higher below the Tm of

each specific phospholipid, but lower above it (Fig. 4 K).

More important, the change in anisotropy occurred coinci-

dentally when the main gel-to-liquid phase transition of the

phospholipids took place; these data implied, first, that the

peptide was effectively incorporated into the membrane

palisade, and, second, that the peptide was capable of sensing

the phase transition of each one of the phospholipids.

It is well known that the capability of phosphatidyletha-

nolamines in general, and DEPE in particular, to display,

apart from the main gel-to-liquid crystalline phase transition,

Lb-La, a liquid-to-hexagonal phase transition, La-HII (54).

To observe any effect of E2FP on the phase polymorphism

behavior of DEPE, we have assayed the thermotropic phase

behavior of DEPE by differential scanning calorimetry

(DSC) (Fig. 5 A). As observed in Fig. 5 A, pure DEPE dis-

plays the main gel-to-liquid crystalline phase transition at

;38�C, whereas the lamellar-to-hexagonal phase transition

is observed at ;64�C (54). In the presence of the peptide at a

lipid/peptide molar ratio of 50:1, the main gel-to-liquid

crystalline transition was broadened and slightly shifted to

lower temperatures, whereas the liquid-to-hexagonal phase

transition was completely abolished (Fig. 5 A). 31P NMR

spectrometry, sensitive to local motion and orientation of the

phosphate group in membrane phospholipids (55), is suitable

for following structural changes in membranes. DEPE and

other phosphatidylethanolamines, when organized in bilayer

structures, give rise to an asymmetrical 31P NMR line shape

with a high-field peak and a low-field shoulder, presenting a

residual chemical shift anisotropy, Ds, of 36–40 ppm in the

gel state and 27–30 ppm in the liquid-crystalline state (Fig.

5 B). In the HII phase, the chemical shift anisotropy is further

averaged due to rapid lateral diffusion of the phospholipid

around the tubes of which this phase is composed, resulting

in a line-shape with reverse symmetry, i.e., a high-field

shoulder and a low-field peak, accompanied by a twofold

reduction in the absolute value of Ds (Fig. 5 B). This is the

behavior we found for pure DEPE as expected (Fig. 5 B).

FIGURE 4 Steady-state anisotropy, Æræ, as a function of temperature of TMA-DPH (A, C, E, G, and I) and DPH (B, D, F, H, and J) incorporated into MLVs

composed of DMPG (A and B), DMPA (C and D), DMPC (E and F), EPC/SM/Chol at a lipid molar ratio of 5:1:1 (G and H), and DEPE (I and J). Data

correspond to vesicles in the absence (d) and presence (s) of the E2FP peptide. (K) Intrinsic steady-state anisotropy of the E2FP peptide as a function of

temperature in solution (d) and incorporated into MLVs composed of DMPC (s), DMPA (n), DMPG (h), and DEPE (=). The peptide/lipid molar ratio in all

cases was 1:15.
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However, when E2FP was added to attain a lipid/peptide

molar ratio of 50:1, the NMR profile of DEPE was com-

pletely different, since, beginning at ;60�C, an isotropic

peak at 0 ppm was apparent. This peak, which should cor-

respond to another phase induced by the presence of the E2FP

peptide (see below), increased in intensity at increasing

temperatures, being the only component present at high

temperatures (Fig. 5 C).

Information on the structural organization of DEPE and

DEPE in the presence of E2FP was obtained by the use of

SAXD. This technique defines the nanoscopic structure and

provides the interlamellar repeat distance in the lamellar

phase, which comprises both the bilayer and the water layer

thickness. The diffraction patterns of pure DEPE and DEPE

in the presence of E2FP are shown in Fig. 6. The figure il-

lustrates the diffraction patterns collected at 25�C, 45�C, and

70�C, i.e., in the Lb, in the La, and in the HII phases, re-

spectively, for pure DEPE (Fig. 6, A–C, respectively). In the

presence of the peptide, the diffraction patterns showed an

increase in membrane disorder, and also indicated that sev-

eral bilayers had become positionally uncorrelated due to the

peptide’s presence; at the same time, the scattering and the

fluctuation increased, and the membranes showed a slight

increase in membrane thickness (from 66 Å and 54 Å in the

absence of peptide to 69 Å and 59 Å in its presence, at 25�C

and 45�C, respectively). Pure DEPE, when organized in the

hexagonal HII structure, showed a first-order diffraction at

66 Å; however, the presence of the E2FP peptide induced the

disappearance of the reflections characteristic of the phos-

pholipid in the hexagonal phase (Fig. 6 C). The new pattern

observed in the presence of the peptide showed the occur-

rence of a lamellar structure with a spacing and membrane

thickness similar to that found in the La phase at 45�C.

The existence of structural changes on the E2FP peptide

induced by membrane binding was studied by analyzing the

infrared amide I9 band located between 1700 and 1600 cm�1

in membranes by Fourier transformed infrared spectroscopy.

The amide I9 band of the peptide in the presence of DMPC,

DMPG, and DMPA in D2O buffer at a lipid/peptide molar

ratio of 15:1 displayed a maximum at 1626 cm�1, 1621

cm�1, and 1618 cm�1, respectively (not shown in the inter-

ests of brevity). The maximum of the band did not change

significantly upon increasing the temperature (not shown),

which suggests a high degree of conformational stability of

the peptide in solution. The assignment of the amide I9 com-

ponent bands to specific structural features has been described

FIGURE 5 (A) DSC heating thermograms of DEPE in the absence (solid line) and presence (dashed line) of the E2FP peptide. (B and C) 31P NMR spectra of

DEPE phospholipid dispersions in the absence (B) and presence (C) of the E2FP peptide at a phospholipid/peptide molar ratio of 15:1 at different temperatures,

as stated. The 31P NMR spectra have been normalized.
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previously (45). Bands at ;1620–1626 cm�1 would corre-

spond to either b-sheet structures or self-aggregated pep-

tides forming a intermolecular network of hydrogen-bonded

b-structures or both (56), so that those structures should be

the main ones of E2FP in the presence of membranes.

DISCUSSION

The fusion of viral and cellular membranes, the critical early

events in viral infection, are mediated by class I and II en-

velope fusion glycoproteins located on the outer surface of

the viral membranes (21,57–60). Whereas class I membrane

fusion proteins possess a fusion peptide at or near the amino

terminus that is critical for fusion, a pair of extended a-hel-

ices and, generally, a cluster of aromatic amino acids proxi-

mal to a hydrophobic transmembrane domain, class II fusion

proteins possess an internal fusion peptide located at a distal

location from the transmembrane anchor, as well as different

domains comprised mostly of antiparallel b-sheets (58,61).

Although their three-dimensional structure is different, their

function is identical, and therefore they must share structural

and/or functional characteristics in the specific domains,

which interact with and disrupt biological membranes

(13,61,62). It is known that both HCV E1 and E2 envelope

FIGURE 6 Small angle x-ray scattering of DEPE MLV

suspension in the absence (s) and presence (d) of the E2FP

peptide in (A) the gel phase at 25�C, (B) the crystalline

liquid phase at 45�, and (C) the hexagonal phase at 70�.

Solid lines represent the best fit to the SAXD data applying

a global analysis technique. The insets (D–F) display the

one-dimensional electron density profiles along the bilayer

normal calculated from the SAXD diffraction patterns in the

absence (dotted lines) and presence (solid lines) of the

peptide.
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glycoproteins are essential for receptor binding, host-cell

entry, and membrane fusion, but their specific roles in the

different processes of the viral life cycle are not known

(8,15,44,57,63). The E1/E2 heterodimer is thought to be the

functional unit, and low pH would induce its dissociation

leading to homooligomerization of the active form of the

fusion protein (15,63–65). It is already known that, apart

from the fusion peptide and the pre- and transmembrane

domains, there exist other membranotropic segments along

the sequence of membrane fusion proteins which, under a

concerted action, are essential for membrane fusion (20). In

this context, several hydrophobic patches have been identi-

fied in both E1 and E2 envelope glycoproteins which might

be important in the mechanism of membrane fusion, not only

for modulating membrane binding and interaction, but also

for protein-protein interaction (17–19,44,66). These regions

should be decisive for membrane fusion to take place, since

destabilization of the lipid bilayer and membrane fusion

are the result of the binding and interaction of these seg-

ments with biological membranes. Recently, it was shown

that different segments from E2 participate in the viral fu-

sion process, one of them a segment comprised by residues

600–620 (15). As we showed in a previous work, one of

the most membranotropic regions of E2 belongs to the re-

gion comprising residues 603–634 (19). In that work, we

analyzed the effect of two peptide libraries from HCV E1 and

E2 on leakage, hemifusion, and fusion, using model mem-

branes composed of EPC/SM/Chol and liver extract lipids.

In this work, we have made an in-depth study of peptide

E2FP, which is the combination of the sequence of the pre-

viously studied peptides 603-LTPRCLVDYPYRLWHYPC-620,
610-DYPYRLWHYPCTLNFSIF-627, and 617-HYPCTLNF-

SIFKVRMYVG-634. In this context, the work described here

is the natural extension of the previous study, since we have

studied the binding and interaction of a new peptide, peptide

E2FP, with membrane model systems composed not only of

EPC/SM/Chol and liver extract lipids, but also of phospho-

lipids containing specific hydrocarbon acyl chains and

headgroups, as well as phospholipids inducing both negative

and positive bilayer curvature. We describe leakage, hemi-

fusion, and fusion induced by peptide E2FP, but also its

binding, transverse location, aggregation state, and phos-

pholipid polymorphic phase behavior, as well as its structure

in the presence of a number of model membrane systems. It

should be noted also that this E2 region includes the sequence

613–618, which is supposed to be involved in CD81 binding,

and E1/E2 and E2/E2 dimerization (15). Therefore, we pres-

ent here the results of the study of the interaction of a pep-

tide derived from this region, the E2FP peptide, with model

membrane systems.

Peptide E2FP is one of the most membranotropic sequences

of HCV E2; accordingly, the E2FP peptide studied in this

work displays a high binding constant to model membranes

having different phospholipid compositions, as has been

found for other peptides (39,46). After binding, the Trp res-

idue of the peptide resides in an environment with a low

dielectric constant, showing a significant motional restric-

tion. E2FP showed a slightly higher affinity for anionic-

phospholipid compositions than for those containing

zwitterionic phospholipids; this difference should be due to

the fact that the peptide has a positive net charge at pH 7.4.

The existence of a specific interaction with liposomes con-

taining negatively charged phospholipids was corroborated

by the change of the dipole potential at the membrane surface,

as well as by hydrophilic and lipophylic probe quenching,

suggesting that the E2FP peptide was effectively incorporated

in the membranes, located in a shallow position but nearer to

the interface in the presence of zwitterionic phospholipids

than in the presence of negatively charged ones. Neverthe-

less, the E2FP peptide is capable of binding with high affinity

to model membranes containing both negatively charged and

zwitterionic phospholipids.

The E2FP peptide was also capable of disrupting the

membrane bilayer, causing the release of fluorescent probes.

This effect is dependent on lipid composition and on the

lipid/peptide molar ratio. The highest effect was observed for

liposomes containing negatively charged phospholipids, but

leakage values observed for liposomes composed of zwit-

terionic phospholipids, although lower, were also significant.

Although the specific disrupting effect should be due pri-

marily to hydrophobic interactions within the bilayer, the

specific charge of the phospholipid headgroups affect the

extent of membrane leakage, albeit slightly. The induction of

hemifusion and fusion by E2FP were also studied, and similar

results were obtained: specific and large membrane hemi-

fusion and fusion values were found in the presence of

liposomes composed of both negatively charged and zwit-

terionic phospholipids. It is interesting that liposomes con-

taining TPE (phospholipid inducing negative curvature)

displayed relatively high hemifusion and fusion values,

whereas liposomes containing LPC (phospholipid inducing

positive curvature) were the ones that elicited the lowest

values. This inhibitory effect produced by inverted-cone-

shaped phospholipids has been previously observed in some

viral and nonviral fusion systems (67–70). This effect could

be due to the fact that E2FP, located at the bilayer interface

and interacting with the phospholipid headgroups, could be

capable of changing the polymorphic phase behavior of the

membrane bilayer, since it was able to inhibit the presence of

hexagonal phases but induce the presence of other lamellar

phases (isotropic 31P-NMR signal, but lamellar SAXD dif-

fraction pattern). As observed by SAXD, the presence of the

peptide increased slightly the membrane thickness and in-

creased the disorder of the membrane. The increase in the

membrane thickness, the increase in lateral tension within the

membrane, and the packing stress could disorder the lipid

molecules in a way that could be detected by NMR as an

isotropic signal. These data reveal that E2FP affects the flu-

idity behavior of the phospholipids in the membrane, sug-

gesting, as commented previously, that the E2FP peptide,
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although interacting with the membrane, should be located at

the lipid-water interface (41).

We have also shown that E2FP peptide is capable of af-

fecting the steady-state fluorescence anisotropy of fluores-

cent probes located in the palisade structure of the membrane,

since the peptide, in general, was able of decreasing the

mobility of the phospholipid acyl chains above but not below

the Tm when compared to the pure phospholipids. It is sig-

nificant that the peptide sensed the phospholipid main phase

transition, indicating its incorporation into the palisade

structure of the membrane. The infrared spectra of the amide

I9 region of the fully hydrated peptide did not change with

temperature, indicating a high stability of its conformation,

where extended b-strands with strong intermolecular inter-

actions predominated. The binding to the surface and the

modulation of the phospholipid biophysical properties that

take place when E2FP is bound to the membrane, i.e., parti-

tioning into the membrane surface and perturbation of the

bilayer architecture, could be related to the conformational

changes that might occur during the activity of the HCV E2

glycoprotein. For all assayed phospholipids, and at increas-

ing peptide concentrations, we observed a decrease in co-

operativity and mobility. These features would indicate that

E2FP would interact with the membrane through both elec-

trostatic and hydrophobic effects, and that it would be ad-

sorbed at the membrane interface; however, it is possible that

part of the peptide could be inserted deeper than the mem-

brane interface, in this way increasing the membrane per-

meability, as we have already shown. These and previous

data suggest the notion that the E2 region where E2FP resides

might be a fusion determinant and have an essential role in

the membrane fusion process. If that is true, it would imply

that both HCV E1 and E2 glycoproteins are directly impli-

cated in the mechanism that makes possible the entry of the

HCV virus into its cellular host: in this way, fusion peptides

would be implicated in the very first steps of membrane

fusion, whereas other membranotropic segments would be

implicated in membrane destabilization, pore formation, and

enlargement. All these sequences should be attractive can-

didates for antiviral drug development, since they could be

targets for antiviral compounds that may lead to new vaccine

strategies
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